用户名: 密码: 验证码:
基于超光谱成像系统的声光可调滤波技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,光谱成像技术在军事侦察、精细农业、生物医学等领域的广泛应用前景引起了愈来愈多研究者的关注。同时具备空间分辨能力和光谱分辨能力的光谱成像技术是图像分析技术与光谱分析技术的完美结合。
     有关分光元件的研究是光谱成像领域的核心技术之一。声光可调滤波器(Acousto-Optic Tunable Filter,AOTF)是一种新型的分光元件。与传统分光元件相比,AOTF的优点在于:体积小、重量轻,固体结构并且无活动部件,通光孔径和入射光孔径很大,衍射效率高,调谐灵活快速、调谐范围宽。这些特性反映出AOTF应用于光谱成像领域的巨大潜力。发展AOTF在光谱成像领域的应用逐渐成为国际研究的一大亮点。不可否认,基于声光可调滤波技术的光谱成像研究作为一门前沿应用科学,仍然处于摸索中不断发展的进程中,很多基本理论和应用问题有待通过积极地探索来完善和解决。我国在开展声光可调滤波技术应用于光谱成像领域的研究方面起步较晚,目前未进入实用化阶段,仍需要进行大量的研究。本文以基于超光谱成像系统的声光可调滤波技术作为主要研究对象,开展了相关理论研究工作,旨在为声光可调滤波技术在光谱成像领域的广泛应用起到积极的促进作用。
     首先,本文介绍了光谱成像技术和声光可调滤波器的国内外研究进展,并分析了声光可调滤波器在光谱成像领域应用的国内外现状和发展趋势。在此基础上,明确了本文的主要研究内容和意义。
     第二,本文详细介绍了声光可调滤波器的工作原理。声光可调滤波器是依赖于反常声光布拉格衍射工作的声光器件。通过对相关基本理论介绍,说明了非共线声光可调滤波器的工作原理和主要技术参数。介绍了非共线声光作用的切线平行动量匹配关系以及压电超声换能器的设计方法。这些知识的介绍为后续的研究奠定了坚实的基础。
     第三,本文针对应用在光谱成像上的TeO2非共线声光可调滤波器展开了研究。研究指出了以往的TeO2非共线声光作用关系存在着明显误差。通过综合考虑TeO2晶体的双折射特性和旋光特性,给出了改进的非共线声光作用关系式。本研究对于提高非共线声光可调滤波器的设计精度很有意义。以改进的声光作用关系为基础,依据声光可调滤波器的工作原理,讨论了最佳入射光极角的选择和成像分辨率等非共线声光可调滤波器设计的重要环节,从而建立了一套完整的非共线声光可调滤波器的设计方法。
     第四,本研究进一步提出了面向超光谱成像应用的高光谱分辨率声光可调滤波器的设计理论。超光谱成像系统的良好探测性能要求作为分光元件的声光可调滤波器具有高光谱分辨率。本研究中,以改进的非共线声光相互作用关系为基础,给出了TeO2声光可调滤波器的光谱分辨率的改进计算式,保障了光谱分辨率的计算精确度。研究提出了利用两个声光可调滤波器的适当组合来有效提高光谱分辨率的新方法,即二次滤波法。研究讨论了二次滤波法的基本原理,并对两个独立声光可调滤波器开展了具体设计。通过讨论二次滤波中影响光谱宽度的因素,发现在确定参考超声频率下增大两个声光滤波器的超声频率差可有效提高光谱分辨率。研究还发现,二次滤波法在光信号旁瓣抑制方面的显著作用。针对声光衍射效率随着超声频率差的增大而降低的问题,研究引入了表示信号锐度的Q因子。对Q因子变化规律的研究表明,超声频率差增大到一定程度时,在确定的参考超声频率下存在着Q值的平衡点。平衡点处的光谱宽度明显地减小,声光衍射效率保持在较高的水平。本研究证明,二次滤波中引入Q值平衡点可以作为在保证良好信号质量前提下提高声光可调滤波器的光谱分辨率的有效方法。二次滤波法为提高声光可调滤波器的光谱分辨率开辟了新途径。
     最后,本研究开展了可见/近红外高光谱分辨率声光可调滤波超光谱成像系统的设计工作。研究中详细阐述了超光谱成像系统的设计思想、具体设计过程以及关键技术。针对声光可调滤波器成像模块的设计中,利用了二次滤波理论来实现超光谱成像系统的高光谱分辨率。基于液晶电致位相延迟原理,利用液晶位相延迟器设计了系统的偏振控制装置,使系统具备了目标偏振特性的识别能力。设计完成的超光谱成像系统结构简单、紧凑牢固,操作灵活方便,整体自动化水平高,能满足众多应用领域的需要。另外,针对可见/近红外高光谱分辨率声光可调滤波超光谱成像系统的性能测试实验开展了设计工作。通过详细阐述性能测试实验的主要实现方法和关键技术,为有效评估超光谱成像系统的性能提供了客观标准和依据。
     本文综合发展了基于超光谱成像系统的声光可调滤波技术的相关理论研究。通过本文的研究,得到了改进的非共线声光作用关系,获得了高光谱分辨率声光可调滤波器的设计方法。本文设计的可见/近红外高光谱分辨率声光可调滤波超光谱成像系统将会极大地推动光谱成像技术发展和广泛应用。
In recent years, the researchers have been attracted more and more attentions on the technology of spectral imaging, for its wide applications in the fields of the military detection, fine agriculture and biomedicine. The spectral imaging technology, with the resolving power both on the space and on the spectral, is the perfect combination of the image analysis and the spectral analysis.
     The study on the prismatic element is one of the key technologies in the area of the spectral imaging. The acousto-optic tunable filter (AOTF) is a newfashioned prismatic element. It has some prominent merits compared with ordinary prismatic elements: AOTF is small and light, its structure is solid without moving parts, both the clear aperture and the incident angular aperture are big, high diffraction efficiency, it can be tuned neatly and fast in the wide field. These merits indicate the large application potential of AOTF in the spectral imaging area. The study on the AOTF being applied on the spectral imaging has become a bright point for the international researchers. But it is incontestable that, the spectral imaging based on the acousto-optic tunable filtering is a new applied science, many basic theories and the practical problems are need to be resolved by the active investigation. In our country, we begin the study of AOTF based spectral imaging comparatively late. At present, our study has not entered the practical phase; we still need to do a great deal of studies. Therefore, the technology of the acousto-optic tunable filter based on the spectral imaging system is selected as the main studied object of this paper. We have done many theoretical studies. It is for the purpose that, the wide applications of the acousto-optic tunable filtering technology on the speatral imaging area would be pushed.
     Firstly, the development of the spectral imaging technology and AOTF is introduced. The application of AOTF on the spectral imaging and its trend is analyzed. The main studied content and the meaning is made clear.
     Secondly, the working principle of AOTF is described in detail. AOTF operates on the extraordinary Bragg diffraction. We introduce the acousto-optic interaction physics, the Bragg diffraction, the optical and acoustic characters of the acousto-optic interaction crystal. We describe the working principle of the noncollinear AOTF and the main technical parameters. The parallel tangents momentum-matching condition and the design method of the piezoelectric transducer are also introduced. These theories have made a foundation for the following study on the AOTF based hyperspectral imaging system.
     Thirdly, we have studied the noncollinear AOTF which is applied on the spectral imaging. We have pointed out that the previous relationship of the acousto-optic interaction existed obvious error. By considering the birefringence together with the rotatory property of TeO2 crystal, the modified relationship of the noncollinear acousto-optic interaction is deduced. This modified relationship is meaningful to improve the design accuracy of the noncollinear AOTF. On the base of the modified acousto-optic interaction relationship and the working principle of AOTF, some important contents in the design of noncollinear AOTF, such as the selection of the optimum incident polar angle and the image resolution have been discussed. An integrated method of designing the noncollinear AOTF has been established.
     Fourthly, we put forward a theory of designing AOTF with high spectral resolution for the applications of the hyperspectral imaging. AOTF with high spectral resolution is the foundation of good detection performance of hyperspectral imaging system. On the base of the modified acousto-optic interaction relationship, modified formula of the spectral resolution of TeO2 AOTF is deduced; it ensures the accuracy of computing the spectral resolution. In the study, a new method, that is called double-filtering method, is put forward to improve the spectral resolution by the properly assembling two separate AOTFs. We have discussed the basic principle of double-filtering method which can achieve the improved spectral resolution. The two separate AOTFs are designed and the detailed parameters are given by calculation. Through discussing the factors that can influence the spectral bandwidth in double-filtering, it is found that the spectral resolution can be obviously improved when we increase the acoustic frequency interval of the two AOTFs at a certain reference acoustic frequency. We also see a merit of double-filtering method on sidelobe suppression. Since the acousto-optic diffraction efficiency decreases with the increasing of the acoustic frequency interval, we have introduced factor Q which represents the spectral sharpness of the optical signal. By studying the change of Q factor, it is indicated that, an equal point of Q factor exists at a certain reference acoustic frequency when the acoustic frequency interval increases to some extent. At the equal points, the spectral bandwidth is decreased obviously, the acousto-optic diffraction efficiency holds on a higher level. This study confirms that the introduction of the equal points of Q in double-filtering can be used as a functional method of improving the spectral resolution of AOTF with a good signal performance. The method of double-filtering has provided a new way of improving the spectral resolution of AOTF effectively.
     Lastly, we have designed the VIS/NIR hyperspectral imaging system based on AOTF with high spectral resolution. We have discussed the design idea, basic composition and the key technology about the design of the hyperspectral imaging system. In the design of AOTF imaging modular, the theory of double-filtering is used to realize the high spectral resolution of hyperspectral imaging system. On the base of the principle of electricity induced phase retardation, the polarization control equipment is designed by the liquid crystal variable retarder, and the system is made to have the ability of identifying the polarization property of the object. The designed VIS/NIR hyperspectral imaging system based on AOTF with high spectral resolution is very simple and compact; it can be operated flexibly with a high level of automatization, the need for the application in various fields can be satisfied. Besides, we design an experiment to test the performance of VIS/NIR AOTF based hyperspectral imaging system with high spectral resolution. By describing the main implementation methods and the key technology of these performance testing experiments, we have provided an objective criterion and reference for evaluating the performance of the hyperspectral imaging system.
     In this paper, we have synthetically developed the corresponding theoretical study on the technology of the acousto-optic tunable filter based on the hyperspectral imaging system. By the investigation of this paper, we have got the modified relationship of the noncollinear acousto-optic interaction, and have acquired the design method of AOTF with high spectral resolution. The VIS/NIR AOTF based hyperspectral imaging system with high spectral resolution which is designed in this paper, would obviously push the development and wide application of the spectral imaging technology.
引文
1 Georgios N. Stamatas, Costas J. Balas and Nikiforos Kollias. Hyperspectral Image Acquisition and Analysis of Skin. Proceedings of SPIE. 2003, 4959: 77~82
    2 Oscar Carrasco, Richard B. Gomezb, Arun Chainani and William E. Roper. Hyperspectral Imaging Applied to Medical Diagnoses and Food Safety. Proceedings of SPIE. 2003, 5097: 215~221
    3 Anwer M. Siddiqi, Hui Li, Fazlay Faruque, Worth Williams, Kent Lai, Michael Hughson, Steven Bigler, James Beach and William Johnson. Use of Hyperspectral Imaging to Distinguish Normal, Precancerous, and Cancerous Cells. Cancer Cytopathology. 2008, 114 (1): 13~21
    4 Li QingLi, Xue YongQi, Xiao GongHai, Zhang JingFa. Study on Microscope Hyperspectral Medical Imaging Method for Biomedical Quantitative Analysis. Chinese Science Bulletin. 2008, 53 (9): 1431~1434
    5 Zhang H, Paliwal J and Jayas DS. Classification of Fungal Infected Wheat Kernels Using Near-infrared Reflectance Hyperspectral Imaging and Support Vector Machine. Transactions of the Asabe. 2007, 50 (5) : 1779~1785
    6 Stephen R. Delwiche and Moon S. Kim. Hyperspectral Imaging for Detection of Scab in Wheat. Proceedings of SPIE. 2000, 4203: 13~20
    7 Kurt C. Lawrence, Bosoon Park, William R. Windham, Chengye Mao and Gavin H. Poole. Reflectance Calibration of Focal Plane Array Hyperspectral Imaging System for Agricultural and Food Safety Applications. Proceedings of SPIE. 2003, 4879: 362~372
    8 Huang W, Lamb DW and Niu Z. Identification of Yellow Rust in Wheat Using In-situ Spectral Reflectance Measurements and Airborne Hyperspectral Imaging. Precision Agriculture. 2007, 8 (4): 187~197
    9 Tien-Hsin Chao, Jeffrey W. Yu, Li-Jen Cheng and Jim L. Lambert. Acousto-Optic Tunable Filter Imaging Spectrometer for NASA Applications: Breadboard Demonstration. Proceedings of SPIE. 1990, 1347 : 655~663
    10 John E. McFee, Steve Achal, Tyler Ivanco and Cliff Anger. A Short WaveInfrared Hyperspectral Imager for Landmine Detection. Proceedings of SPIE. 2005, 5794: 56~67
    11 Nicola Playle. Detection of Landmines using Hyperspectral Imaging. Proceedings of SPIE. 2006, 6217: 62170A 1~9
    12 Jeffrey W. Yu, Tien Hsin Chao and Li-Jen Cheng. Acousto-optic Tunable Filter Imaging Spectrometer for NASA Applications: System Issues. Proceedings of SPIE. 1990, 1347 : 644~654
    13王丽霞,王慧,高军.星载超光谱成像技术应用及现状分析.空间返回与遥感. 2000, 21 (1) : 40~47
    14 Miles Q. Topping, Joel E. Pfeiffer, Andrew W. Sparks, Kevin T.C. Jim and Dugan Yoon. Advanced Airborne Hyperspectral Imaging System (AAHIS). Proceedings of SPIE. 2002, 4816: 1~11
    15 Khlopenkov Konstantin V. and Trishchenko Alexander P. Implementation and Evaluation of Concurrent Gradient Search Method for Reprojection of MODIS Level 1B Imagery. IEEE Transactions on Geoscience and Remote Sensing. 2008, 46 (7) : 2016~2027
    16 Hirohisa Kurosaki. Earth Observation by The Adaptive Wavelength Optical Image Sensor. Advances in Space Research. 2007, 39 (1): 185~189
    17范世福,李昀,赵友全.光谱成像的原理、技术和生物医学应用.生命科学仪器. 2004, 2 (4) : 24~27
    18田国良.遥感基础研究的范畴及其在遥感应用发展中的意义.环境遥感. 1994, 9 (3): 168~176
    19 Vane G. Goetz and Alexander F. H. Terrestial Imaging Spectrometer: Current Status, Future Trends. Remote Sensing Environment. 1993, 44 (2): 117~126
    20 Charles L. Bermet, Michael R. Carter, David J. Fields and John A. M. Hernandez. Imaging Fourier Transform Spectrometer. Proceedings of SPIE. 1993, 1937 : 191~200
    21 Ase M. Ballangrud, Tycho C. Jeger and Gunnar Wang. High Resolution Imaging Interferometer. Proceedings of SPIE. 1991, 1521 : 89~96
    22 W. H. Smith and D. H. Philip. Digital Array Scanned Interferometer: Sensors and Results. Applied Opttics. 1996, 35 (16): 2902~2909
    23 M. J. Padgett and A. R. Harvey. A Static Fourier Transform SpectrometerBased on Wollaston Prisms. Rev. Sci. Instrum. 1995, 66 (4): 2807~2811
    24 J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett and M. J. Padgett. Design of a Static Fourier-transform Spectrometer with Increased Field of View. Applied Optics. 1996, 35 (34): 6698~6702
    25 M. Hashimoto and S. Kawat. Multichannel Fourier-transform Infrared Spectrometer. Applied Optics. 1992, 31 (28): 6096~6101
    26邵晖,王建宇,薛永祺.推帚式超光谱成像仪的关键技术.遥感学报. 1998, 2 (4): 251~254
    27董瑛,相里斌,赵葆常.大孔径静态干涉成象光谱仪中的横向剪切干涉仪.光子学报. 1999, 28 (11): 991~995
    28张淳民,相里斌,赵葆常,刘良云.干涉成像光谱仪技术的新发展.光学技术. 2000, 26 (3): 232~234
    29相里斌,赵葆常,薜鸣球.空间调制干涉成像光谱技术.光学学报. 1998, 18 (1): 18~22
    30沈中,朱军.中国星载干涉型超光谱成像仪.航天器环境工程. 2005, 22 (4): 187~191
    31 R. W. Dixon. Acoustic Diffraction of Light in Anisotropic Media. IEEE Journal of Quantum Electronics. 1967, 3 (2): 85~93
    32 S. E. Harris and R. W. Wallace. Acousto-Optic Tunable Filter. Journal of the Optical Society of America. 1969, 59 (6): 744~747
    33 S. E. Harris and S. T. K. Nieh. CaMoO4 Electronically Tunable Optical Filter. Applied Physics Letters. 1970, 17 (5) : 223~225
    34 I. C. Chang. Noncollinear Acousto-optic Tunable Filter with Large Angular Aperture. 1974, 25 (7): 370~372
    35 He ZH, Lian WL and Wu MJ. Determination of Tobacco Constituents with Acousto-optic Tunable Filter Near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy. 2006, 14 (1): 45~50
    36 Takabayashi K, Takada K and Hashimoto N. Widely (132 nm) Wavelength Tunable Laser using a Semiconductor Optical Amplifier and an Acousto-optic Tunable filter. Electronics Letters. 2004, 40 (19) : 1187~1188
    37 V. B. Voloshinov, L. A. Kulakov and O. V. Mironov. Scanning an Optical Image in the Presence of Acousto-optic Light Filtering. Soviet Journal Communications Technology Electronics. 1989, 34 (2): 54~58
    38 E. G. Bucher and J. W. Carnahan. Characterization of an Acousto-optic Tunable Filter and Use in Visible Spectrophotometry, Applied Spectroscopy. 1999, 53 (5): 603~611
    39 Bei L, Duffin KL and Carnahan JW. Inductively Coupled Plasma Chemistry Examinations with Visible Acousto-optic Tunable Filter Hyperspectral Imaging. Journal of Analytical Atomic Spectrometry. 2004, 19 (9) : 1151~1157
    40 Chen Zhongyang, Khurgin Jacob, Lorenzo Jose, Jin Feng, Xiong Xiangchun, Jia Ken, Trivedi Sudhir, Soos Jolanta, Hansen Marion and Russomanno Charles. Near-infrared Spectropolarimeter using an Acousto-optic Tunable Filter. Optical Engineering. 2007, 46 (7) : 073605-1~6
    41林伟,薛峰,张晔晖,徐晓洁.声光可调谐滤光器的原理与应用.微计算机信息. 2005, 21 (10): 127~128
    42 T. Yano and A. Watanabe. Acousto-optic TeO2 Tunable Filter using Far-off-axis Anisotropic Bragg Diffraction. Applied Optics. 1976, 15 (9): 2250~2258
    43王复兴.红外气体分析仪的发展趋势.分析仪器, 1996, 4 : 2~4
    44 Robert. Role of a TAS AOTF in a Commercial Stack Analyzer. Proceedings of SPIE. 1987, 753 : 103~113
    45 B. Bates, D. Halliwell and D. Findlay. Astronomical Spectrophotometry with an Acousto-optic Filter Photometer. Applied Optics. 1984, 23 (2): 257~260
    46声光可调谐滤光器.激光与光电子学进展. 1998, 6 : 6~9
    47 G. Fulton and G. Horlick. AOTFs as Atomic Spectrometers: Basic Characteristics. Applied Spectroscopy. 1996, 50 (7): 885~892
    48 Bin Xue and Kexin Xu, Hiroshi Yamamoto, Discussion to the Equivalent Point Realized by the Two Polarized Beams in AOTF System, Optics Express. 1999, 4 (3): 139~146
    49 Bin Xue. Discussion to the Angular Aperture Narrowing Behavior inside AOTF Crystal. Optics Express. 1999, 5 (1): 2~7
    50 Cuncheng Weng. Method to Improve the Quality of Acousto-optic Imaging using an Ultrashort and Focused Ultrasound Pulse. Applied Physics Letters. 2007, 90 (12): 121108-1~3
    51丁兰英,安西书任诠,魏爱俭.二氧化碲非同向声光可调谐滤波器的设计分析.光学学报. 1995, 15 (6) : 788~792
    52万峰,李小霞,孙振东.以AOTF为核心的在线光谱测量系统的研制.压电与声光. 2003, 25 (1): 43~48
    53毕卫红,唐予军,杨小莉,李超.基于AOTF的便携式近红外光谱测量仪.半导体光电. 2005, 26 (3): 264~266
    54何智慧,练文柳,吴名剑,唐丽云,陈亚,罗佳. AOTF-近红外光谱技术快速分析烟草主要化学成分.现代科学仪器. 2006, 1 : 66~68
    55史红兵,林中.运用声光可调谐滤光器进行快速面光谱探测的研究.现代科学仪器. 1997, 2 : 14~16
    56魏爱俭.声光可调谐滤光器在原子光谱研究中的应用.实验技术与管理. 2003, 20 (6): 91~94
    57陈泽勇,彭荣飞,张展霞. AOTF在光谱分析中的应用研究——AOTF在原子发射光谱分析中的应用.光谱学与光谱分析. 2002, 22 (3): 453~457
    58万峰,基于AOTF的在线汽车尾气监测系统.压电与声光. 2006, 28 (6): 645~647
    59 K. B Yushkov, D. V. Bogomolov and V. B. Voloshinov. Acousto-optic Imaging by Means of Wide Angle Tunable Acousto-optic Filter. Journal De Physique IV. 2006, 137 (1): 185~188
    60 J. Calpe-Maravilla, J. Vila-Frances, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amoros-Lopez, L. Gomez-Chova and E. Tajahuerce-Romera. 400- to 1000- nm Imaging Spectrometer Based on Acousto-optic Tunable Filters. Journal of Electronic Imaging. 2006, 15 (2): 023001 1~8
    61 ME. Martin, M. Wabuyele, M. Panjehpour, B. Overholt, R. Denovo, S. Kennel, G. Cunningham and T. Vo-Dinh. An AOTF-based Dual-modality Hyperspectral Imaging System (DMHSI) Capable of Simultaneous Fluorescence and Reflectance Imaging. Medical Engineering & Physics. 2006, 28 (2): 149~155
    62 Y. Inoue and J. Penuelas. An AOTF-based Hyperspectral Imaging System for Field Use in Ecophysiological and Agricultural Applications. International Journal of Remote Sensing. 2001, 22 (18): 3883~3888
    63 V. B. Voloshinov, K. B. Yushkov and B. B. J. Linde. Improvement in Performance of a TeO2 Acousto-optic Imaging Spectrometer. Journal ofOptics A : Pure and Applied Optics. 2007, 9 (4): 341~347
    64 L. Bei, KL. Duffin, JW. Carnahan. Inductively Coupled Plasma Chemistry Examinations with Visible Acousto-optic Tunable Filter Hyperspectral Imaging. Journal of Analytical Atomic Spectrometry. 2004, 19 (9) : 1151~1157
    65 N. Gupta. Acousto-optic-tunable-filter-based Spectropolarimetric Imagers for Medical Diagnostic Applications - Instrument Design Point of View. Journal of Biomedical Optics. 2005, 10 (5) : 051802 1~6
    66 Louis J. Denes, Milton S. Gottlieb, and Boris Kaminsky. Acousto-optic Tunable Filters in Imaging Applications Optical Engineering. 1998, 37 (4) : 1262~1267
    67 Joan Vila-Francés, Javier Calpe-Maravilla, Jordi Mu?oz-Mari, Luis Gómez-Chova and Julia Amorós-López Configurable-bandwidth Imaging Spectrometer Based on an Acousto-optic Tunable Filter. Review of Scientific Instruments. 2006, 77 (7) : 073108 1~10
    68 Veeriah S, Faidz AR and Mishra V. Spectral shaping of acousto-optic tunable filter: A Method to Tune the Bandwidth, Wavelength, and Attenuation. Microwave and Optical Technology Letters. 2006, 48 (9) : 1781~1785
    69 I. C. Chang. Acousto-optic Devices and Applications. IEEE Transactions on Sonics and Ultrasonics. 1976, SU-23 (1): 2~22
    70黄庚辰,戴元超.新型电调谐分光元件──声光滤波器.物理. 1988, 1 : 37~41
    71林伟,薛峰,张晔晖,徐晓洁.声光可调谐滤光器的原理与应用.微计算机信息. 2005, 18 (): 127~128
    72 David A. Glenar, John J. Hillman and Babak Saif. Acousto-optic Imaging Spectropolarimetry for Remote Sensing. Applied Optics. 1994, 33 (31): 7412~7424
    73 David A. Glenar, J. J. Hillman, Babak N. Saif and J. Bergstrahl. Polaris-Ⅱ: an Acousto-optic Imaging Spectropolarimeter for Groud-based Astronomy. Proceedings of SPIE. 1992, 1747 : 92~101
    74 David A. Glenar, Diana L. Blaney and J. J. Hillman. AIMS: Acousto-optic Imaging Spectrometer for Spectral Mapping of Solid Surfaces. ActaAstronautica. 2003, 52 (2-6): 389~396
    75 Y. Inoue and J. Penuelas. An AOTF-based Hyperspectral Imaging System for Field Use in Ecophysiological and Agricultural Applications. International Journal of Remote Sensing, 2001, 22 (18): 3883~3888
    76用快速光谱成像判断葡萄的成熟程度.激光与光电子学进展. 2000, 11 : 57~57
    77 Li-Jen Cheng, Michael K. Hamilton, J. Colin Mahoney and George F. Reyes. Analysis of Acousto-optic Tunable Filter (AOTF) Hyperspectral Imagery. Proceedings of SPIE. 1994, 2231 : 158~166
    78 Li-Jen Cheng and George F. Reyes. AOTF Polarimetric Hyperspectral Imaging for Mine Detection. Proceedings of SPIE. 1995, 2496 : 305~311
    79 N. Gupta, R. Dahmani, M. S. Gottlieb, L. J. Denes, B. Kaminsky and P. Metes. Hyperspectral Imaging Using Acousto-optic Tunable Filters. Proceedings of SPIE. 1999, 3718 : 512~521
    80 N. Gupta and R. Dahmani. Multispectral and Hyperspectral Imaging with AOTF for Object Recognition. Proceedings of SPIE. 1999, 3584 : 128~135
    81 N. Gupta and R. Dahmani. AOTF Based Visible to Near-infrared Spectro- polarimetric Imager. Optical Engineering. 2002, 41 (5) : 1033~1038
    82 N. Gupta and V. B. Voloshinov. Development and Characterization of Two-transducer Imaging Acousto-optic Tunable Filters with Extended Tuning Range. Applied Optics. 2007, 46 (7) : 1081~1088
    83 N. Gupta, R. Dennis and R. Suhre. Acousto-optic Tunable Filter Imaging Spectrometer with Full Stokes Polarimetric Capability. Applied Optics. 2007, 46 (14) : 2632~2637
    84 N. Gupta and V. Voloshinov. Hyperspectral Imager from Ultraviolet to Visible Using KDP AOTF. Applied Optics. 2004, 43 (13) : 2752~2759
    85 N. Gupta, R. Dahmani, K. Bennett, S. Simizu, D. R. Suhre and N. B. Singh. Progress in AOTF Hyperspectral Imagers. Proceedinds of SPIE. 2000, 4054 : 30~38
    86 V. B. Voloshinov and N. Gupta. Investigation of Magnesium Fluoride Crystals for Imaging Acousto-optic Tunable Filter Applications. Applied Optics. 2006, 45 (13) : 3127~3135
    87 N. Gupta, D. R. Suhre and M. Gottlieb. Long-wave Infrared Spectral Imagerwith an 8 cm-1 Passband Acousto-optic Tunable Filter. Optical Engineering, 2005, 44 (9) : No. 094601
    88 N. Gupta and V. B. Voloshinov. Hyperspectral imaging performance of a TeO2 acousto-optic tunable filter in the ultraviolet region. Optics Letters. 2005, 30 (9) : 985~987
    89 V. B. Voloshinov and N. Gupta. Ultraviolet-visible Imaging Acousto-optic Tunable Filters in KDP. Applied Optics. 2004, 43 (19) : 3901~3909
    90 V. B. Voloshinov and N. Gupta. Investigation of Magnesium Fluoride Crystals for Imaging Acousto-optic Tunable Filter Applications. Applied Optics. 2006, 45 (13) : 3127~3135
    91 N. Gupta, L. J. Denes and M. Gottlieb. Object Detection with a field-Portable Spectropolarimetric Imager. Applied Optics. 2001, 40 (36) : 6626~6632
    92 Ying Dong, Zheng You, Peng Gao and Yuncai Hao. Miniature Imaging Spectrometer Based on Acousto-optic Tunable Filter (AOTF). Proceedings of SPIE. 2003, 4897 : 138~146
    93江益,曾立波,吴琼水,姚端正.基于声光可调谐滤光器的显微光谱成像技术.光学技术. 2005, 31 (2) : 193~195
    94徐介平.声光器件的原理、设计及应用.北京.科学出版社. 1982
    95 P. A. Gass and J. R. Sambles. Accurate Design of Noncollinear Acousto-optic Tunable Filter. Optics Letters. 1991, 16 (6) : 429~431
    96 Naoya Uchida. Optical Properties of Single-Crystal Paratellurite (TeO2). Physics. Review B. 1971, 4 (10) : 3736~3745
    97 H. Lee. Polarization-independent Acousto-optic Light Modulation with Large Angular Aperture. Applied Optics. 1988, 27 (5) : 815~817
    98 D. R. Suhre and J. G. Theodore. White-light Imaging by Use of a Multiple Passband Acousto-optic Tunable Filter. Applied Optics. 1996, 35 (22) : 4494~4501
    99 I. C. Chang. Analysis of the Noncollinear Acousto-optic Filter. Electronics Letters. 1975, 11 (25) : 617~618
    100 I. C. Chang and P. Katzka. Enhancement of Acousto-optic Filter Resolution Using Birefringence Dispersion in CdS. Optics Letters. 1982, 7 (11) : 535~536
    101 Louis J. Denes, Boris Kaminsky, Milton S. Gottlieb, Peter Metes, S. Simizu, R. T. Obermyer, C. J. Thong, M. J. Uschak and S. G. Sankar. Image Processing Using Acousto-optical Tunable Filtering. Proceedings of SPIE. 1997, 2962 : 111~121
    102 V.é. Pozhar and V. I. Pustovo?t. Consecutive Collinear Diffraction of Light in Several Acoustooptic Cells. Soviet Journal of Quantum Electronics. 1985, 15 (10) : 1438~1441
    103赵凯华,钟锡华.光学(下册).北京大学出版社, 1984 : 185~192
    104王雨三,张中华,林殿阳.光电子学原理与应用.哈尔滨工业大学出版社, 2002: 231~233
    105 http://lamdapacific.com/mlx_manage/upload/200738145540734.pdf
    106 http://www.andor.com/scientific_cameras/ikon-m/models/default.aspx?IProd uctCodeID=21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700