用户名: 密码: 验证码:
无人机载光谱仪超光谱图像压缩技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超光谱遥感是自二十世纪八十年代起迅速发展起来的一种遥感技术,它可以在可见光、近红外、中红外和热红外区域获取许多波段非常窄的光谱连续的图像数据[1],能够分辨出多光谱遥感无法探测到的地表物质。无人机载遥感系统的运行成本低、实时性高、执行任务灵活性高,具有高分辨率遥感影像数据获取能力,获取的超光谱遥感数据在地质勘测、农业、植被遥感、海洋遥感、环境监测等方面都发挥着重要作用。但是超光谱图像庞大的数据量却使得存储、传输和处理的效率大大降低,因此研究适合硬件实现的、低复杂度、高性能的超光谱图像压缩技术具有重要的应用价值。本文以863项目为背景,围绕超光谱图像的特性,以超光谱图像压缩应用为主题展开论述,主要的研究内容和成果包括以下几个方面:
     (1)超光谱图像的数据相关性分析。
     对超光谱图像和普通图像进行了相关性对比实验,结果表明超光谱图像各个谱段的空间相关性基本一致,所以在去除空间冗余时可以对各波段采用相同的方法;空间相关系数普遍较低,因此如果仅对超光谱图像去除空间冗余,难以取得理想的压缩效果;超光谱图像的谱间相关性要远远大于空间相关性,这种相关性随着光谱分辨率的提高越来越强,因此多谱段图像的信息冗余度极高,压缩时的首要任务就是去除谱间相关。
     (2)基于位平面的编码方案。
     对超光谱图像进行了位平面分析,结果表明高位的谱间冗余度要大于低位,因此压缩时应该对高、低位平面采取不同的去相关措施。针对不同的应用需求,文中提出了基于位平面的无损和近无损压缩模式。
     无损模式中采用DPCM去除谱间相关,针对高位的残差图像设计了静态编码方案,并在低位压缩时引入了四叉树划分技术,同谱间位平面和三维位平面算法相比,本文算法的的编码时间分别降低了13.1%和6.0%,解码时间降低了8.2%和2.8%,而压缩比则有12.7%和6.3%的提高。
     近无损模式中对高位采用改进的JPEG-LS方法压缩,压缩比达到1:8左右的时候,重建图像的PSNR大约为35。在压缩比控制方面提出了有效的方案,预设压缩比和实际压缩比的平均误差约为3.7%。低位压缩时应用四叉树划分后统一去均值并均匀量化,得到的均值图像轮廓与原图像接近。
     针对低位压缩比不高的情况,又提出了三角划分方法,压缩解压时间比四叉树划分分别降低了16.54%和10.58%,重建图像相似度约有0.07%的提高,压缩效果比较理想。
     (3)二阶差分预测编码方案
     分析了常见预测压缩算法,针对低复杂度高压缩比的目标提出了超光谱图像的二阶差分预测压缩方案,算法在空间和谱间分别去相关,最后把结果融合得到统一的预测式。同二阶线性最优预测相比,二阶差分预测的残差图像熵值大约降低了3%,编解码时间降低了5%和16%。同谱间LOCO-I算法相比,残差图像熵值大约降低了4%。
Hyper-spectral remote sensing developed rapidly since the 80's of the 20th century. It can get the image data of many bands with continuous spectrum and narrow spectral regions in visible and near infrared, short waveinfrared and thermal infrared range. With hyper-spectral image, many object that can’t be recognized in multispectral image can be detectd .The unmanned aerial vehical remote sensing system can get high resolution image in real time with lower cost. So it is widely used in military reconnaissance, resource investigation, agriculture, meteorology and environmental assessment. But the increased data volume of hyper-spectral image present special challenges in the acquisition, transmission, analysis and storage process. So it has applicable value to design a compression scheme that suitable for realization in VLSI, with low complexity and good performance. In this paper, with the background of the 863 project , compression of hyper-spectral image is researched, the main contents and results are:
     1. The analysis of the correlation in hyperspectral remote sensing images.
     Contrast Experiment on correlation of hyper-spectral image and ordinary image is tesred at first.The results show the correlation is almost equal among different bands,so we can use the same method to get rid of the correlation for every band; The spatial correlation coefficient of hyperspectral remote sensing images is lower than ordinary image ,so spatial decorrelate can’t get ideal compression effect ;The spectral correlation of hyperspectral remote sensing images is much larger than the ordinary image’s, the higer of Spectral Resolution,the stronger of spectral correlation. So the most important task in compression is spectral decorrelation.
     2. The coding scheme based on bit-plane.
     The results of bit-plane analysis shows the spectral correlation is larger in higher bit-plane.To improve the comprssion effect; we can use different measures for higher and lower bit-plane.Two schemes are propsed in this paper.
     In lossless scheme, DPCM was used in spectral decorrelation of higher bit-plane, then an static code strategy was applied to residual image.Lower bit-planeis are divided with quadtree. Compared with the inter-spectral bit-plane and 3-D bit-plane algorithm, the encode time is decreased by 13.1% and 6.0%, the decode time is decreased by 12.7% and 6.3%.
     In lossy scheme, improved JPEG-LS was used in spectral decorrelation of higher bit-plane, the PSNR reached up to 35 DB when the compression ratio is about 1:8.An effective strategy is designed in comprssion ratio control, the error is abobt 3.7% between expectation ratio and actual ratio. Lower bit-planeis is removing mean after divided with quadtree.
     In view of the poor compression ratio of lower bit-plane, a triangle division method is proposed. By this method, the encode and decode time is decreased by 16.54% and 10.58% respectively, similarity of reconstructed image is increased bu 0.08%.
     3. The coding scheme based on second order different predictive.
     After analyse the performance of common predictive coding scheme,a novel compression scheme that based on second order difference predictive was proposed, It use MED predictor to remove the spatial correlation and second order difference predictor to remove spectral correlation. Then a Unified predictor is designed based on the weight of predictive error. Compared with the optimal linear prediction, the entropy of residual image is decreased by 3%, the encode and decode time are decreased by 5% and 16%. Compared with the inter-spectral LOCO-I, the entropy of residual image is decreased by 4%.
引文
[1]梅安新,彭望陆,秦其明等.遥感导论[M].北京:高等教育出版社,2001.253-257.
    [2]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.47-78.
    [3]Clutis EA. Hyper spectral geological remote sensing:evaluation of analytical techniques[J].Journal of Remote Sensing,1996(12):2215-2242.
    [4]杜培军等,高光谱遥感数据光谱特征的提取与应用,中国矿业大学学报[J],第32卷第5期,500-505,2004;
    [5]童庆禧,张兵,郑兰芬.高光谱遥感—原理、技术与应用[M ].北京:高等教育出版社, 2006. 129-2289.
    [6]Labaw C.Airbone imaging spectrometer:an advanced concept instrument Proceedings of SPIE Conference on Infrared Teehnology,1983,430:68一74.
    [7]张宗贵,王润生.基于谱学的成像光谱遥感技术发展与应用[J].国土资源遥感,2000 (3):14-16.
    [8]Proter W M. A system overview of the airbone visible/infrared imaging spectrometer. Proeeedings of SPIE Conference on Image Specetroscopy,1987,834:166- 174.
    [9]KRAMER.Earth Observation History on Technology Introduction[EB/OL].http://www. eoportal. org/documents/kramer/history.pdf,2008-03-12.
    [10]Hamilton M K1Estimating Chlorophyl Content and Bathymetry of Lake Tahoe Using AVIRIS Data[J]. Remote SensEnvironm, 1993, 44: 217-230.
    [11]袁迎辉,林子瑜.高光谱遥感技术综述[J].中国水运, 2007,7(8):156~157.
    [12]张均萍,张晔,周廷显.成像光谱技术超谱图像分类研究现状与分析[J].中国空间科学技术,2001(1):37-44.
    [13]舒宁.国内外有关成像光谱数据影像分析方法研究[J].国土资源遥感,1998(1):16-20.
    [14]李天宏,杨海宏,赵永平.成像光谱仪遥感现状与展望[J].遥感技术与应用.1997(2):54-58.
    [15]钱乐祥等,中国高光谱、成像遥感应用研究进展[J].国土资源遥感,2004(2):1-6.
    [16]刘汉湖,杨武年,沙晋明.高光谱分辨率遥感在地质应用中的关键技术及前景[J],世界地质.2004,23(1):45-49.
    [17]姚云军,秦其明,张自力,李百寿.高光谱技术在农业遥感中的应用研究进展[J].农业工程学报.2008,24(7):301-306.
    [18]白丽,王进,蒋桂英.高光谱分辨率遥感技术在农作物估产中的研究现状与发展趋势[J].现代化农业,2006,(1):30-33.
    [19]柯丽娜,王权明.高光谱分辨率遥感在植被监测应用中的关键技术及应用[J].太原师范学院学报(自然科学版),2006,5(1):74-77.
    [20]杨吉龙,李家存,杨德明.高光谱分辨率遥感在植被监测中的应用综述[J].世界地质, 2001,(20):307-312.
    [21]潘德炉,林寿仁,李淑菁,等.海洋水色遥感在海岸带综合管理中的应用[J].航天返回与遥感,2001 ,22(2) :34239.
    [22]赵冬至等.渤海赤潮灾害监测与评估研究论文集[M].北京:海洋出版社,2000.207-212.
    [23]王静.土地资源遥感监测与评价方法[M].北京:科学出版社,2006.109-141.
    [24]刘建贵.成像光谱数据在城市遥感中的应用研究[J]遥感学报, 2000,4(3):224- 227.
    [25]NASA技术.便携式超光谱成像技术[J].军民两用技术与产品,2008,12:31-32
    [26]薛莉.基于预测技术的高光谱图像压缩算法研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [27]Miguel A C,Askew A R,and Chang A,et al..Reduced complexity wavelet-based predictive coding of hyperspectral images for FPGA implementation.Data Compression Conference 2004(DCC 2004),Snowbird,UT,USA,23-25 March 2004.IEEE Computer Society 2004,ISBN 0-7695-2082-0 2004:469-478.
    [28]Memon N D,Sayood K,and Magliveras S S.Lossless compression of multispectral image data[J].IEEE Trans.on Geoscience and Remote Sensing,1994,32(2):282-289.
    [29]A.K.Rao,5.Bhagrvaa.MtlltisPectral Data ComPression Using Bidirectional Intebrand Prediction[J]. IEEE Transactionso nGeoscienceand Remote Sensing.
    [30]Y.Zhang,D.DesaiM,J.P.Zhang et al. Adaptive Subspace Decomposition for Hyper spectral Data Dimensionaliyt Reduction.Intenrational Conefrenceon ImageProcessing(ICIP99’), Kobe, Japan,1999:326一329.
    [31]孙蕾,罗建书.基于多波段谱间预测的高光谱图像无损压缩算法[J].电子与信息学报,2007,29(12):2876-2879.
    [32]顾军跃.超光谱图像的压缩算法研究[D]:[硕士学位论文].浙江:浙江大学,2007.
    [33]王春胜,禹秉熙,戴逸松等.高光谱图像数据变换编码压缩方法[J].遥感学报,2000,4(2):95-99.
    [34]Shopiro J M Embed image coding using zerotree of wavelet coefficients.Proc.IEEE ICASSP ,1990:2297-2300.
    [35]王祥林,吴国威,林行刚.一种基于零树的多码率小波图像编码方法[J].电子学报,1997,25(4):48-51.
    [36]S.D.Servetto , K.Ramchandran , M.T.Orchard.Image coding based on a morphologieal representation of wavelet data.IEEE Trans.Image Processing,1999,8(9):1161-1174.
    [37]M.J.Tsai,J.D.Villaseno F.Chen.Stack-run Image coding.IEEE Trans Circuits Syst.Video Technol.1996,6(5):519-521.
    [38]W.Sweldens.The lifting scheme:A custom design construction of biorthogonal wavelets [J].Journal of App.and Comp.Harmonic Analysis,1996,3(2):186-200.
    [39]郝鹏威,石青云.可逆线性变换的整数实现.中国科学,E辑,2000,30(2):132-141.
    [40]Hao P.ShiQ.Matrix factorizations for reversible integer maping.IEEE Transactions on Signal Proeessing,2001,49(10):2314-2324.
    [41]Michel Barland] et al. Pramidal lattice vector quantize.ation for multiscale inage coding IEEE Trans.Image Proc.,1994,3(4):367-380.
    [42]Antonimi M et al.Image coding using lattice vector quantization of wavelet coeffcients. Proc.IEEE ICASSP,1990:2297-2230.
    [43]Antonini M et al Image coding using lattice vector quantization of wavelet transform domain.Proc.IEEE ICASSP,1991:2273-2277.
    [44]Amir Averbuch ,Danny Lazer ,Moshe Israeli.Image compression using wavelet transform and multiresolutions decomposition.IEEE Trans IP,1996,5(1):4-15.
    [45]Antonini M et al Image coding using vector quantization in the wavelet transform domain.Proc.IEEE ICASSP,1990:2297-2300.
    [46]Ebrabimi T,Kunt M.Application of an optimally localized and fast walevet transform in image compression.Proc.ICASSP’92:V-57,Sann Diego,CA.
    [47]Taubman D.High performance sealable image compression with EBCOT.IEEE Trans.on Image Proeessing,2000,9(7):1158-1170
    [48]王琪,郭雷.基于1+2维小波变换的多光谱图像压缩[J].光子学报,2003,32(9):1 126-1 129.
    [49]赵春晖,陈万海,张凌雁.基于提升格式的高光谱遥感图像压缩算法.哈尔滨工程大学学报.2006,27(4):588-592.
    [50]Shen-En Qian,A.B.Hollinger,Dan Williams et al. Vector Quantization Spectral index-Based Multiple Subcodebooks for HyersPeetral Using Data Compression.IEEE Trans.Geosel.Remote Sensing,2000,38(3):1183-1190.
    [51]吕东亚,黄普明,孙献璞.高光谱图像的数据特征及压缩技术[J].空间电子技术,2005,1:15-21
    [52]刘恒殊,彭风华,黄廉卿.超光谱遥感图像特征分析[J].光学精密工程,2001,9(4):392-394.
    [53]刘恒殊.“超光谱遥感图像压缩算法的研究”.中科院长春光学精密机械物理研究所博士学位论文,2003.32-49.
    [54]刘丹.计算机图像处理的数学和算法基础,国防工业出版社,2005:19-25.
    [55]黄菁.高光谱图像编码研究[J].南京理工大学博士学位论文。2008.05,19-25.
    [56]张旭东,卢国栋,冯健.图像编码基础和小波压缩技术一原理、算法和标准[M].第1版.北京:清华大学出版社,2003.
    [57]张春田,苏育挺,张静编著.数字图像压缩编码[M].第1版.北京:清华大学版社,2006.
    [58]张晓玲,沈兰荪.高光谱图像的无损压缩研究进展[J].测控技术. 2004,23(5):23-27
    [59] N.Ahmed,T.Natarajan,K.R.Rao,Discrete cosine transform,IEEE TRANS. Computers, January 1974.
    [60]马维祯.利用子波变换的图像压缩编码技术[J] .信号处理,1995,11(3): 129-138.
    [61]徐佩霞,孙功宪.小波分析与应用实例[M].合肥:中国科技大学出版社,1996.
    [62] Cohen ,Adoul.Adaptive differential coding of picture signals based on a local contour prediction. Proc. NTC 1976,Vol.1,paper 6.
    [63]张春田.轮廓自适应预测的帧内DPCM图像编码[J].通信学,1982,3(1):1-7.
    [64] C.Greeos,J.Jiang and E.A. Edirisinghe. Two Low COST ALGORITHMS FOR IMPROVED DIAGONAL EDGE DETECTION IN JPEG-LS.IEEETransaetionson ConsumerEleetronies,Vol.47,NO.3,PP.466-473,AUGUST20()1.
    [65]J.Jiang andC.GreeosS. Towards an Improvement on Predietion Accuracy in JPEG-LS. http://digitalimaging.inf.brad.ae.uk/publieation/optiealeng.pdf
    [66] J.Ji1ang,B.Guo,S.Y.Yang,Revisiting the JPEG-LS predietion seheme. http://perso.enst-bretagne.fr/-ordonez/Publie/papiers030603/revisiting JPEG-LS.Pdf
    [67]M.Ferretti , M.Boffadossi.A Parallel Pipelined Implementation of LOCO-I for JPEG-LS.http://esd12.eomputer.org/persagen/DLAbsToe.jsp?resoureePath=/dl/proeeedings/&toe=eomp/proeeedings/icpr/2004/2128/01/2128toe.xml&DOI=10.11.09/ICPR.2004.1334311
    [68]MarceloJ.Weinberger , GadielSeroussi , GuillermoSapiro.The LOCO-I Lossless Image Compression Algorithm:Prineiples and Standardization into JPEG-LS.IEEE TRANSACTIONS ON IMAGE PROCESSING. 2000,9(8)1309-1324
    [69]M.J.Weinberger , G.Serouss.G.Sapiro.From LOCO-I to the JPEG-LS Standard, IEEE, 1999,69-72
    [70]A.Skodras,C.ChristoPoulos,and.TEbrahimi,The JPEG2000 still image Compression standard,IEEE Signal Proeessing Magazine,vol.18,SePt.2001,36-58.
    [71]黎洪松,成实译.JPGE静止图像数据压缩标准[M].北京:学苑出版社,1996.
    [72]张晓娣,JPEG2000图像编解码系统的软件设计与实现,西安交通大学硕士学位论文,2001.
    [73]Taubmna D,Maerellin MW.JPEG 2000 Image Comperssion Fundmaentals,Stnadards and Practice..Klwuer Aeademic Publishers,2001.
    [74]Taubmna D , Odrentlin E , Weinberger MJ,Seorussi G. Embedded Block Coding in JPEG2000.Singal Poreessing:ImageConrnunieation,2002,17(l):49-72.
    [75]姚庆栋.图象编码基础[M].北京:人民邮电出版社,1984.
    [76]马国锐,武文波.遥感影像压缩质量评价方法[J].遥感信息,2004.3:48-52
    [77]陈波,《基于变换的低计算复杂度低存储需求的图像压缩方法研究》国防科学技术大学硕士学位论文2004:4-8
    [78]Wallace G K. The JPEG still picture compression standard. IEEE Transactions on Consumer Electronics,1992,38(1):ⅹⅷ?ⅹⅹⅹⅳ
    [79]王相海。图像可分级编码研究进展[J]中国图像图形学报2006年8月vol11 no8
    [80] Rabiee H R,Kashyap R L,Safavian S R.Adaptive multiresolution image coding with matching and basis pursuits[A].In:Proceedings of IEEE 3 rd International Conference on Image Processing,IC IP’96 [C], Lausanne, Switzerland,1996:16-19.
    [81]Rabbin M, Joshi R. An overview of the JPEG2000 still image compression standard.. Signal P rocessing: Image Communication, 2002,17(1):3-48
    [82]王晓晖.解压图像质量的客观评价研究[J]中国图像图形学报,1999.12 Vol 4(12)1029-1033
    [83]朱冰莲.压缩重建图像质量评价指标重庆大学学报2000.09.Vol。23 no。5 41-44
    [84]张雷.“基于超光谱遥感图像三维特征的压缩方法研究”.中科院长春光学精密机械与物理研究所博士学位论文,长春:2005.
    [85]Shaffer C, Samet H. Optimal Quadtree construction algorithm [ J]. Computer Vision Graphics and Imag Processing, 1987, 37(12):402-419.
    [86]Samet H. The quadtree and related hierarchical dat structures[J]. Computer Science, 2001, 36(10): 306-412.
    [87]王汝传.用四叉树对一维图形进行处理的算法[J].南邮电学院学报, 1997, 17(1): 83-86.
    [88]周洞汝,姜海涛.用于区域表达的线性数字搜索树[J].算机辅助设计与图形学学报, 1992, 4(3): 12-17.
    [89]谈国新,林宗坚.基于自然数的线形四叉树优化构造法[J].测绘学报, 2000, 24(3): 204-210.
    [90]周洞汝,杨荣.线形四叉树的一种改进最优构造算法[J].计算机辅设计与图形学学报, 1992, 4(1): 1-7.
    [91]Same H.Neighbor finding techniques for image representeby Quadtree[J]. Computer Science, 2000, 30(10):206-207
    [92]C. H. Chien and J. K. Agganval,“A normalized quadtree representation,”Comput. Vision, Graphics, Image Processing, vol. 26, 1984.
    [93]H. Samet and M. Tamminen,“Computing geometric properties of images represented by linear quadtrees,”IEEE Trans. Patrem Anal.Machine Intell., vol. PAMI-7, no. 2, 1985.
    [94]P. M. Farrelle, Recursive Block Coding for Image Data Compression.New York: Springer-Verlag. 1990, ch. 6, 7.
    [95]R. Wilson,“Quad-tree predictive coding: a new class of image data compression algorithms,”in Proc. Int. Con5 Acoust., Speech, Signal Processing, 1984, pp. 29.3.1-29.3.4.
    [96]C. A. Shaffer and H. Samet,“Optimal quadtree construction algorithms,”Comput. Vision, Graphics, Image Processing, vol. 37, 1987.
    [97]A. Hunter and P. Willis,“Classification of quad-encoding techniques,”Comput. Graphics Forum, vol. 10, 1991.
    [98]邓朝晖,贾华直接表达区域的四叉树链式编码,武汉测绘科技大学学报,1995,09, 20(3):224-227.
    [99]刘波,姜宏旭,练有品等.机载图像无损/近无损压缩方案及其FPGA实现[J].北京航空航天大学学报,2006,32(16):1443-1447.
    [100]赵波,吴成柯.一种新的低时延视频编码码速率控制算法[J].计算机学报, 2005, 28 (1) :53~59.
    [101]刘红梅,肖自美,梁凡等.码率可分级小波视频编码算法的研究[J].软件学报, 2002, 13 (4) :664~668.
    [102]王琪,赵黎,吴枫等.可伸缩性视频编码的码率分配算法[J] ,电子学报, 2002, 30 (2) :205~209.
    [103]史翠竹,余松煜,王嘉. FGS视频流的码率分配算法研究[J].计算机仿真, 2004, 21 (6) : 46~55. ]
    [104]Tony Lindeberg.Scale-space theory:A basic tool for analysis struetures at different scales.Journal of Applied Statisties,1994,21(2):225-270.
    [105]卢朝阳,周幸妮,高西全,等.三角形网格基活动图像编码研究——运动估计、运动补偿和残差图像处理[J].通信学报, 2002, 23(11): 65-73.
    [106]Yao Wang, Lee O. Use of two-dimensional deformable mesh structures for video coding, PartⅡ-the analysis problem and a region-based coder employing an active mesh representation[J]. IEEE Trans. Circuits Syst. Video Technol., 1996, 6(6): 647-659.
    [107]Yang Y, Wernick M N, Brankou J G. A fast approach for accurate content-adaptive mesh generation[J]. IEEE Transactions on Image Processing, 2003, 12(8): 866-881.
    [108]李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展2000,15(3):260-265.
    [109]王家华,高海余,周叶克里金地质绘图技术—计算机的模型和算法[M],北京:石油工业出版社.
    [110]黄杏元,汤勤.地理信息系统概论〔M〕.北京:高等教育出版社, 1990.
    [111]X Wu.Lossless Compression Of Continuous-Tone lmages via Context Selection,Quaniization and Modeling[J].IEEE Trans.On ImageProeessing 1997,6(5):656-664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700