用户名: 密码: 验证码:
CCK系统在创伤后应激障碍大鼠条件恐惧记忆中的作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创伤后应激障碍(Posttraumatic stress disorder,PTSD)是慢性的精神障碍性疾病,病因是由于遭受应激和创伤经历造成的,如家庭暴力、自然灾害或战争等相关的创伤。PTSD是以过度恐惧为特征的,并伴随敏感性增高,从而损害生活质量,并且引起多种疾病、社会和职业问题。目前,人们常把PTSD定义为焦虑障碍性疾病,但大量研究证明PTSD更适合归为学习和记忆障碍类的疾病,因为它包括恐惧记忆的过度巩固和消退的受损。恐惧反应的改变可能导致侵入性记忆和倒叙,增强了回避提示线索和自主觉醒症状。许多研究证明杏仁核是影响PTSD的关键核团。尤其是杏仁核基底外侧核(BLA)对于情感记忆的形成非常重要,在条件恐惧的获得和表达中起重要作用。所以,目前BLA在PTSD的研究中更受关注。
     在过去的研究中,胆囊收缩素(Cholecystokinin, CCK)被认为是与学习记忆、焦虑和恐惧等脑高级活动有密切关系的神经肽类物质。CCK及其受体在大脑中广泛分布,如,皮质、海马和杏仁核等。过去的一些研究证实了在BLA内的神经元存在高浓度的CCK和CCK mRNA。杏仁核内的CCK阳性神经元对调节锥体神经元的兴奋性和突触的整合具有很强的作用。以往的研究证明激活BLA内的CCK受体可以损伤恐惧记忆的消退。动物模型和人类影像学研究证据表明PTSD的一个潜在机制就是突触可塑性的异常。而先前的研究也已表明CCK可以增强海马的长时程增强并且增强实验动物的空间记忆能力。所以我们有理由认为CCK系统与PTSD的形成机制密切相关。然而,BLA内的CCK系统对PTSD的形成机制的影响尚无深入研究。
     过去的数据表明PTSD需要从病因研究入手,因为恐惧记忆的起始与巴普洛夫条件恐惧有相似的过程。因此我们建立了环境相关的条件恐惧模型作为PTSD的动物模型。在此模型的基础上我们进一步探讨了BLA内CCK系统在PTSD发生发展过程中的作用及机制,同时在细胞水平上明确CCK受体在引起PTSD相关症状后的相关信号转导机制。以期为临床治疗PTSD选择有效的靶点提供生物学依据。
     第一部分创伤后应激障碍大鼠杏仁核内CCK系统及相关神经递质的变化
     目的:以巴甫洛夫条件模型为基础建立与PTSD恐惧症状相关的动物模型;在此模型的基础上观察给予厌恶刺激后内源性CCK系统的变化,包括细胞外和细胞内CCK水平,以及CCK受体;同时也观察了给予厌恶刺激后其他相关的神经递质的变化,包括儿茶酚胺类神经递质及其代谢产物,HPA轴的相关递质,以及与学习记忆相关的神经递质。
     方法:①建立PTSD的动物模型,通过大鼠对电流强度和电流时间的反应,确立合适的足底电击程序。最后确定为给予大鼠1.2mA的电流,每120秒给予一个60秒的电击,最后180秒自由活动,总共30min。所有的动物被随机分为5组:1天组、7天组、14天组、28天组和对照组;②应用微透析实验收集大鼠模型前及模型后1天和28天在BLA内的细胞外液;③应用高效液相色谱、液质联用和放射免疫技术,检测透析液内各神经递质(包括肾上腺素、去甲肾上腺素、多巴胺、5-HT及其代谢产物,皮质酮和CRH,以及谷氨酸、天冬氨酸和乙酰胆碱)的含量;④应用放射免疫、免疫荧光和免疫组织化学的方法分别观察透析液中CCK的含量,BLA内CCK中间神经元的数量,以及CCK受体的阳性表达。
     结果:①通过大鼠对电流强度和电流时间的反应,我们确定在给予1.2mA电流强度,10次60秒电击的这种刺激方式下,大鼠不能消退环境相关的恐惧记忆。②在给与大鼠共30min的足底电击程序(1.2mA的电流,每120秒给予一个60秒的电击,最后180秒自由活动)后,大鼠不动时间百分比(freezing%)可以从1天维持到28天并呈持续增长趋势。③BLA内的去甲肾上腺素、多巴胺在电击后1天的水平有所增高,而肾上腺素无明显变化。④BLA内细胞外液的CRH分别在电击后1天和28天均明显高于基础水平。⑤多巴胺的代谢产物DOPAC和HVA,以及5-HT及其代谢产物5-HIAA在大鼠电击前后的BLA内并没有明显变化。⑥谷氨酸、天冬氨酸和乙酰胆碱在电击后在BLA均有明显升高,并且一直伴随着环境相关的恐惧记忆从1天一直持续到28天。⑦电击后1天和28天的BLA细胞外液的CCK水平明显增加;双标的免疫荧光显示了在BLA内含有CCK的神经元在给予足底电击后CCK免疫活性明显比电击前增高;BLA神经元内CCK2受体免疫活性在电击后1天和28天均明显增加,而CCK1受体仅在28天有少量变化。
     小结:本部分实验成功建立了一个与创伤经验后的联想恐惧有关的PTSD条件性恐惧大鼠模型。证明了应激相关神经递质参与了PTSD形成的起始。同时在条件恐惧的进展过程伴随着CCK及其受体的高水平表达,与此同时与学习记忆相关的神经递质参与了整个PTSD的发展过程。提示内源性CCK系统可能是通过影响恐惧记忆参与了PTSD的形成和发展。
     第二部分CCK系统在条件性恐惧过程中的作用及其受体机制
     目的:本部分实验进一步观察内源性CCK是否通过其受体影响了恐惧记忆的获得和表达,以及在该模型下是否改变了BLA内的突触结构可塑性,以明确内源性CCK系统在恐惧记忆的获得和巩固中的作用及机制。
     方法:①应用在体RNAi技术,分别敲减CCK的1和2受体,观察条件性恐惧大鼠模型的恐惧记忆的获得和巩固。②进一步通过对RNAi的大鼠进行自发活动测试、高架十字迷宫测试及Morris水迷宫测试来判断其在自发活动、焦虑和空间学习记忆上有无变化。③应用高尔基染色的方法观察内源性CCK系统对条件性恐惧大鼠树突棘密度的影响。④应用电镜观察内源性CCK系统对条件性恐惧大鼠杏仁核BLA内突触超微结构的影响。⑤应用液质联用观察内源性CCK系统对条件性恐惧大鼠杏仁核BLA内谷氨酸、天冬氨酸和乙酰胆碱的影响。
     结果:①CCK1R和CCK2R的siRNA在体干扰效率分别为65%和72%。最佳敲减时间为转染后3天,后续的所有实验均在转染siRNA后3天进行。CCK1R和CCK2R在体干扰后CCK1R和CCK2R的蛋白表达水平明显低于正常对照组,证明CCK受体敲减模型成功。②手术和转染试剂对正常大鼠运动能力和恐惧反应均无影响。③对正常大鼠和BLA内CCK受体基因敲减的大鼠进行条件恐惧实验,发现电击1天或28天后,BLA内CCK2受体敲减后的大鼠在足底电击后1天和28天时不动时间百分比明显降低,说明对BLA内CCK2受体基因敲减能导致大鼠恐惧记忆的巩固受损。同时发现电击后1小时的各组大鼠不动时间百分比无明显变化,以及每组足底电击时间内的每一次电击后的各组大鼠不动时间百分均无明显变化。说明BLA内CCK受体基因的敲减不影响恐惧记忆的获得。④BLA内CCK2受体基因的敲减对动物自发活动无影响;BLA内CCK2受体基因的敲减不能使动物产生焦虑行为;BLA内CCK2受体基因的敲减不能损害动物空间记忆。⑤双侧BLA内注射CCK2受体的siRNA后的大鼠BLA内的神经元与正常大鼠的神经元均排列整齐致密,细胞形态完整,边界清晰,尼氏小体丰富,胞核大而圆,核仁清晰,基本没有观察到神经损伤。⑥遭遇足底电击后大鼠BLA内的兴奋性神经递质尤其是Glu、Asp和Ach均有明显增加,但是仅有Glu和Asp能够在CCK2受体基因的敲减后有所下降。⑦在条件恐惧后28天,大鼠BLA内的树突棘密度和树突长度明显增加,但在BLA内CCK2受体基因敲减后进行条件性恐惧,BLA内的树突棘密度和树突长度与单纯电击组相比明显减少。⑧条件性恐惧对突触形态的影响:条件性恐惧后28天U型突触数量、突触后致密物的厚度及突触前膜囊泡的数量均能显著增加,但BLA内CCK2受体基因敲减后突触形态则无明显变化。
     小结:本部分实验在第一部分实验建立的条件性恐惧大鼠模型的基础上,观察了CCK系统对大鼠条件性恐惧的影响。研究结果证实,BLA内的CCK2受体是影响条件性恐惧记忆巩固的关键环节,而且是通过改变BLA内突触的结构可塑性而发挥作用的。
     第三部分CCK2受体参与条件性恐惧过程中恐惧记忆巩固的分子机制
     目的:本部分研究在细胞水平通过激活原代杏仁核神经元上的CCK2受体,观察其下游信号转导机制,以明确CCK2受体参与条件性恐惧记忆巩固的机制。
     方法:①培养大鼠原代杏仁核神经元,免疫细胞化学法对神经元进行鉴定,及对原代杏仁核神经元有无CCK及CCK2受体进行鉴定。②shRNA-CCK2R腺病毒载体的构建,及转染到原代杏仁核神经元,应用实时荧光定量PCR检测转染效率。③应用CCK受体的高效激动剂CCK-8激活原代杏仁核神经元的CCK2受体。④应用DiI染色法观察CCK2受体对原代杏仁核神经元树突棘的影响。⑤应用非放射性标记法PKA检测试剂盒,检测CCK2受体激活后对原代杏仁核神经元PKA活性的影响。⑥应用in cell western的方法检测CCK2受体对原代杏仁核神经元内CREB磷酸化的影响。⑦应用钙成像检测CCK2受体对原代杏仁核神经元细胞内Ca2+的影响。⑧应用western blot法检测CCK2受体对原代杏仁核神经元内CamkⅡ磷酸化和突触素的影响。⑨应用western blot和免疫荧光检测CCK2受体对原代杏仁核神经元内PSD95的影响。
     结果:①用神经元特异性标记物MAP-2多克隆抗体标记神经元,结果显示神经元细胞纯度>90%;激光共聚焦显微镜下显示,原代杏仁核神经元含有丰富的CCK2受体和CCK阳性表达。②pAD-CCK2R-shRNA构建成功,并且能够应用于原代神经元细胞,最佳MOI值为100时CCK2受体的干扰效率为71.4%。③CCK2受体激活后,原代杏仁核神经元树突的二级分支上的树突棘密度明显增高。④CCK2受体激活后通过使PKA活性升高进一步增加原代杏仁核神经元细胞内CREB磷酸化。⑤CCK2受体激活后能刺激原代杏仁核神经元细胞的内钙释放,而引起细胞内钙增多,从而引起CamkⅡ磷酸化水平增加。⑥CCK2受体激活能增加原代杏仁核神经元细胞内突触素和PSD95的表达从而影响杏仁核神经元突触结构可塑性的变化。
     小结:本部分实验在体外通过培养大鼠的原代杏仁核神经元,探讨了CCK2受体引起杏仁核神经元突触重塑及结构可塑性的重要机制。CCK2受体可以通过激活cAMP–PKA-CREB及Ga2+–CaMKⅡ-CREB信号转导通路介导PSD95和的突触素翻译增多从而使杏仁核树突棘结构改变。同时也可能由于CCK2受体介导的CaMKⅡThr-262位点的自身磷酸化引起杏仁核神经元突触后致密物质的变化,引起杏仁核神经元突触结构可塑性的改变。结论:本实验系统研究了CCK受体对创伤后应激障碍大鼠恐惧记忆的影响,并对其触发的BLA神经元突触结构可塑性的机制加以深入探讨,得出以下结论:
     成功建立了一个与创伤经验后的联想恐惧有关的PTSD条件性恐惧大鼠模型,在此模型基础上证明了内源性的CCK系统可能是通过影响恐惧记忆参与了PTSD的形成和发展。并进一步证明杏仁核BLA内的CCK通过CCK2受体影响BLA内神经元的突触重塑及结构可塑性而促进了条件恐惧记忆的巩固,通过对其机制进行深入的探讨,为PTSD的病理生理学机制提供依据,为其临床治疗提供潜在的药物靶标。
Posttraumatic stress disorder (PTSD) is a chronic, disabling disorderthat results from exposure to life-threatening trauma. The excessive andcontextually inappropriate triggering of fear memories and associatedbehaviours characteristic of PTSD impairs quality of life. It is thought that thefear response may result in the intrusive memories and flashbacks, enhancedavoidance of reminder cues and autonomic hyperarousal. The initial formationof fear memories similar to those activated by Pavlovian fear conditioning, sowe established an animal model of contextual fear in which the fear response(freezing) was unusually strong and stable. The basolateral amygdala (BLA) iscritical for the formation of emotional memories, and plays an important rolein the acquisition and expression of conditioned fear。A lines of human andnon-human studies suggests that amygdala damage abolishes the developmentof PTSD and the hyperactivity in amygdala plays a causal role in thepathophysiology of PTSD.
     Cholecystokinin (CCK) is an important neuropeptide that performnumerous regulatory functions in the nervous systems, with particularly highconcentrations distributed throughout the limbic system, such as medialprefrontal cortex, hippocampus and amygdala complex. High concentrationsof CCK or CCK mRNA have been observed in amygdalar neurones.Cholecystokinin-positive interneurons can strongly modulate pyramidal cellexcitability as well as synaptic integration in the BLA.
     Evidence from animal models and human neuroimaging studies suggeststhat one of the underlying mechanisms of PTSD is aberrant synaptic plasticity.In the nervous system, CCK signaling, activated by two major G-proteincoupled CCK receptors, has been implicated in learning and memory,anxiogenesis, and nociception, and may in addition participate in pathways mediating anxiety and fear. Our earlier work demonstrated that chronicCCK-8treatment has a significant effect on spatial memory and augmentshippocampal long-term potentiation (LTP). Therefore, we predicted thatamygdalar CCK was involved in fear memory in PTSD model as well.However, the neural, synaptoplastic, and molecule mechanisms through whichCCK signalling impairs fear extinction and exacerbates fear responses areunknown.
     With this in mind, a key challenge in dentifying the etiology of PTSD isto first understand the gentic and celluer systems which regulate fear memoryitselt. One approach to this problem is to fevelop animal models that mightallow us to understand thes fundamental systems. One promising animalmodel focuses on learning of fearful memories. Classic fear conditioning,also known as Pavlovian fear conditioning, is used in our study to discuss therelationship of PTSD and CCK system. In order for the clinical treatment ofPTSDselect a valid target provided biologic evidence.
     Part1Stress-induced enhancement of fear conditioning activates theamaygdala cholecystokinin system and others neurotransmittersin a rat model of posstraumatic stress dissorder
     Objective: In this study, we examined if PTSD-like behaviours (strong,persistent contextual fear) are associated with enhanced CCK signalling in theBLA. Indeed, establishment of PTSD-like conditioned fear was associatedwith prolonged upregulation of CCK and CCK receptor expression.
     Methods:①We developed an animal model of PTSD using multiplefootshocks at1.1mA. All treated rats were randomly assigned to fourexperimental groups, starting1day,7days,14days or28days after theaversive encounter and no shock rats of a control group.②Microdialysiswas used to collect the dialysates with three times:basal transmitter effluxbefore footshock and1day and28day after footshock.③The quantificationof the neurontransmitters in the dialysates was performed by HPLC,HPLC-MS/MS and radioimmunoassays (RIA);④Quantification ofCCK-like immunoreactivity in the dialysates were analyzed by RIA; Immunofluorescence and immunohistochemical were used to detect CCK andCCK receptors.
     Results:①Rats show persistent fear when subjected to the strongconditioning protocol, which was exposured to an1.1mA electric footshocks(60s duration) every160s for total of10footshocks.②Rats exposed to ourstrong US protocol maintained their contextual fear memory for a long time.③Significant increases in BLA norepinephrine and dopamine levels wereobserved post-conditioning.④Significantly elevated CRH in the BLA onboth day1and28⑤DOPAC, HVA,5-HT and5-HIAA were notsignificantly increased by the conditioning protocol.⑥The level of Glu, Aspand Ach were increased.⑦There was a significant increase in theextracellular levels of CCK after footshocks1day and28day. Dual labelingCCK immunofluorescence in BLA neurons revealed that an increased CCKimmunoreactivity indicated enhanced synthesis after conditioning compared toa no-shock group. Dual labeling immunhistochemical staining showed thatCCK1and2receptors were densely up expressed in the BLA.
     Conclusion: In summary, we established an animal model to adressquestions related to the mechanism of PTSD induction. Our results suggestthat stress-induced elevation of NE in the BLA triggers a sustained increase inCCK signalling that may in turn maintain the condition fear response,resulting in PTSD. Our current results provide a framework to further explorethe role of stress hormones and neuropeptides on PTSD induction and theexpression and maintenance of symptoms.
     Part2Amygdalar CCK2receptor was involved in fear memoryconsolidation in fear conditioning
     Objective: This part is order to investigate weather endogenous CCKreceptor affected by the acquisition and expression of fear memory. And wealso declosed the the mechanism of acquisition and consolidation withsynaptic plasticity.
     Methods:①We applied the RNAi to knock down CCK1R and CCK2R,in order to investigate acquisition and consolidation of fear memory in fear conditioning.②Application of locomotor activity, elevated plus maze andMorris water maze is detected locomotor activity, anxiety and learing andmemory in RNAi rats.③The level of Glu, Asp and Ach were examined inour model process.④Synaptic plasticity in structure was examined byGolgi’s stain and electron microscopy.
     Results:①The rats of CCK2R knock down was not increasefreezing%, compare to nomal rats.②The rats of CCK2R knock down wasnot impaired in locomotor activity, anxiety and learing and memory.③There was no damge in BLA neurons in CCK2R knock down rats.④Synaptic plasticity in structure was increased in BLA neurons.⑤The levelof Glu, Asp were not increased in CCK2R knock down rats after fearconditioning.
     Conclusion: Our study provides the first behavioral evidence for thepromoting effects of CCK2R on fear memory consolidation, induced byimpact on structure of sunaptic plastic.
     Part3The mechanisms of CCK2R involved in fear memory consolidation
     Objective: This part is order to discussion the mechanisms by activationCCK2R in primary amygdala neuron to observe singnal pathway.
     Methords:①The primary cultured amygdala neurons were culturedfor21d in neurobasal medium with2%B27supplement as describedpreviously. Then, the neurons were identified by immunocytochemistry orimmunofluorescence with antibody against microtubule associated protein-2(MAP2), which is marker for neurons.②The primary cultured amygdalaneurons were transfection pAD-shRNA-CCK2R.③Application of DiI staindetected spine dentsity.④Ca2+signaling in primary neurons was examined.⑤The PKA actity was examined in primary neurons.⑥2The total orphosphorylated protein levels of CamkⅡ, CREB were examined by westernblotting.⑦Syn and PSD95were examined
     Results:①Activated CCK2R significantly increassed density ofdendritic spines in the primary amygdala neuron; Knock down CCK2r couldobviously reversed effect in the primary amygdala neuron.②Activated CCK2R can activate PKA activity to affect synaptic plasticity.③CCK2Rleads to increase intracellular calcium through promoting the relases of Ca2+from calciumstore.④CCK2R stimulated phosphorylation, i.e., activation ofCamkⅡ, CREB, and the phosphorylation of these proteins by knock downCCK2R were effectively inhibited.⑤Syn and PSD95were upregulated byactivated CCK2R.
     Conclusion: The Ga2+–CaMKⅡ-CREB and cAMP–PKA-CREBsignaling pathway activated by CCK2R is involved in amygdara neuronsynaptic plasticity.
     In summary, our studies provide important views in deeply understandingthe role of CCK2R in fear memory consolidation induced the progress ofPTSD. It will offer a preliminary rationale for studies assessing maintainsPTSD-like symptoms by activated CCK2R enhancing and stabilizing thesynaptoplastic changes in the amygdala mediating contextual fear.
引文
1Connor KM, Butterfield MI. Posttraumatic Stress Disorder. Focus,2003,1:247~62
    2Jovanovic T, Norrholm SD, Fennell JE, et al. Posttraumatic stress disordermay be associated with impaired fear inhibition: relation to symptomseverity. Psychiatry research,2009,167(1-2):151~60
    3Yehuda R, LeDoux J. Response variation following trauma: a translationalneuroscience approach to understanding PTSD. Neuron,2007;56(1):19~32
    4Pape HC, Pare D. Plastic synaptic networks of the amygdala for theacquisition, expression, and extinction of conditioned fear. Physiologicalreviews,2010;90(2):419~463
    5Chandra R, Liddle RA. Cholecystokinin. Current Opinion inEndocrinology, Diabetes and Obesity,2007,14(1):63~67
    6Barakat Y, Pape JR, Boutahricht M, et al. Immunocytochemical detectionof cholecystokinin and corticotrophin-releasing hormone neuropeptides inthe hypothalamic paraventricular nucleus of the jerboa (Jaculus orientalis):modulation by immobilisation stress. Journal of neuroendocrinology,2006,18(10):767~75
    7Sherrin T, Todorovic C, Zeyda T, et al. Chronic stimulation ofcorticotropin-releasing factor receptor1enhances the anxiogenic responseof the cholecystokinin system. Molecular psychiatry,2009,14(3):291~307
    8Katona I, Rancz EA, Acsady L, et al. Distribution of CB1cannabinoidreceptors in the amygdala and their role in the control of GABAergictransmission. The Journal of neuroscience: the official journal of theSociety for Neuroscience,2001,21(23):9506~9518
    9Mascagni F, McDonald AJ. Immunohistochemical characterization ofcholecystokinin containing neurons in the rat basolateral amygdala. BrainResearch,2003,976(2):171~184
    10Chhatwal JP, Gutman AR, Maguschak KA, et al. Functional interactionsbetween endocannabinoid and CCK neurotransmitter systems may becritical for extinction learning. Neuropsychopharmacology: officialpublication of the American College of Neuropsychopharmacology,2009,34(2):509~521
    11Staljanssens D, Azari EK, Christiaens O, et al. The CCK(-like) receptor inthe animal kingdom: functions, evolution and structures. Peptides,2011,32(3):607~619
    12Bowers ME, Choi DC, Ressler KJ. Neuropeptide regulation of fear andanxiety: Implications of cholecystokinin, endogenous opioids, andneuropeptide Y, Physiology&behavior.2012,107(5):699~710
    13Lanius RA, Bluhm R, Lanius U, et al. A review of neuroimaging studies inPTSD: heterogeneity of response to symptom provocation. Journal ofpsychiatric research,2006,40(8):709~729
    14Francati V, Vermetten E, Bremner JD. Functional neuroimaging studies inposttraumatic stress disorder: review of current methods and findings.Depression and anxiety,2007,24(3):202~218
    15Sah P, Westbrook RF, Luthi A. Fear conditioning and long-termpotentiation in the amygdala: what really is the connection? Annals of theNew York Academy of Sciences,2008,1129:88~95
    16Mahan AL, Ressler KJ. Fear conditioning, synaptic plasticity and theamygdala: implications for posttraumatic stress disorder. Trends inneurosciences,2012,35(1):24~35
    17Elzinga B M, Bremner J D. Are the neural substrates of memory the finalcommon pathway in posttraumatic stress disorder (PTSD)? Journal ofAffective Disorders,2002,70(1):1~17
    18Rau V, DeCola JP, Fanselow MS. Stress-induced enhancement of fearlearning: an animal model of posttraumatic stress disorder. Neuroscienceand Biobehavioral Reviews,2005,29(8):1207~1223
    19安献丽,郑希耕.创伤后应激障碍的动物模型及其神经生物学机制.心理科学进展,2008,(3):371~377
    20Siegmund A, Wotjak CT. A mouse model of posttraumatic stress disorderthat distinguishes between conditioned and sensitised fear. Journal ofpsychiatric research,2007,41(10):848~860
    21Louvart H, Maccari S, Ducrocq F, et al. Long-term behavioural alterationsin female rats after a single intense footshock followed by situationalreminders. Psychoneuroendocrinology,2005,30(4):316~324
    22Balogh SA, Radcliffe RA, Logue SF, et al. Contextual and cued fearconditioning in C57BL/6J and DBA/2J mice: context discrimination andthe effects of retention interval. Behavioral neuroscience,2002,116(6):947~957
    23Radulovic J, Kammermeier J, Spiess J. Generalization of fear responses inC57BL/6N mice subjected to one-trial foreground contextual fearconditioning. Behavioural brain research,1998,95(2):179~189
    24Stiedl O, Palve M, Radulovic J, et al. Differential impairment of auditoryand contextual fear conditioning by protein synthesis inhibition inC57BL/6N mice. Behavioral neuroscience,1999,113(3):496~506
    25Wiltgen BJ, Silva AJ. Memory for context becomes less specific with time.Learning&memory,2007,14(4):313~317
    26孙源泉,李莉,高峰强.创伤后应激障碍的神经生化机制研究现状.实用医药杂志,2008,25(11):1394~1399
    27Yehuda R. Post-traumatic stress disorder. The New England journal ofmedicine,2002,346(2):108~114
    28Hageman I, Andersen HS, Jorgensen MB. Post-traumatic stress disorder: areview of psychobiology and pharmacotherapy. Acta Psychiatry Scand,2001,104(6):411~422
    29Bremner JD, Licinio J, Darnell A. Elevated CSF corticotrophin-releasingfactors nconcentrations in posttraumatic stress disorder. Am J Psychiatry,1997,154(5):624~629
    30George TP, Verrico CD, Xu L, et al. Effects of repeated nicotineadministration and footshock stress on rat mesoprefrontal dopaminesystems: Evidence for opioid mechanisms. Neuropsychopharmacology,2000,23(1):79~88
    31Claes SJ. Corticotropin-releasing hormone (CRH) in psychiatry: fromstress to psychopathology, Annals of medicine.2004,36(1):50~61
    32van Gaalen MM, Stenzel-Poore MP, Holsboer F, et al. Effects of transgenicoverproduction of CRH on anxiety-like behaviour. The European journalof neuroscience,2002,15(12):2007~2015
    33Smoller JW, Yamaki LH, Fagerness JA, et al. The corticotropin-releasinghormone gene and behavioral inhibition in children at risk for panicdisorder, Biological psychiatry.2005,57(12):1485~1492
    34Southwick SM, Morgan CA, Charney DS, et al. Yohimbine use in a naturalsetting: effects on posttraumatic stress disorder. Biological psychiatry,1999,46(3):442~444
    35Lemieux AM, Coe CL. Abuse-related posttraumatic stress disorder:evidence for chronic neuroendocrine activation in women. Psychosomaticmedicine,1995,57(2):105~115
    36Ozer EJ, Best SR, Lipsey TL, et al. Predictors of posttraumatic stressdisorder and symptoms in adults: a meta-analysis. Psychological bulletin,2003,129(1):52~73
    37Goldstein LE, Rasmusson AM, Bunney BS, et al. Role of the amygdala inthe coordination of behavioral, neuroendocrine, and prefrontal corticalmonoamine responses to psychological stress in the rat. Journal ofNeuroscience,1996,16(15):4787~4798
    38Rosenkranz JA, Grace AA. Dopamine-mediated modulation ofodour-evoked amygdala potentials during pavlovian conditioning. Nature,2002,417(6886):282~287
    39张黎明,张有志,李云峰.创伤后应激障碍的神经生物学研究进展.中国药理学通报,2010,26(6):704~707
    40Reul JM, Nutt DJ. Glutamate and cortisol a critical confluence in PTSD?J Psychopharmacol,2008,22(5):469~472
    41Kaufer D, Friedman A, Seidman S, et al. Acute stress facilitateslong-lasting changes in chrolinergic gene expression. Nature,1998,393(6683):373~377
    42Balleine B, Davies A, Dickinson A. Cholecystokinin attenuates incentivelearning in rats. Behav Neurosci,1995,109(2):312~319
    43Lofberg C, Harro J, Gottfries CG, et al. Cholecystokinin peptides andreceptor binding in Alzheimer's disease. J Neural Transm,1996,103(7):851~860
    44Lo CM, Samuelson LC, Chambers JB, et al. Characterization of micelacking the gene for cholecystokinin. Am J Physiol Regul Integr CompPhysiol,2008,294(3):803~810
    45Yang SC, Wen D, Dong M, et al. Effects of cholecystokinin-8onmorphine-induced spatial reference memory impairment in mice.Behavioural brain research,2013,256:346~53
    46朴素芬,庄惠歆,周岩, et al.大鼠伏核、杏仁核、中脑导水管周围灰质内的CCK受体为CCK-B型受体:受体放射自显影分析.神经解剖学杂志,1992,(2):21~24
    1Bisson JI. Post-tramumatic stress disorder. Occupational Medicine,2007,57(6):399~403
    2LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci,2000,23:155~184
    3Johnson LR, McGuire J, Lazarus R, et al. Pavlovian fear memory circuitsand phenotype models of PTSD. Neuropharmacology,2012,62(2):638~46
    4Blair HT, Schafe GE, Bauer EP, et al. Synaptic plasticity in the lateralamygdala: a cellular hypothesis of fear conditioning. Learn Mem,2001,8(5):229~242
    5Maren S, Quirk GJ. Neuronal signaling of fear memory. Nat Rev Neurosci,2004,5(11):844~852
    6Mc Gaugh JL. The amygdala modulates the consolidation of memories ofemotionally arousing experiences. Annu Rev Neurosci,2004,27:1~28
    7Phelps EA, LeDoux JE. Contributions of the amygdala to emotionprocessing: from animal models to human behavior. Neuron,2005,48(2):175~187
    8Seymour B, Dolan R. Emotion, decision making, and the amygdala.Neuron,2008,58(5):662~671
    9Sigurdsson T, Doyere V, Cain CK, et al. Long-term potentiation in theamygdala: a cellular mechanism of fear learning and memory.Neuropharmacology,2007,52(1):215~227
    10Hebb AL, Poulin JF, Roach SP, et al. Cholecystokinin and endogenousopioid peptides: interactive influence on pain, cognition, and emotion.Prog Neuropsychopharmacol Biol Psychiatry,2005,29(8):1225~1238
    11Wank SA. Cholecystokinin receptors. Am J Physiol1995,269(6Pt1):G628~646
    12Moran TH, Robinson PH, Goldrich MS, McHugh PR. Two braincholecystokinin receptors: implications for behavioral actions. Brain Res,1986,362(1):175~179
    13Josselyn SA, Frankland PW, Petrisano S, et al. The CCKB antagonist, L-365,260, attenuates fear potentiated startle. Peptides,1995,6(7):1313~1315
    14Yang SC, Wen D, Dong M, et al. Effects of cholecystokinin-8onmorphine-induced spatial reference memory impairment in mice.Behavioural brain research,2013,256:346~53
    15Wen D, Zang GQ, Sun DL, et al. Cholecystokinin-octapeptide restoredmorphine-induced hippocampal long-term potentiation impairment in rats.Neuroscience letters,2014,559:76~81
    16Rauch SL, Shin LM, Wright CI. Neuroimaging studies of amygdalefunction in anxiety disorders. Ann N Y Acad Sci,2003,985:389410
    17Hadjikhani N, de Gelder B. Seing fearful body expression sactivates thefusiform cortex and amygdala. Cur Biol,2003,13(24):2201~2205
    18Krettek JE, Price JL. A description of the amygdaloid complex in the ratand cat with observations on intra-amygdaloid axonal connections. JComp Neurol,1978,178(2):255~280
    19Pare D, Smith Y, Pare JF. Intra-amygdaloid projections of the basolateraland basomedial nuclei in the cat: Phaseolus vulgaris-leucoagglutininanterograde tracing at the light and electron microscopic level.Neuroscience,1995,69(2):567~583
    20Pitka n en A, Stefanacci L, Farb CR, et al. Intrinsic connections of the ratamygdaloid complex: projections originating in the lateral nucleus. JComp Neurol,1995,356(2):288~310
    21Savander V, Go CG, Ledoux JE,et al. Intrinsic connections of the ratamygdaloid complex: projections originating in the accessory basalnucleus. J Comp Neurol,1996,374(2):291~313
    22Savander V, Go CG, LeDoux JE, et al. Intrinsic connections of the ratamygdaloid complex: projections originating in the basal nucleus. J CompNeurol,1995,361(2):345~368
    23Smith Y, Pare D. Intra-amygdaloid projections of the lateral nucleus in thecat: PHA-L anterograde labeling combined with post-embedding GABAand glutamate immunocytochemistry. J Comp Neurol,1994,342(2):232~248
    24Petrovich GD, Swanson LW. Projections from the lateral part of the centralamygdalar nucleus to the postulated fear conditioning circuit. Brain Res,1997,763(2):247~254
    25Hopkins DA, Holstege G. Amygdaloid projections to the mesen-cephalon,pons and medulla oblongata in the cat. Exp Brain Res,1978,32(4):529547
    26Mitra R, Jadhav S, McEwen BS, et al. Stress duration modulates thespatiotemporal patterns of spine formation in the basolateral amygdala.PANS,2005,26(102):9371~9376
    1Malenka RC, Nicoll RA. Long-term potentiation: a decade of progress?Science,1999,285(5435):1870~1874
    2Martin SJ, Morris RG. New life in an old idea: the synaptic plasticity andmemory hypothesis revisited. Hippocampus,2002,12(5):609~636
    3Elgersma Y, Silva AJ. Molecular mechanisms of synaptic plasticity andmemory. Curr Opin Neurobiol,1999,9(2):209~213
    4Abel T, Lattal KM. Molecular mechanisms of memory acquisition,consolidation and retrieval. Curr Opin Neurobiol,2001,11(2):180~187
    5Schafe GE1, Nader K, Blair HT, et al. Memory consolidation of Pavlovianfear conditioning: a cellular and molecular perspective. Trends Neurosci,2001,24(9):540~546
    6Huang, YY, Kandel E.R. Recruitment of long-lasting and protein kinaseA-dependent long-term potentiation in the CA1region of hippocampusrequires repeated tetanization. Learn. Mem,1994,1(1):74~82
    7Impey S, Mark M, Villacres EC, et al. Induction of CRE-mediated geneexpression by stimuli that generate long-lasting LTP in area CA1of thehippocampus. Neuron,1996,16(5):973~982
    8Ozer EJ, Best SR, Lipsey TL, et al. Predictors of posttraumatic stressdisorder and symptoms in adults: a meta-analysis. Psychological bulletin,2003,129(1):52~73
    9Piiper A, Elez R, You SJ, et al. Cholecystokinin stimulates extracellularsignal-regulated kinase through activation of the epidermal growth factorreceptor, Yes, and protein kinase C. Signal amplification at the level ofRaf by activation of protein kinase Cepsilon. J Biol Chem,2003,278(9):7065~7072
    10Pommier B, Marie-Claire C, Da-Nascimento S, et al. Further evidence thatthe CCK2receptor is coupled to two transduction pathways usingsite-directed mutagenesis. J Neurochem,2003,85(2):454~461
    11王丽,何涛.胆囊收缩素受体及其信号转导机制研究.国际检验学杂志,2006,4(27):352~354
    12Seamon KB, Padgett W, Daly JW. Forskolin: unique diterpene activator ofadenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci US A,1981,78(6):3363~3367
    13Fabbri E, Brighenti L, Ottolenghi C. Inhibition of adenylate cyclase ofcatfish and rat hepatocyte membranes by9-(tetrahydro-2-furyl) adenine(SQ22536). J Enzyme Inhib,1991,5(2):87~98
    14Amstadter, AB, Nugent, NR, Koenen, KC. Genetics of PTSD: fearconditioning as a model for future research. Psychiatr,2009,39(6):358~367
    15Mantamadiotis T, Lemberger T, Bleckmann SC, et al. Disruption of crebfunction in brain leads to neurodegeneration. Nat Genet,2002,31(1):47~54
    16Lonze BE, Ginty DD. Function and regulation of creb family transcriptionfactors in the nervous system. Neuron,2002,135(4):605~623
    17Mayr BM, Canettieri G, Montminy MR. Distinct effects of cAMP andmitogenic signals on CREB-binding protein recruitment impart specificityto target gene activation via CREB. Proc Natl Acad Sci U S A,2001,98(19):10936-1041
    18Lisman JE, Fallon JR. What maintains memories? Science,1999,283(5400):339~340
    19Mayford M, Bach ME, Huang YY, et al. Control of memory formationthrough regulated expression of a CaMKII transgene. Science,1996,274(5293):1678~1683
    20Miller SG1, Patton BL, Kennedy MB. Sequences of autophosphorylationsites in neuronal type II CaM kinase that control Ca2(+)-independentactivity. Neuron,1988,1(7):593~604
    21Cameron PL, Sudhof TC, Jahn R, et al. Colocalization of synaptophysinwith transferrin receptors: implications for synaptic vesicle biogenesis. JCell Biol,1991,115(1):151~164
    22Eshkind LG, Leube RE. Mice lacking synaptophysin reproduce and formtypical synaptic vesicles. Cell Tissue Res,1995,282(3):423~433
    23Leube RE, Wiedenmann B, Franke WW. Topogenesis and sorting ofsynaptophysin: synthesis of a synaptic vesicle protein from a genetransfected into nonneuroendocrine cells. Cell,1989,59(3):433~446
    24Schmitt U, Tanimoto N, Seeliger M, et al. Detection of behavioralalterations and learning deficits in mice lacking synaptophysin.Neuroscience,2009,162(2):234~243
    25Evans GJ, Cousin MA. Tyrosine phosphorylation of synaptophysin insynaptic vesicle recycling. Biochem Soc Trans,2005,33(Pt6):1350-1353
    26Bliss TV, Collingridge GL. A synaptic model of rmemory: long-termpotentiation in the hippocampus. Nature,1993,361(6407):31~39
    27Keith D, El-Husseini A. Excitation Control: Balancing PSD-95Function atthe Synapse. Front Mol Neurosci,2008,28:1~4
    28Kornau HC, Schenker LT, Kennedy MB, et al. Domain interactionbetween NMDA receptor subunits and the postsynaptic density proteinPSD-95. Science,1995,269(5231):1737~1740
    1Gillespie CF1, Bradley B, Mercer K, et al. Trauma exposure andstress-related disorders in inner city primary care patients. Gen HospPsychiatry,2009,31(6):505~514
    2American Psychiatric Association (1994) Diagnostic and StatisticalManual of Mental Disorders, American Psychiatric Association
    3Milliken CS, Auchterlonie JL, Hoge CW. Longitudinal assessment ofmental health problems among active and reserve component soldiersreturning from the Iraq war. JAMA,2007,298(18):2141~2148
    4Davidson JR, Stein DJ, Shalev AY,et al. Posttraumatic stress disorder:acquisition, recognition, course, and treatment. J Neuropsychiatry ClinNeurosci,2004,16(2):135~47
    5Hoge, CW, Terhakopian A, Castro CA, et al. Association of posttraumaticstress disorder with somatic symptoms, health care visits, and absenteeismamong Iraq war veterans. Am J Psychiatry,2007,164(1):150~115
    6Wilcox, HC, Storr CL, Breslau N. Posttraumatic stress disorder andsuicide attempts in a community sample of urban american young adults.Arch Gen Psychiatry,2009,66(3):305~311
    7Lanius, RA, Bluhm R, Lanius U, et al. A review of neuroimaging studiesin PTSD: heterogeneity of response to symptom provocation. J PsychiatrRes,2006,40(8):709~729
    8Dickie, EW, Brunet A, Akerib V, et al. An fMRI investigation of memoryencoding in PTSD: influence of symptom severity. Neuropsychologia,2008,46(5):1522~1531
    9Binder EB1, Bradley RG, Liu W, et al. Association of FKBP5polymorphisms and childhood abuse with risk of posttraumatic stressdisorder symptoms in adults. JAMA,2008,299(11):1291~1305
    10Bradley RG1, Binder EB, Epstein MP, et al. Influence of child abuse onadult depression: moderation by the corticotropin-releasing hormonereceptor gene. Arch Gen Psychiatry,2008,65(2):190~200
    11Green KT1, Calhoun PS, Dennis MF, et al. Exploration of the resilienceconstruct in posttraumatic stress disorder severity and functionalcorrelates in military combat veterans who have served since September11,2001. J Clin Psychiatry,2010,71(7):823~830
    12Jovanovic T, Ressler KJ. How the neurocircuitry and genetics of fearinhibition may inform our understanding of PTSD. Am J Psychiatry,2010,167(6):648~662
    13Heimer L, Van Hoesen GW. The limbic lobe and its output channels:implications for emotional functions and adaptive behavior. NeurosciBiobehav Rev,2006,30(2):126~147
    14Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysisof emotional processing in PTSD, social anxiety disorder, and specificphobia. Am J Psychiatry,2007,164(10):1476~1488
    15Francati V, Vermetten E, Bremner JD. Functional neuroimaging studies inposttraumatic stress disorder: review of current methods and findings.Depress Anxiety,2007,24(3):202~218
    16Quirk GJ, Mueller D. Neural mechanisms of extinction learning andretrieval. Neuropsychopharmacology,2008,33(1):56~72
    17van Marle HJ, Hermans EJ, Qin S. From specificity to sensitivity: howacute stress affects amygdala processing of biologically salient stimuli.Biol Psychiatry,2009,66(7):649~655
    18de Carvalho MR, Rozenthal M, Nardi AE, et al. The fear circuitry in panicdisorder and its modulation by cognitive-behaviour therapy interventions.World J Biol Psychiatry,2010,11(2Pt2):188~198
    19Abe O, Yamasue H, Kasai K, et al. Voxel-based diffusion tensor analysisreveals aberrant anterior cingulum integrity in posttraumatic stressdisorder due to terrorism. Psychiatry Res,2006,146(3):231~242
    20Thomaes K, Dorrepaal E, Draijer N, et al. Reduced anterior cingulate andorbitofrontal volumes in child abuse-related complex PTSD. J ClinPsychiatry,2010,71(12):1636~1644
    21Rogers MA, Yamasue H, Abe O, et al. Smaller amygdala volume andreduced anterior cingulate gray matter density associated with history ofpost-traumatic stress disorder. Psychiatry Res,2009,174(3):210~216
    22McLaughlin KA, Conron KJ, Koenen KC, et al. Childhood adversity, adultstressful life events, and risk of past-year psychiatric disorder: a test of thestress sensitization hypothesis in a population-based sample of adults.Psychol Med,2010,40(10):1647~1658
    23Griffin MG. A prospective assessment of auditory startle alterations in rapeand physical assault survivors. J Trauma Stress,200821(1):91-99
    24Ehlers A, Suendermann O, Boellinghaus I, et al. Heart rate responses tostandardized trauma-related pictures in acute posttraumatic stress disorder.Int J Psychophysiol,2010,78(1):27~34
    25Pole N, Neylan TC, Otte C, et al. Prospective prediction of posttraumaticstress disorder symptoms using fear potentiated auditory startle responses.Biol Psychiatry,2009,65(3):235~240
    26Suendermann O, Ehlers A, Boellinghaus I, et al. Early heart rate responsesto standardized trauma-related pictures predict posttraumatic stressdisorder: a prospective study. Psychosom Med,2010,72(3):301~308
    27Milad MR, Orr SP, Lasko NB, et al. Presence and acquired origin ofreduced recall for fear extinction in PTSD: results of a twin study. JPsychiatr Res,2008,42(7):515~520
    28Blechert J, Michael T, Vriends N, et al. Fear conditioning in posttraumaticstress disorder: evidence for delayed extinction of autonomic, experiential,and behavioural responses. Behav Res Ther,2007,45(9):2019~2033
    29Wessa M, Flor H. Failure ofextinction offearresponsesin posttraumaticstress disorder: evidence from second-order conditioning. Am J Psychiatry,2007,164(11):1684~1692
    30Shin LM, Handwerger K. Is posttraumatic stress disorder a stress-inducedfear circuitry disorder? J Trauma Stress,2009,22(5):409~415
    31Jovanovic T, Norrholm SD, Fennell JE, et al. Posttraumatic stress disordermay be associated with impaired fear inhibition: relation to symptomseverity. Psychiatry Res,2009,167(1-2):151~160
    32Yehuda R, LeDoux J. Response variation following trauma: a translationalneuroscience approach to understanding PTSD. Neuron,2007,56(1):19~32
    33Lang PJ, Davis M, Ohman A. Fear and anxiety: animal models and humancognitive psychophysiology. J Affect Disord,2000,61(3):137~159
    34Belzung C, Philippot P. Anxiety from a phylogenetic perspective: is there aqualitative difference between human and animal anxiety? Neural Plast.2007,2007:59676
    35Pape HC, Pare D. Plastic synaptic networks of the amygdala for theacquisition, expression, and extinction of conditioned fear. Physiol Rev,2010,90(2):419~463
    36Sah P, Westbrook RF, Lüthi A. Fear conditioning and long-termpotentiation in the amygdala: what really is the connection? Ann N YAcad Sci,2008,1129:88~95
    37Sigurdsson T1, Doyère V, Cain CK. Long-term potentiation in theamygdala: a cellular mechanism of fear learning and memory.Neuropharmacology,2007,52(1):215~227
    38Maren S. Synaptic mechanisms of associative memory in the amygdala.Neuron,2005,47(6):783~786
    39Blair HT, Schafe GE, Bauer EP, et al. Synaptic plasticity in the lateralamygdala: a cellular hypothesis of fear conditioning. Learn Mem,2001,8(5):229~242
    40Quirk GJ, Repa C, LeDoux JE. Fear conditioning enhances short-latencyauditory responses of lateral amygdala neurons: parallel recordings in thefreely behaving rat. Neuron,1995,15(5):1029~1039
    41Rogan MT, St ubli UV, LeDoux JE. Fear conditioning induces associativelong-term potentiation in the amygdala. Nature,1997,390(6660):604-607
    42McKernan, MG, Shinnick-Gallagher P. Fear conditioning binduces alasting potentiation of synaptic currents in vitro. Nature,1997,390(6660):607~611
    43Tsvetkov E1, Carlezon WA, Benes FM, et al. Fear conditioning occludesLTP-induced presynaptic enhancement of synaptic transmission in thecortical pathway to the lateral amygdala. Neuron,2002,34(2):289~300
    44Shumyatsky GP, Malleret G, Shin RM, et al. stathmin, a gene enriched inthe amygdala, controls both learned and innate fear. Cell,2005,123(4):697~709
    45Howland JG, Wang YT. Synaptic plasticity in learning and memory: stresseffects in the hippocampus. Prog Brain Res,2008,169:145~158
    46Dell'Osso L, Carmassi C, Del Debbio A, et al. Brain-derived neurotrophicfactor plasma levels in patients suffering from post-traumatic stressdisorder. Prog Neuropsychopharmacol Biol Psychiatry,2009,33(5):899~902
    47Hauck S, Kapczinski F, Roesler R, et al. Serum brain-derived neurotrophicfactor in patients with trauma psychopathology. ProgNeuropsychopharmacol Biol Psychiatry,2010,34(3):459~462
    48Berger W, Mehra A, Lenoci M, et al. Serum brain-derived neurotrophicfactor predicts responses to escitalopram in chronic posttraumatic stressdisorder. Prog Neuropsychopharmacol Biol Psychiatry,2010,34(7):1279~1284
    49Zhang H, Ozbay F, Lappalainen J, et al. Brain derived neurotrophic factor(BDNF) gene variants and Alzheimer’s disease, affective disorders,posttraumatic stress disorder, schizophrenia, and substance dependence.Am J Med Genet B Neuropsychiatr Genet,2006,141B(4):387~393
    50Gonul AS, Kitis O, Eker MC, et al. Association of the brain-derivedneurotrophic factor Val66Met polymorphism with hippocampus volumesin drug-free depressed patients. World J Biol Psychiatry,2011,12(2):110~118
    51Egan MF, Kojima M, Callicott JH, et al. The BDNF val66metpolymorphism affects activity-dependent secretion of BDNF and humanmemory and hippocampal function. Cell,2003,112(2):257~269
    52Dennis NA1, Cabeza R, Need AC, et al. Brain-derived neurotrophic factorval66met polymorphism and hippocampal activation during episodicencoding and retrieval tasks. Hippocampus,2011,21(9):980~989
    53van Wingen G, Rijpkema M, Franke B,et al. The brain-derivedneurotrophic factor Val66Met polymorphism affects memory formationand retrieval of biologically salient stimuli. Neuroimage,2010,50(3):1212~1218
    54Lonsdorf TB, Weike AI, Golkar A, et al. Amygdala-dependent fearconditioning in humans is modulated by the BDNFval66metpolymorphism. Behav Neurosci,2010,124(1):9~15
    55Hajcak G, Castille C, Olvet DM, et al. Genetic variation in brain-derivedneurotrophic factor and human fear conditioning. Genes Brain Behav,2009,8(1):80~85
    56Soliman F, Glatt CE, Bath KG, et al. A genetic variant BDNFpolymorphism alters extinction learning in both mouse and human.Science,2010,327(5976):863~866
    57Li WJ, Yu H, Yang JM, et al. Anxiolytic effect of music exposure onBDNFMet/Met transgenic mice. Brain Res,1347:71~79
    58Chen ZY, Jing D, Bath KG, et al. Genetic variant BDNF (Val66Met)polymorphism alters anxiety-related behavior. Science,2006,314(5796):140~143
    59Yu H, Wang Y, Pattwell S, et al. Variant BDNF Val66Met polymorphismaffects extinction of conditioned aversive ememory. J Neurosci,2009,29(13):4056~4064
    60Ninan, Bath KG, Dagar K, et al. The BDNF Val66Met polymorphismimpairs NMDA receptor-dependent synaptic plasticity in the hippocampus.J Neurosci,2010,30(26):8866~8870
    61Jang SW, Liu X, Yepes M, et al. A selective TrkB agonist with potentneurotrophic activities by7,8-dihydroxyflavone. Proc Natl Acad Sci USA,2010,107(6):2687~2692
    62Heldt SA, Stanek L, Chhatwal JP, et al. Hippocampus-specific deletion ofBDNF in adult mice impairs spatial memory and extinction of aversivememories. Mol Psychiatry,12(7):656~670
    63Takei S, Morinobu S, Yamamoto S, et al. Enhanced hippocampalBDNF/TrkB signaling in response to fear conditioning in an animal modelof posttraumatic stress disorder. J Psychiatr Res,2011,45(4):460~468
    64Yee BK, Zhu SW, Mohammed AH, et al. Levels of neurotrophic factors inthe hippocampus and amygdala correlate with anxiety-and fear-relatedbehaviour in C57BL6mice. J Neural Transm,2007,114(4):431~444
    65Rattiner LM, Davis M, Ressler KJ. Differential regulation of brain-derivedneurotrophic factor transcripts during the consolidation of fear learning.Learn Mem,2004,11(6):727~31
    66Chhatwal JP, Stanek-Rattiner L, Davis M, et al. Amygdala BDNFsignaling is required for consolidation but not encoding of extinction. NatNeurosci,2006,9(7):870~872
    67Rattiner LM, Davis M, French CT, et al. Brain-derived neurotrophic factorand tyrosine kinase receptor B involvement in amygdala-dependent fearconditioning. J Neurosci,2004,24(20):4796~4806
    68Ou LC, Yeh SH, Gean PW. Late expression of brain-derived neurotrophicfactor in the amygdala is required for persistence of fear memory.Neurobiol Learn Mem,2010,93(3):372~382
    69Liu IY, Lyons WE, Mamounas LA, et al. Brain-derived neurotrophic factorplays a critical role in contextual fear conditioning. J Neurosci,2004,24(36):7958~7963
    70Choi DC, Maguschak KA, Ye K, et al. Prelimbic cortical BDNF isrequired for memory of learned fear but not extinction or innate fear. ProcNatl Acad Sci USA,2010,107(6):2675~2680
    71Peters J, Dieppa-Perea LM, Melendez LM, et al. Induction of fearextinction with hippocampal-infralimbic BDNF. Science,2010,328(5983):1288~1290
    72Musumeci G, Sciarretta C, Rodríguez-Moreno A, et al. TrkB modulatesfear learning and amygdalar synaptic plasticity by specific docking sites. JNeurosci,2009,29(32):10131~10143
    73Andero R, Heldt SA, Ye K, et al. Effect of7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning. Am J Psychiatry,2011,168(2):163~172
    74Li C, Dabrowska J, Hazra R, et al. Synergistic activation of dopamine D1and TrkB receptors mediate gain control of synaptic plasticity in thebasolateral amygdala. PLoS One,2011,6(10):e26065
    75Meis S, Endres T, Lessmann V. Postsynaptic BDNF signaling regulateslong-term potentiation at thalamo-amygdala afferents. J Physiol,2011,590(Pt1):193~208
    76Ou, LC, Gean PW. Regulation of amygdala-dependent learning bybrain-derived neurotrophic factor is mediated by extracellularsignal-regulated kinase and phosphatidylinositol-3-kinase.Neuropsychopharmacology,2006,31(2):287~296
    77Ressler KJ, Mercer KB, Bradley B, et al. Post-traumatic stress disorder isassociated with PACAP and the PAC1receptor. Nature,2011,470(7335):492~497
    78Monsey MS, Ota KT, Akingbade IF, et al. Epigenetic alterations arecritical for fear memory consolidation and synaptic plasticity inthe lateralamygdala. PLoS One,2011,6(5):e19958
    79Tolin DF, Foa EB. Sex differences in trauma and posttraumatic stressdisorder: a quantitative review of25years of research. Psychol Bull,2006,132(6):959~992
    80Makkar SR, Zhang SQ, Cranney J. Behavioral and neural analysis ofGABA in the acquisition, consolidation, reconsolidation, and extinction offear memory. Neuropsychopharmacology,2010,35(8):1625~1652
    81Bolshakov VY. Nipping fear in the bud: inhibitory control in the amygdala.Neuron,2009,61(6):817~819
    82Zhang S, Cranney J. The role of GABA and anxiety in the reconsolidationof conditioned fear. Behav Neurosci,2008,122(6):1295~1305
    83Rea K1, Lang Y, Finn DP. Alterations in extracellular levels of gamma-aminobutyric acid in the rat basolateral amygdala and periaqueductal grayduring conditioned fear, persistent pain and fear-conditioned analgesia. JPain,2009,10(10):1088~1098
    84Wiltgen BJ, Godsil BP, Peng Z, et al. Thealpha1subunit of the GABA(A)receptor modulates fear learning and plasticity in the lateral amygdala.Front Behav Neurosci,2009,3:37
    85Raybuck JD, Lattal KM. Double dissociation of amygdala andhippocampal contributions to trace and delay fear conditioning. PLoSONE,2011,6(1):e15982
    86Sierra-Mercado D, Padilla-Coreano N, Quirk GJ. Dissociable roles ofprelimbic andinfralimbic cortices, ventral hippocampus, and basolateralamygdala in the expression and extinction of conditioned fear.Neuropsychopharmacology,2011,36(2):529~538
    87Corbit LH, Janak PH. Posterior dorsomedial striatum is critical for bothselective instrumental and Pavlovian reward learning. Eur J Neurosci,2010,31(7):1312~1321
    88Hart G, Harris JA, Westbrook RF. Systemic or intra-amygdala infusion ofthe benzodiazepine, midazolam, impairs learning, but facilitates re-learning to inhibit fear responses in extinction. Learn Mem,2010,17(4):210~220
    89Laurent V, Westbrook RF. Role of the basolateral amygdala in thereinstatement and extinction of fear responses to a previouslyextinguished conditioned stimulus. Learn Mem,2010,17(2):86~96
    90Ciocchi S, Herry C, Grenier F, et al. Encoding of conditioned fear incentral amygdala inhibitory circuits. Nature,2010,468(7321):277~282
    91Haubensak W, Kunwar PS, Cai H, et al. Genetic dissection of an amygdalamicrocircuit that gates conditioned fear. Nature,2010,468(7321):270~276
    92Tye KM, Prakash R, Kim SY, et al. Amygdala circuitry mediatingreversible and bidirectional control of anxiety. Nature,2011,471(7338):358~362
    93Likhtik E, Popa D, Apergis-Schoute J, et al. Amygdala intercalatedneurons are required for expression of fear extinction. Nature,2008,454(7204):642~645
    94Amano T, Unal CT, Paré D. Synaptic correlates of fear extinction in theamygdala. Nat Neurosci,2010,13(4):489~494
    95Berretta S, Pantazopoulos H, Caldera M, et al. Infralimbic cortexactivation increases c-Fos expressionin in tercalated neurons of theamygdala. Neuroscience,2005,132(4):943~953
    96Izumi T, Boku S, Shinmin W, et al. Retrieval of conditioned fear activatesthe basolateral and intercalated nucleus of amygdala. J Neurosci Res,2011,89(5):773~790
    97Lin HC, Mao SC, Su CL, et al. Alterations of excitatory transmission inthe lateral amygdala during expression and extinction of fear memory. IntJ Neuropsychopharmacol,2010,13(3):335~345
    98Nedelescu H, Kelso CM, Lázaro-Mu oz G, et al. EndogenousGluR1-containing AMPA receptors translocate to asymmetric synapses inthe lateral amygdala during the early phase of fear memory formation: anelectron microscopic immunocytochemical study. J Comp Neurol,2010,518(23):4723~4739
    99Jarome TJ, Werner CT, Kwapis JL, et al. Activity dependent proteindegradation is critical for the formation and stability of fear memory inthe amygdala. PLoS One,2011,6(9):e24349
    100Liu Y, Formisano L, Savtchouk I, et al. A single fear-inducing stimulusinduces a transcription-dependent switch in synaptic AMPAR phenotype.Nat Neurosci,2010,13(2):223~231
    101Mokin M, Zheng Z, Keifer J. Conversion of silent synapses into the activepool by selective GluR1-3and GluR4AMPAR trafficking during in vitroclassical conditioning. J Neurophysiol,2007,98(3):1278~1286
    102Rumpel S, LeDoux J, Zador A, et al. Postsynaptic receptor traffickingunderlying a form of associative learning. Science,2005,308(5718):83~88
    103Brigman JL, Wright T, Talani G, et al. Loss of GluN2B-containing NMDAreceptors in CA1hippocampus and cortex impairs long-term depression,reduces dendritic spine density, and disrupts learning. J Neurosci,2010,30(13):4590~4600
    104Zimmerman JM, Maren S. NMDA receptor antagonism in the basolateralbut not central amygdala blocks the extinction of Pavlovian fearconditioning in rats. Eur J Neurosci,2010,31(9):1664~1670
    105Dalton GL, Wang YT, Floresco SB, et al. Disruption of AMPA receptorendocytosis impairs the extinction, but not acquisition of learned fear.Neuropsychopharmacology,2008,33(10):2416~2426
    106Liu JL, Li M, Dang XR, et al. A NMDA receptor antagonist, MK-801impairs consolidating extinction of auditory conditioned fear responses ina Pavlovian model. PLoS ONE,2009,4(10):e7548
    107Falls WA, Miserendino MJ, Davis M. Extinction of fear-potentiated startle:blockade by infusion of an NMDA antagonist into the amygdala. JNeurosc,1992,12(3):854~863
    108Clem RL, Huganir RL. Calcium-permeable AMPA receptor dynamicsmediate fear memory erasure. Science,2010,330(6007):1108~1112
    109Hardt O, Migues PV, Hastings M, et al. PKMzeta maintains1-day-and6-day-old long-term object location but not object identity memory indorsal hippocampus. Hippocampus,2010,20(6):691~695
    110Migues PV, Hardt O, Wu DC, et al. PKMzeta maintains memories byregulating GluR2-dependent AMPA receptor trafficking. Nat Neurosci,2010,13(5):630~634
    111Parsons RG, Davis M. Temporary disruption of fear-potentiated startlefollowing PKMzeta inhibition in the amygdala. Nat Neurosci,2011,14(3):295~296
    112Cohen H, Kozlovsky N, Matar MA, et al. Mapping the brain pathways oftraumatic memory: inactivation of protein kinase M zeta in different brainregions disrupts traumatic memory processes and attenuates traumaticstress responses in rats. Eur Neuropsychopharmacol,2010,20(4):253~271
    113Kwapis JL, Jarome TJ, Lonergan ME, et al. Protein kinase Mzetamaintains fear memory in the amygdala but not in the hippocampus.Behav. Neurosci,2009,123(4):844~850
    114Serrano P, Friedman EL, Kenney J, et al. PKMzeta maintains spatial,instrumental, and classically conditioned long-term memories. PLoS Biol,2008,6(12):2698~2706
    115Guastella AJ, Dadds MR, Lovibond PF, et al. A randomized controlledtrial of the effect of D-cycloserine on exposure therapy for spider fear. JPsychiatr Res,2007,41(6):466~71
    116Langton JM, Richardson R. D-cycloserine facilitates extinction the firsttime but not the second time: an examination of the role of NMDA acrossthe course of repeated extinction sessions. Neuropsychopharmacology,2008,33(13):3096~3102
    117McCallum J, Kim JH, Richardson R. Impaired extinction retention inadolescent rats: effects of D-cycloserine. Neuropsychopharmacology,2010,35(10):2134~2142
    118Kalisch R, Holt B, Petrovic P, et al. The NMDA agonist D-cycloserinefacilitates fear memory consolidation in humans. Cereb Cortex,2009,19(1):187~196
    119Ledgerwood L, Richardson R, Cranney J. D-cycloserine facilitatesextinction of learned fear: effects on reacquisition and generalizedextinction. Biol Psychiatry,2005,57(8):841~847
    120Langton JM, Richardson R. The role of context in the re-extinction oflearned fear. Neurobiol Learn Mem,2009,92(4):496~503
    121Ressler KJ, Rothbaum BO, Tannenbaum L, et al. Cognitive enhancers asadjuncts to psychotherapy: use of D-cycloserine in phobic individuals tofacilitate extinction of fear. Arch Gen Psychiatry,200461(11):1136~1144
    122Guastella AJ, Lovibond PF, Dadds MR, et al. A randomized controlledtrial of the effect of D-cycloserine on extinction and fear conditioning inhumans. Behav Res Ther,2007,45(4):663~672
    123Wilhelm S, Buhlmann U, Tolin DF, et al. Augmentation of behaviortherapy with D-cycloserine for obsessive-compulsive disorder. Am JPsychiatry,2008,165(3):335~341quiz409
    124Kushner MG, Kim SW, Donahue C, et al. D-cycloserine augmentedexposure therapy for obsessive-compulsive disorder. Biol Psychiatry,2007,62(8):835~838
    125Norberg MM, Krystal JH, et al. A meta-analysis of D-cycloserine and the
    facilitation of fear extinction and exposure therapy. Biol Psychiatry,2008,
    63(12):1118~1126
    126Otto MW, McHugh RK, Simon NM, et al. Efficacy of CBT forbenzodiazepine discontinuation in patients with panic disorder: furtherevaluation. Behav Res Ther,2010,48(8):720~727
    127Otto MW, Tolin DF, Simon NM, et al. Efficacy of d-cycloserine forenhancing response to cognitive-behavior therapy for panic disorder.Biol Psychiatry,2010,67(4):365~370
    128Guastella AJ, Richardson R, Lovibond PF, et al. A randomized controlledtrial of D-cycloserine enhancement of exposure therapy for social anxietydisorder. Biol Psychiatry,2008,63(6):544~549
    129Goddyn H, Callaerts-Vegh Z, Stroobants S, et al. Deficits in acquisitionand extinction of conditioned responses in mGluR7knockout mice.Neurobiol Learn Mem,2008,90(1):103~111
    130Morè L, Gravius A, Pietraszek M, et al. Comparison of the mGluR1antagonist A-841720in rat models of pain and cognition. BehavPharmacol,2007,18(4):273~281
    131Kim J, Lee S, Park H, et al. Blockade of amygdala metabotropicglutamate receptor subtype1impairs fear extinction. Biochem BiophysRes Commun,2007,355(1):188~193
    132Fontanez-Nuin DE, Santini E, Quirk GJ, et al. Memory for fear extinctionrequires mGluR5-mediated activation of infralimbic neurons. CerebCortex,2011,21(3):727~735
    133Siegl S, Flor PJ, Fendt M. Amygdaloid metabotropic glutamate receptorsubtype7is involved in the acquisition of conditioned fear. Neuroreport,2008,19(1):1147~1150
    134Fendt M, Bürki H, Imobersteg S, et al. The effect of mGlu8deficiency inanimal models of psychiatric diseases. Genes Brain Behav,2010,9(1):33~44
    135Rudy JW, Matus-Amat P. DHPG activation of group1mGluRs in BLAenhances fear conditioning. Learn Mem,2009,16(7):421~425
    136Lisboa SF, Reis DG, da Silva AL, et al. Cannabinoid CB1receptors in themedial prefrontal cortex modulate the expression of contextual fearconditioning. Int J Neuropsychopharmacol,2010,13(9):1163~1173
    137Ota KT, Monsey MS, Wu MS, et al. Synaptic plasticity andNO-cGMP-PKG signaling regulate pre-and postsynaptic alterations at ratlateral amygdala synapses following fear conditioning. PLoS ONE,2010,5(6):e11236
    138Kelley JB, Anderson KL, Itzhak Y. Pharmacological modulators of nitricoxide signaling and contextual fear conditioning in mice.Psychopharmacology (Berl),2010,210(1):65~74
    139Paul C, Stratil C, Hofmann F, et al. cGMP-dependent protein kinase type Ipromotes CREB/CRE-mediated gene expression in neurons of thelateral amygdala. Neurosci Lett,2010,473(2):82~86
    140Ota KT, Pierre VJ, Ploski JE, et al. The NO-cGMP-PKG signalingpathway regulates synaptic plasticity and fear memory consolidation inthe lateral amygdala via activation of ERK/MAP kinase. Learn Mem,2008,15(10):792~805
    141Chhatwal JP, Gutman AR, Maguschak KA, et al. Functional interactionsbetween endocannabinoid and CCK neurotransmitter systems may becritical for extinction learning. Neuropsychopharmacology,2009,34(2):509~521
    142Lazzaro SC, Hou M, Cunha C, et al. Antagonism of lateral amygdalaalpha1-adrenergic receptors facilitates fear conditioning and long-termpotentiation. Learn Mem,2010,17(10):489~493
    143Fu AL, Yan XB, Sui L.Down-regulation of beta1-adrenoceptors geneexpression by short interfering RNA impairs the memory retrieval in thebasolateral amygdala of rats. Neurosci Lett.2007,428(2-3):77~81
    144Mueller D, Cahill SP.Noradrenergic modulation of extinction learning andexposure therapy. Behav Brain Res,2010,208(1):1~11
    145Mueller D, Porter JT, Quirk GJ. Noradrenergic signaling in infralimbiccortex increases cell excitability and strengthens memory for fearextinction. J Neurosci,2008,28(2):369~375
    146de Oliveira AR, Reimer AE, de Macedo CE, et al. Conditioned fear ismodulated by D2receptor pathway connecting the ventral tegmental areaand basolateral amygdala. Neurobiol. Learn Mem,2011,95(1):37~45
    147Biojone C, Casarotto PC, Resstel LB, et al. Anti-aversive effects of theatypical antipsychotic, aripiprazole, in animal models of anxiety. JPsychopharmacol,2011,25(6):801~807
    148Ortiz O, Delgado-García JM, Espadas I, et al. Associative learning andCA3-CA1synaptic plasticity are impaired in D1R null, Drd1a-/-mice andin hippocampal siRNA silenced Drd1a mice. J Neurosci,2010,30(37):12288~12300
    149Mueller D, Bravo-Rivera C, Quirk GJ. Infralimbic D2receptors arenecessary for fear extinction and extinction-related tone responses. BiolPsychiatry,2010,68(11):1055~1060
    150Gilbertson MW, Shenton ME, Ciszewski A, et al. Smaller hippocampalvolume predicts pathologic vulnerability to psychological trauma. NatNeurosci,2002,5(11):1242~1247
    151Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxietydisorders. Neuropsychopharmacology,2010,35(1):169~191
    152Lin HC, Mao SC, Chen PS, et al. Chronic cannabinoid administration invivo compromises extinction of fear memory. Learn Mem,2008,15(12):876~884
    153André JM, Leach PT, Gould TJ. Nicotine ameliorates NMDA receptorantagonist-induced deficits in contextual fear conditioning throughhigh-affinity nicotinic acetylcholine receptors in the hippocampus.Neuropharmacology,2011,60(4):617~625
    154Kenney JW, Wilkinson DS, Gould TJ. The enhancement of contextual fearconditioning by ABT-418. Behav Pharmacol,2010,21(3)246~249
    155Davis JA, Gould TJ. beta2subunit-containing nicotinic receptors mediatethe enhancing effect of nicotine on trace cued fear conditioning inC57BL/6mice. Psychopharmacology (Berl),2007,190(3):343~352
    156Chess AC, Landers AM, Bucci DJ. L-kynurenine treatment alterscontextual fear conditioning and context discrimination but notcue-specific fear conditioning. Behav Brain Res,2009,201(2):325~331
    157Prado-Alcalá RA, Haiek M, Rivas S, et al. Reversal of extinction byscopolamine. Physiol Behav,1994,56(1):27~30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700