用户名: 密码: 验证码:
金刚石/铁基金属触媒界面物相的高温高压相变机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温高压触媒法是目前生产人造金刚石的主要方法,这种方法以石墨为原始碳源,以过渡金属或合金为触媒。铁基触媒以其活性大、单产高、合成的金刚石晶体内较纯净等特点而成为高温高压静压法合成金刚石最常用的触媒材料。在用铁基触媒法合成金刚石时发现:金刚石形核后总是被一层几微米至几十微米厚的金属触媒所包覆,高温高压下石墨碳原子正是通过这层触媒才能进行催化和扩散致使金刚石长大。由于在金刚石生长的高温高压范围内存在着触媒催化的固态相变,故弄清金属触媒中各物相的相互作用可以揭示金刚石/铁基触媒界面的高温高压相变机理,进一步明确高温高压下金刚石生长的碳源相和催化相。
     本文以石墨为最初碳源,以铁基金属为触媒在5.3GPa、1623K条件下进行了金刚石单晶的合成。采用场发射透射电镜、高分辨透射电镜、X射线衍射仪等测试技术,系统研究了金刚石/铁基触媒界面及界面层的组织、物相结构等特征。并利用电子能量损失谱研究了铁基触媒界面及界面层碳、铁原子价电子的变化规律。在此基础上,利用余氏理论和程氏理论获得高温高压铁基触媒金刚石合成过程中各物相的价电子结构,及各物相相关界面的价电子密度,尝试从价电子理论方面研究金刚石合成机理,寻找其生长的碳源,分析触媒的催化作用机理,初步实现对触媒组织的控制。
     对金刚石铁基触媒界面及界面层的物相结构表征结果显示:在整个铁基金属触媒界面层都存在Fe3C和γ-(Fe,Ni)相,而石墨相由触媒内侧到靠近金刚石/触媒界面处逐渐消失;金刚石/铁基触媒界面由γ-(Fe,Ni).Fe3C和少量的Fe23C6三种物相组成,并不存在石墨和金刚石结构。
     对金刚石/铁基触媒界面及界面层不同深度处的电子能量损失谱表征结果发现,从触媒内层到金刚石/触媒界面,C-sp3含量从78.15%增加到87.33%,而Fe的3d电子占有率从5.64电子/原子减小到4.54电子/原子。表明在金刚石生长过程中,Fe原子的催化作用从触媒内层至界面逐渐增大,C原子的电子构型由石墨的sp2π杂化态逐渐向金刚石的sp3σ杂化态转化。
     由于金刚石生长以及触媒催化时的物相转变是在高温高压下进行的,要想利用余氏理论和程氏理论揭示金属触媒中各物相的相互作用,首先需要获得物相在高温高压下的晶格常数。因此本文首先采用第一性原理对高温高压下六方石墨的晶格常数进行了计算,发现计算的数据均与石墨中子衍射实测值极为接近,相对误差值均小于10%,故可认为此计算方法是正确的,至少可用计算金刚石合成条件下各物相的晶格常数。在此基础上计算得到了金刚石、石墨等触媒各物相在合成温度、压力下的晶格常数。本文还采用第一性原理方法研究了温度和压力对晶体晶格常数的影响,结果表明:一定温度下,晶格常数随压强增大而呈线性迅速减小;压强一定时,晶格常数随着温度的增加而缓慢增加。
     由计算所得的各物相在高温高压下的晶格常数,利用余氏理论和程氏理论研究了金刚石、石墨、γ-(Fe,Ni)和Fe3C之间的相互作用。结果发现:
     1.在5.3GPa,1623K时,金刚石与六方石墨各主要晶面之间的最小电子密度差为71.2%,远远大于电子,密度一级近似下连续所要求的10%。不符合程氏理论提出的“相邻晶面电子密度连续”的原子边界条件,难以形成连续的生长界面。然而,金刚石与Fe3C之间有三组界面的电子密度差小于10%。Fe3C/金刚石界面处的电子密度是连续的(一级近似),符合程氏理论提出的“相邻晶面电子密度连续”的原子边界条件,两者之间能够形成连续的生长界面。因此,从价电子结构角度来说,高温高压触媒法金刚石单品生长所需的C原子不是来自于石墨,而是来自于Fe3C的分解,高温高压触媒法合成金刚石过程中,金刚石单晶生长的直接碳源相是Fe3C。
     2.对γ-(Fe,Ni)的价电子结构及γ-(Fe,Ni)/Fe3C界面电子密度的分析则发现:(111)γ/(004)Fe3c界面的相对电子密度差为3%,小于两异界面电子密度连续所需的相对电子密度差10%,即Fe3C/y-(Fe,Ni)界面的电子密度在一级近似下是连续的,说明在金刚石生长过程中γ-(Fe,Ni)起着催化相的作用。
     由此,可以得到高温高压触媒法金刚石生长过程中的相变机理如下:高温高压下,在金刚石生长过程中,石墨首先以原子集团的形式溶入触媒熔体。在向界面的扩散过程中与Fe、Ni化合形成近程有序的铁碳化物Fe3C和γ-(Fe,Ni)固溶体。Fe、Ni原子3d层电子外延吸引Fe3C中C原子的外层电子,使之分解出具有类sp3杂化态(金刚石结构)的碳原子集团。随着Fe3C的不断分解,熔体中类sp3态的C原子基团尺寸不断增加(在界面处sp3含量达到最大),加上合成腔内温度压力的微小波动,这就促使熔体中类sp3态的原子团聚集、碰撞形成金刚石结构。sp3态碳原子集团再继续不断的从Fe3C中分解,堆积到金刚石晶面上,使金刚石单晶不断长大。
     最后,根据价电子理论计算结果,设计出了触媒剂成分,进行合成实验,分析触媒组织,探讨触媒组织与金刚石单晶质量的相关性。发现触媒组织中初生板条状Fe3C若呈平行生长、边缘平直、条束数量多且分布均匀,则利于大单晶的生长。在此基础上,通过优化工艺,批量获得了30/35大单晶。此部分研究为研制高品质金刚石提供了重要的实验依据。
High temperature and high pressure (HPHT) is the main method for producing diamond single crystals, which introduces graphite as primitive carbon source and3d-transition metal as solvent catalyst. A Fe-based catalyst is widely used in diamond synthesis under static pressure because of its high cost-effectiveness ratio. It has been recognized that, the diamond in growth is always covered with a thin molten metallic film which allows diffusion of carbon atoms towards the diamond where they are then catalyzed into the diamond crystal lattice. Since there is phase transformation of catalyst activity in the molten film at HPHT, therefore, further studying the interaction of phases in the film could help to elucidate the mechanism of diamond growth on the Fe-based metallic film/diamond interface, determining the carbon source and the catalytic phase for diamond growth.
     In this paper, in presence of a Fe-based metal as a solvent catalyst, diamond00single crystals were synthesized under5.3GP and1623K. from graphite. Transmission electron microscopy (FE'FEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) were used to investigate the diamond/film interface and the inner film. The changes of valance electrons of carbon and Fe atoms in diamond/film interface were then revealed clearly by electron energy loss spectroscopy (EELS). During the course of diamond growth, the valence electron structure (VES) of phases and the electron density of interlaces were calculated and analyzed with EET and TFDC theory.
     Subsequently, in the viewpoint of EET, the diamond crystal growth was investigated, as the carbon source and catalyst phase. XRD, FETEM and HRTEM examinations showed that there were different phases, such as Fe^C, y-Fe, and graphite, found in both the inner film and the interface, but the graphite phase diminished gradually towards the inner face of the interface. And the interface of Fe-based metallic film includes Fe^C, Fe23C6, and y-(Fe, Ni), without the existence of graphite and diamond structure.
     The EELS of the C-sp3content and the3d-state occupancy profile through the thickness of the interface between diamond and catalyst film in diamond synthesis showed that, from the diamond/film interface to the inner, the sp3fractions decrease from87.33%to78.15%, the3d-state occupancy for Fe increase from4.54to5.64electrons/atom, indicating that the catalysis of iron atoms was increasing in the diamond growth process, and the electronic configurations of carbon atoms were gradually changed from graphite state to diamond state.
     First principle was used to investigate the lattice constants of graphite at high temperature and high pressure (HTHP) firstly. Good agreement was achieved between the calculated and experimental results, with the maximum relative differences not more than10%. All the results showed that the calculation methods used in this work were reasonable and validated. Then the lattice constants of diamond, Fe3C andγ-(Fe,Ni) were calculated subsequently by these methods. The dependence of the lattice parameters on temperature and pressure were also determined in this paper. It was also found that the lattice parameters, at a given pressure, decreased linearly with the pressure increased, while slowly increased with increasing temperature at a fixed pressure, indicating that pressure have greater impact on the lattice parameters.
     Interaction between diamond, graphite, FesC and γ-(Fe, Ni) has been investigated by EET and TFDC. The main contents are summarized as follows:
     1. It was found that, between the interfaces of graphite and diamond, the minimum differences of electron density at1623K and5.3Gpa were about71.2%, extremely larger than10%, indicating the discontinuation of electron densities at the first approximation. On the other hand, it is continuous for the electron density of Fe3C/diamond interface. Therefore the carbon atoms, required for diamond growth, from the viewpoint of electron structure, could only come from the carbon-rich phase, Fe3C, but not directly from the graphite.
     2. The EET calculation results showed that the electron density of the (111)y/(004)Fe3c interface was3%(less than10%), it suggested that Fe3C/y-(Fe, Ni) was continuous at the first approximation, indicating that γ-(Fe,Ni) presents as catalyst for diamond growing.
     Based the above analysis, it can be concluded that during diamond growth at HPHT, graphite should be first dissolved in the molten Fe film, in which clusters of carbon atoms are formed and then decomposed gradually when they diffuse towards the inner face of the interface. It was likely that a part of the graphite atoms might form a short-range order in the molten and react with Fe to form Fe^C close to the inner face of the diamond/Fe-based metallic interface. The carbon atoms in the electron structure of graphite atoms were diminished gradually towards the inner face. Catalyzed by the y-(Fe,Ni), the carbon atoms in the Fe3C phase could be transformed progressively to the sp3-σ hybridization state. These sp3σ carbon atoms could then break away from the Fe.?C lattice in clusters by thermal decomposition, and participate in diamond growth. As the decomposition of the Fe3C continued, the size of the.sy3carbon clusters might increase gradually (with maximum C-.sy3content achieved on the inner face). Small fluctuations of the pressure and temperature in the synthetic chamber would prompt the sp3carbon clusters to coalesce to form the diamond structure.
     Catalyst microstructures can be controlled preliminarily. According to the calculations, the constitutions of catalyst were confirmed, which were synthesized subsequently. Based on the synthesis process and characterization technology, the correlations between the microstructure of catalyst and the quality of single crystal diamond were investigated. It is found that, as the synthetic quality is relatively superior, the more primary lathy cementite are well distributed and shows parallel growth of the stripe beams, the edge of the cementite is more even. Following this conclusion, lots of large single crystals (30/35) are obtained by optimizing technology parameters, which provides a foundation for producing high quality diamond.
引文
1.王光祖,刘庆选.国外人造金刚石工业的建立与发展[J].超硬材料与工程.1999(1):1-6
    2. Caveney R J. Diamond research:past, present and future [J]. Journal of Hard Materials.1994(5):23-29
    3. Klugmann E, Polowczyk M. Semiconducting diamond as material for high temperature thermistors [J]. Materials Research Innovations.2000,4(1):45-48
    4. 谈耀麟.国际工业金刚石行业发展形势与动态[J].超硬材料工程.2005,17(2):35-39
    5. 党冀萍.高温半导体器件的研究现状[J].半导体情报.1994,31(2):46-56
    6. Field J E. The Properties of diamond [M]. London:Academic Press.1979
    7. Novikov N V, Shulzhenko A A. New superhard materials and their industrial application [J]. Sverk. Mater.1987(9):8-14
    8. Yoder M N. Diamond in the USA [J]. Diamond and Related Materials.1993, 2(2-4):59-64
    9. Nakahara T, Fujimori N. Innovation in diamond [J]. Materials Research Innovations.1997,1(1):38-43
    10. 李志宏,赵博.2010年超硬材料行业经济运行情况简析.2011中国(郑州)国际磨料磨具磨削技术发展论坛超硬材料论坛论文集.2011.郑州:海洋出版社
    11. 王光祖.人造金刚石合成技术开拓创新的50年[J].金刚石与磨料磨具工程.2005(6):73-77
    12.方啸虎,郑日升,彭国强,涂建民.超硬材料行业形势与对策[J].超硬材料工程.2006,18(1):25-30
    13. 林清英,张秀林.金属包膜的显微分析[J].钢铁研究学报.1999,11(2):51-54
    14. 林清英,孙江.人造金刚石金属包膜的进一步显微观察[J].超硬材料与工程.1997(4):16-19
    15.林清英,孙江.人造金刚石金属包膜的显微观察[J].超硬材料与工程.1997(2):19-24
    16.冯楚德.合成金刚石时形成的金属-碳薄膜的显微观察[J].硅酸盐学报.1983,11(1):105-111
    17.李劲风,郑铁铮,严戊衡.包覆膜对金刚石生长过程的作用研究[J].矿冶工程.1998,1 8(1):67-69
    18. Bundy F P, Strong H M, Wentorf R H. Methods and mechanisms of synthetic diamond growth [J]. Chemistry and physics of carbon.1973,10:213-263
    19. Bundy F P. The P, T Phase and Reaction Diagram for Elemental Carbon,1979 [J]. Journal of Geophysical Research.1980,85(B12):6930-6936
    20. Angus J C, Wang Y, Sunkara M. Metastable growth of diamond and diamond-like phases [J]. Annual Review of Materials Science.1991,21(1): 221-248
    21. Strong H M, Hanneman R E. Crystallization of Diamond and Graphite [J]. The Journal of Chemical Physics.1967,46(9):3668-3676
    22. Strong H M, Chrenko R M. Further study on diamond growth rates and physical properties of laboratory-made diamond [J]. The Journal of Physical Chemistry. 1971,75(12):1838-1843
    23.苟清泉.高温高压下石墨变金刚石的结构转化机理[J].吉林大学学报.1974,2:52-63
    24. Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf R H. Preparation of Diamond [J]. Nature.1959,184(4693):1094-1098
    25.张治军,李正南,陈坚.静压法合成人造金刚石晶体生长机理研究进展[J].超硬材料工程.2006,18(3):40-43
    26. Suresh V, Mingyoung L, Robert C D. Progress of large diamond growth technology and future prospects [J]. Journal of Hard Materials.1990,1:233-245
    27. 沈主同.人造金刚石晶体生长机制的探讨[J].物理.1977,6(4):243-250
    28. Perry J, Nelson S, Hosomi S. Diamond formation in solid metal [J]. Materials Research Bulletin.1990,25(6):749-756
    29. 陈启武,熊湘君,陈犁.金刚石合成机制的研究[J].超硬材料工程.2005,17(1):26-30
    30. Solozhenko V L, Turkevich V Z, Kurakevych O O, Crichton W A, Mezouar M. Kinetics of Diamond Crystallization from the Melt of the Fe-N-C System [J]. The Journal of Physical Chemistry B.2002,106(26):6634-6637
    31. Shen Z T. Important Progress in Study on Synthesizing Mechanism of Synthetic Diamond with Flux-catalyst Method at Superhigh Pressure [J]. Journal of Synthetic Crystals.2005,34(6):1035-1049
    32. Giardini A A, Tydings J E. Diamond synthesis:observations on the mechanism of formation [J]. American Mineralogist.1962,47:1393-1421
    33. Lansdale K, Milledge H J, Naave E. [J]. Mineral Magazine.1959,32:185-189
    34. Pate B B. The diamond surface:atomic and electronic structure [JJ. Surface Science.1986,165(1):83-142
    35. Giardini A A, Kohn J A, Eckart D W, Tydings J E. The formation of coesite and kyanite from pyrophyllite at very high pressures and high temperatures [J]. American Mineralogist.1961,46:976-982
    36. Wentorf Jr R H. Diamond growth rates [J]. The Journal of Physical Chemistry. 1971,75(12):1833-1837
    37. Yan X, Kanda H, Ohsawa T, Yamaoka S, Fukunaga O. Behaviour of graphite-diamond conversion using Ni-Cu and Ni-Zn alloys as catalyst-solvent [J]. Journal of Materials Science.1990,25(3):1585-1589
    38. Mourachov S, Poliakov V P. Analysis of diamond crystal growth stability from graphite through a film of the metal solvent [J]. Diamond and Related Materials. 1998,7(2):309-312
    39.许斌.金属包膜的微观结构及其在高温压合成金刚石中的作用[D].济南:山东大学,2003
    40. 李达明,刘光照.关于人造金刚石晶体生长机理的研究[J].金刚石与磨料磨具工程.1984,5:7-13
    41. Pavel E, Baluta G, Barb D, Lazar D P. The nature of the metallic inclusions in synthetic diamond crystals synthesized at 5.5 GPa in Fe-C system [J]. Solid State Communications.1990,76(4):531-533
    42. Sung J. Graphite → diamond transition under high pressure:A kinetics approach [J]. Journal of Materials Science.2000,35(23):6041-6054
    43. Hong S M, Li W, Jia X P, Wakatsuki M. Diamond formation from a system of SiC and a metal [J]. Diamond and Related Materials.1993,2(2-4):508-511
    44. Xu B, Li M S, Cui J J, Gong J H, Wang S H. An investigation of a thin metal film covering on HPHT as-grown diamond from Fe-Ni-C system [J]. Materials Science and Engineering:A.2005,396(1-2):352-359
    45. Wentorf Jr R H. The behavior of some carbonaceous materials at very high pressures and high temperatures [J]. The Journal of Physical Chemistry.1965, 69(9):3063-3069
    46. Bundy F P, Bovenkerk H P, Strong H M, Wentorf Jr R H. Diamond-Graphite Equilibrium Line from Growth and Graphitization of Diamond [J]. The Journal of Chemical Physics.1961,35(2):383-392
    47. Kanda H, Akaishi M, Yamaoka S. New catalysts for diamond growth under high pressure and high temperature [J]. Applied Physics Letters.1994,65(6): 784-786
    48. Shen Z T, Wang L J, Sun G X, Wang W J. The formation mechanism of synthetic diamond at high pressure [J]. Physica B+C.1986,139-140:642-644
    49. Varfolomeeva T D, Ivanov L A, Tsvyashchenko A V, al. e. Role of the electron structure of metals in the process of transfer of graphite into diamond [J]. Sverk. Mater.1986,4:6-8
    50.谭新才,彭大署.人造金刚石用触媒材料回顾与展望[J].矿冶工程.1995,15(3):65-70
    51.郝兆印,陈宇飞,邹广田.人工合成金刚石[M].长春:吉林大学出版社.1996
    52. 郝兆印.石墨,催化剂合金的选择[J].工业金刚石.1996(1):6-9
    53. 王秦生.超硬材料制造[M].北京:中国标准出版社.2002
    54. 王秦生.金刚石触媒的电子结构和晶格结构与催化活性的关系[J].金刚石与磨料磨具工程.1999(3):2-6
    55.方啸虎.中国超硬材料新技术与进展[M].合肥:中国科学技术大学出版社.2003
    56. 许斌,李木森,尹龙卫,崔建军.铁基触媒合成金刚石形成的金属包膜的组织结构[J].硅酸盐学报.2003,31(5):470-475
    57. Putyatin A A, Makarova O V, Semenenko K. N. Interaction in the Fe-C system at high pressure and temperature [J]. Sverk. Mater.1989,11:1-7
    58.郝兆印.FeNi合金做催化剂高温高压生长金刚石的金属膜[J].工业金刚石.1999(4):12-14
    59. Palafnik L S, Gladkikh L I. The Properties of Diamond [M]. New York, London: Academic Press.1979
    60. Yin L W, Li M S, Cui J J, Zou Z D, Liu P,1 lao Z Y. Diamond formation using Fe^C as a carbon source at high temperature and high pressure [J]. Journal of Crystal Growth.2002,234(1):1-4
    61. Yin L W, Li M S, Gong Z Q Bai Y.1, Li F Z, Hao Z Y. A relation between a metallic film covering on diamond formed during growth and nanosi/.ed inclusions in HPHT as-grown diamond single crystals [J]. Applied Physics A: Materials Science& Processing.2003,76(7):1061-1065
    62. Yin L W, Li M S, Gong Z G, Xu B, Song Y J, Hao Z Y. Analysis of nanometer inclusions in high pressure synthesized diamond single crystals [J]. Chemical Physics Letters.2002,355(5-6):490-496
    63. Caveney R J. Limits to quality and size of diamond and cubic boron nitride synthesized under high pressure, high temperature conditions [J]. Materials Science and Engineering:B.1992,11(1-4):197-205
    64.沈主同.超高压下熔媒法人造金刚石合成机制研究的重要进展[J].人工晶体学报.2005,34(6):1035-1049
    65.刘磊,张元培,兰伟克,李和胜,李木森.金刚石单晶生长的声发射实时检测初探[J].高压物理学报.2010,24(4):255-259
    66.刘磊,李木森.基于声发射技术的金刚石单晶生长机理研究[J].电子显微学报.2011,30(2):128-132
    67.许斌,李木森.金属包膜的结构与铁基触媒合成金刚石的生长[J].科学通报.2002,47(9):669-673
    68.许斌,李木森,宫建红,章亚明,牛玉超,景财年.Fe基金属包膜的Mossbauer参量及其在金刚石合成中的催化作用[J].金属学报.2004,40(8):810-814
    69.许斌,崔建军,王淑华,李木森,李成美,冯立明.人造金刚石单晶铁基金属包膜的精细结构[J].金属学报.2005,41(4):444-448
    70.李颖,郝兆印.金刚石单晶生长界面Auger电子能谱分析[J].金刚石与磨料磨具工程.2006,149(5):55-57
    71.余瑞璜.固体与分子经验电子理论[J].科学通报.1978,23(4):217-224
    72.张瑞林.固体与分子经验电子理论[M]..长春:吉林科学技术出版社.1993
    73. Li Z L, Liu W, Wu Y Q. Influence of yttrium on the interface valence electron density of thermal barrier coatings [J]. Materials Chemistry and Physics.2007, 105(2-3):278-285
    74. 余瑞璜.固体与分子经验电子理论——等效价电子假定[J].科学通报.1981,26(4):206-209
    75. Wang J Q, Qian C F, Zhang B J, Tseng M K, Xiong S W. Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al-Fe-V-Si alloy [J]. Scripta Materialia.1996,34(10):1509-1515
    76. Guo Y Q, Yu R H, Zhang R L, Zhang X H, Tao K. Calculation of Magnetic Properties and Analysis of Valence Electronic Structures of LaT13-x A1x (T= Fe, Co) Compounds [J]. The Journal of Physical Chemistry B.1998,102(1):9-16
    77. Min X Q Sun Y S, Xue F, Du W W, Wu D Y. Analysis of valence electron structures (VES) of intermetallic compounds containing calcium in Mg-Al-based alloys [J]. Materials Chemistry and Physics.2003,78(1):88-93
    78. Zhang J-M, Xu K-W. Yield strengths and stress induced crackles in copper films: effects of substrate and passivated layer [J]. Chinese Physics.2004,13(2):205
    79. Li Z L, Xu H B, Gong S K. Texture formation mechanism of vapor-deposited fcc thin film on polycrystal or amorphous substrate [J]. The Journal of Physical Chemistry B.2004,108(39):15165-15171
    80. Li X B, Xie Y Q, Nie Y Z, Peng H J. Energy and shape method for determining the valence and bond structures of crystals [J]. Physica B.2007,391(2):249-255
    81. Shi M, Liu N, Xu Y D, Wang C, Yuan Y Y, Majewski P. A valence electron structure criterion of ionic conductivity of Sr-and Mg-doped LaGaO3 Ceramics [J]. Journal of Materials Science & Technology.2006,22(2):215-219
    82. 刘志林,电子.合金价电子结构与成分设计[M].长春:吉林科学技术出版社.1990
    83. 刘志林,李志林,刘伟东.界面电子结构与界面性能[M].北京:科学出版社.2002
    84. 程开甲,程漱玉.TFD模型和余氏理论对材料设计的应用[J].自然科学进展.1993,3(5):417-432
    85. 程开甲,程漱玉.论少子对材料特性的影响[J].材料研究学报.1996,10(1):1-6
    86. Cheng K J. Application of the TFD model and Yu's theory to material design [J]. Progress in natural science.1993,3(3):211-230
    87. Cheng K J, Cheng S Y. Theoretical foundations of condensed materials [J]. Progress in natural science.1996,6(1):1-6
    88. Cheng S Y, Cheng K J. Computation on heat of formation and EOS of alloy by a refined TFD model [J]. Acta Physica Sinica.1993,2(6):439
    89. 尹衍升,谭训彦,李嘉.ZrO2基陶瓷的t—m马氏体相变异相界面电子结构[J].中国有色金属学报.2003,13(1):111-115
    90.屈华.钛与钛铝化合物基合金相变及力学性能的价电子理论研究[D].沈阳:东北大学,2006
    91.孙振国,李志林,刘志林.合金异相界面电子密度的计算[J].科学通报.1995,40(24):2219-2221
    92. 孙振国,李志林,刘志林.Fe3C(001)晶面共价电子密度的计算[J].科学通报.1997,42(2):214-216
    93. Liu Z L, Li Z L, Sun Z G. Electron density of austenite/martensite biphase interface [J]. Chinese Science Bulletin.1996,41(5):367-370
    94.刘志林.余氏理论和程氏理论在合金研究中的应用[J].自然科学进展:国家重点实验室通讯.1998,8(2):150-160
    95.张建民.晶体中原子间成键能力的计算及Fe,Co,Ni触媒作用分析[J].陕西师大学报:自然科学版.1999,27(3):38-40
    96.张建民.γ-Fe(111),Co(0001),Ni(111),C(0001)晶面电子密度计算及触媒作用优劣的价电子结构分析[J].陕西师范大学学报1999,12(4):37-40
    97. Li L, Xu B, Li M S. Analysis of the carbon source for diamond crystal growth [J]. Chinese Science Bulletin.2008,53(6):937-942
    98. Li L, Xing B. Valence electron structure analysis of diamond crystal growth from Fe-C system [J]. Materials Chemistry and Physics.2009,117(1):276-280
    99.赫尔曼.理论物理学中的计算机模拟方法[M].秦克诚译.北京:北京大学出版社.1996
    100.汤伟,朱定一,关翔锋,陈丽娟.分子模拟在材料科学中的研究进展[J].材料导报.2004,18(4):193-196
    101. Rosenbluth M N, Rosenbluth A W. Further results on Monte Carlo equations of state [J]. The Journal of Chemical Physics.1954,22(5):881
    102. Rosenbluth M N, Rosenbluth A W. Monte Carlo calculation of the average extension of molecular chains [J]. The Journal of Chemical Physics.1955,23(2): 356-359
    103. Helfensteyn S, Luyten J, Feyaerts L, Creemers C. Modelling surface phenomena in Pd-Ni alloys [J]. Applied Surface Science.2003,212:844-849
    104.宋晓艳,刘国权.基于计算机模拟的正常晶粒长大的三维特征和二维截面表征[J].材料研究学报.1998,12(3):245-250
    105.莫春立,李殿中,钱百年,国旭明.铁素体不锈钢焊接热影响区晶粒长大过程模拟[J].金属学报.2001,37(3):307-310
    106.姜寿文,赵国群.冷轧薄钢板退火过程组织演变的Monte Carlo模拟[J].钢铁研究学报.2002,14(5):53-57
    107.陈强,曹红红,黄海波.分子动力学中势函数研究[J].天津理工学院学报.2004,20(2):101-105
    108. Tajima N, Takai O, Kogure Y, Doyama M. Computer simulation of point defects in fee metals using EAM potentials [J]. Computational Materials Science.1999, 14(1):152-158
    109. Sastry S, Debenedetti P G, Stillinger F H. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid [J]. Nature.1998, 393(6685):554-557
    110. Kadau K, Entel P, Lomdahl P. Molecular-dynamics study of martensitic transformations in sintered Fe Ni nanoparticles [J]. Computer physics communications.2002,147(1):126-129
    111.曾坤蓉,何林,祝文军,岳岷.高压下铝的弹性系数的分子动力学模拟[J].四川师范大学学报(自然科学版).2006,20(4):464-467
    112.侯怀宁,陈国良,陈光.金属Ni熔化前后结构变化的分子动力学}模拟[J].物理化学学报.2006,22(7):771-771
    113.孙小伟,褚衍东,刘子江,刘玉孝.王成伟,刘维民.高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究[J].物理学报.2005,54(12):5830-5836
    114.张建民,徐可为,马飞.用改进嵌入院子法计算Cu晶体的表面能[J].物理学报.2003,52(8):1993-1999
    115.丛红日,李辉.Cu—Ni合金结构的分子动力学模拟[J].化学物理学报.2002,15(4):288-294
    116. Born M, Huang K, Physicist G, Britain G. Dynamical theory of crystal lattices [M]. Oxford:Clarendon Press Oxford.1956
    117. Hohenberg P, Kohn W. Inhomogcneous Electron Gas [J]. Physical Review.1964, 136(3B):B864-B871
    118. Wcntzcovitch R M, Chang K, Cohen M L. Electronic and structural properties of BN and BP [J]. Physical Review B.1986.34(2):1071-1079
    119. Wentzcovitch R M, Cohen M L, Lam P K. Theoretical study of BN, BP, and BAs at high pressures [J]. Physical Review B.1987,36(11):6058-6068
    120. Liu A Y, Cohen M L. Prediction of new low compressibility solids [J]. Science (New York, NY).1989,245(4920):841-842
    121. Niu C, Lu Y Z, Lieber C M. Experimental realization of the covalent solid carbon nitride [J]. Science.1993,261(5119):334-337
    122. Zhang Z J, Fan S, Huang J, Lieber C M. Diamondlike properties in a single phase carbon nitride solid [J]. Applied Physics Letters.1996,68(19):2639-2641
    123. Yu K M, Cohen M L, Haller E, Hansen W, Liu A Y, Wu I. Observation of crystalline C3N4 [J]. Physical Review B.1994,49(7):5034-5036
    124. Lam P K, Cohen M L. Ab initio calculation of the static structural properties of Al [J]. Physical Review B.1981,24(8):4225-4226
    125.郭连权,李大业,刘嘉慧,马贺,武鹤楠,冷利,张平.ZnO晶体晶格常数及弹性模量的第一性原理计算[J].人工晶体学报.2010,39(B06):264-268
    126.郝军华,吴志强,王铮,金庆华,李宝会,丁大同.高压下Si02的第一性原理计算[J].高压物理学报.2010(4):260-266
    127. Mounet N, Marzari N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives [J]. Physical Review B.2005,71(20):205214
    128. Wen B, Zhao J, Li T. Synthesis and crystal structure of n-diamond [J]. International materials reviews.2007,52(3):131-151
    129.姚平坤,温斌,赵纪军,张兴国.超高压下碳结构的第一性原理研究[J].原子与分子物理学报.2008,25(1):53-58
    130.王丽莉,万强,胡文军,赵晓平.金刚石与石墨局域态密度和能带结构的第一原理分析[J].计算机与应用化学.2010,27(6):735-738
    131.刘以良,孔凡杰,杨缤维,蒋刚.金刚石延(111)面生长的第一性原理研究[J].物理学报.2007,56(9):5413-5417
    132.廖沐真.量子化学从头计算方法[M].北京:清华大学出版社.1984
    133. Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Physical Review.1965,140(4A):A1133-A1138
    134. Jones R O, Gunnarsson O. The density functional formalism, its applications and prospects [J]. Reviews of Modern Physics.1989,61(3):689
    135. Becke A D. Density functional calculations of molecular bond energies [J]. The Journal of Chemical Physics.1986,84(8):4524-4529
    136. Langreth D C, Perdew J P. Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works [J]. Physical Review B.1980,21(12):5469-5493
    137. Bagno P, Jepsen O, Gunnarsson O. Ground-state properties of third-row elements with nonlocal density functionals [J]. Physical Review B.1989,40(3): 1997-2000
    138. Dufek P, Blaha P, Sliwko V, Schwarz K. Generalize-gradient-approximation description of band splittings in transition-metal oxides and fluorides [J]. Physical Review B.1994(49):10170
    139. Perdew J P, Yue W. Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation [J]. Physical Review B. 1986,33(12):8800-8802
    140. Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B.1992,45(23): 13244-13249
    141. Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas [J]. Physical Review B.1986,33(12):8822-8824
    142. Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Physical Review A.1988,38(6):3098-3100
    143. Van Voorhis T, Scuseria G H. A novel form lor the exchange-correlation energy functional [J]. The Journal of Chemical Physics.1998,109(2):400-410
    144. Perdew J P, Kurth S. Zupan A, Blaha P. Accurate Density Functional with Correct Formal Properties:A Step Beyond the Generalized Gradient Approximation [J]. Physical Review Letters.1999,82(12):2544-2547
    145. Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange [J]. The Journal of Chemical Physics.1993,98(7):5648-5652
    146. Slater J C. Wave Functions in a Periodic Potential [J]. Physical Review.1937, 51(10):846-851
    147. Herring C. A New Method for Calculating Wave Functions in Crystals [J]. Physical Review.1940, 57(12):1169-1177
    148. Hamann D R, Schluter M, Chiang C. Norm-Conserving Pseudopotentials [J]. Physical Review Letters.1979,43(20):1494-1497
    149. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B.1990,41(11):7892-7895
    150. Blochl P E. Projector augmented-wave method [J]. Physical Review B.1994, 50(24):17953-17979
    151. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B.1999,59(3):1758-1775
    152.黄昆,韩汝琦.固体物理学[M].北京:北京大学出版社.2009
    153. Birch F. Finite elastic strain of cubic crystals [J]. Physical Review.1947,71(11): 809-824
    154. Murnaghan F D. The compressibility of media under extreme pressures [J]. Proceedings of the national academy of sciences of the United States of America. 1944,30(9):244-247
    155. Liu Z L, Li Z L, Sun Z G. Catalysis mechanism and catalyst design of diamond growth [J]. Metallurgical and Materials Transactions A.1999,30(11): 2757-2766
    156. Li Z L, Liu Z L, Li F Y, Yang X P, Gu Z G. Phase Structure Factor and Interface Conjunction Factor of Cast Iron and Its Composition Design [J]. Acta Mathematica Sinica.1999,12(4):401-407
    157. Bundy F P, Hall H T, Strong H M, Wentorf R H. Man-made diamonds [J]. Nature.1955,176(4471):51-55
    158. Egerton R. Electron Energy-Loss Spectroscopy in the Electron Microscope [M]. New York:Plenum Press.1996
    159. Yang G Y, Zhu J.3d occupancy determination from Fe L2,3 electron energy-loss spectra of nanocrystalline-amorphous Fe73 sCu1Mo3Si13.5B9 alloy [J]. Journal of Magnetism and Magnetic Materials.2000,220(1):65-71
    160.饶杰,朱静.电子束辐照下钛酸锶钡薄膜的电子能量损失谱研究[J].中国科学.2004,34(9):961-968
    161. Cui M L, Zhu J, Zhong X Y, Zhao Y G, Duan X F. Cobalt valence in epitaxial Tio.93Co0.07O2 anatase [J], Applied Physics Letters.2004,85(10):1698-1700
    162. Berger S D, McKenzie D R, Martin P J. EELS analysis of vacuum arc-deposited diamond-like films [J]. Philosophical Magazine Letters.1988,57(6):285-290
    163. Menon E S K, Krishnan K M. Charge transfer and short-range order in Cu-Pd and Ni-Mo alloys [J]. Philosophical Magazine Letters.1992,66(5):271-275
    164. Pearson D H, Ahn C C, Fultz B. White lines and d-electron occupancies for the 3d and 4d transition metals [J]. Physical Review B.1993,47(14):8471-8478
    165. Pearson D H, Ahn C C, Fultz B. Measurements of 3d occupancy from Cu L2.3 electron-energy-loss spectra of rapidly quenched CuZr, CuTi, CuPd, CuPt, and CuAu [J]. Physical Review B.1994,50(17):12969-12972
    166. Berndt F, Kleebe H-J, Ziegler G. Evidence for Structural Changes of Amorphous Carbon Coatings on Silicon Carbide During Tribological Tests [J]. Journal of the American Ceramic Society.1999,82(11):3161-3166
    167. Egerton R F. Electron energy-loss spectroscopy in the TEM [J]. Reports on Progress in Physics.2009,72(1):016502
    168. Mattheiss L F, Dietz R E. Relativistic tight-binding calculation of core-valence transitions in Pt and Au [J]. Physical Review B.1980,22(4):1663-1676
    169.张克从,张乐潓.晶体生长科学与技术[M].北京:科学出版社.1997
    170. Lv Z Q, Zhang F C, Sun S H, Wang Z H, Jiang P, Zhang W 11, Fu W T. First-principles study on the mechanical, electronic and magnetic properties of Fe3C [J]. Computational Materials Science.2008,44(2):690-694
    171.李迅TFDC理论在高温高压合成金刚石中的应用[D].长春:吉林大学2002
    172. Lowitzer S, Winkler B, Tucker M. Thcrmoelastic behavior of graphite from in situ high-pressure high-temperature neutron diffraction [J]. Physical Review B. 2006,73(21):214115
    173. Hofmann U, Wilm D. Ueber die Kristallstruktur von Kohlenstoff [J]. Zcitschrift fuer Elektrochemie.1936,42:504-522
    174. Rydberg H, Dion M, Jacobson N, Schroder E, Hyldgaard P, Simak S I, Langreth D C, Lundqvist B I. Van der Waals Density Functional for Layered Structures [J]. Physical Review Letters.2003,91(12):126402
    175. Riley D P. Lattice constant of diamond and the C-C single bond [J]. Nature. 1944,153:587-588
    176. Lynch R W, Drickamer H G. Effect of High Pressure on the Lattice Parameters of Diamond, Graphite, and Hexagonal Boron Nitride [J]. The Journal of Chemical Physics.1966,44(1):181-184
    177. Fasiska E J, Jeffrey G A. On the cementite structure [J]. Acta Crystallographica. 1965,19(3):463-471
    178. Miodownik A P. The Invar behaviour of iron-nickel-platinum alloys [J]. Journal of Magnetism and Magnetic Materials.1979,10(2):126-135
    179.沈主同.超高压高温下金刚石的合成机制[J].工业金刚石.2000(5):1-12
    180. Li Z L, Liu Z L, Liu W D. Valence electron structure of cementite phase and its interface and the tempering phenomenon [J]. Science in China Series E.2002, 45(3):282-290
    181.郑伟涛.γ-Fe-Ni固溶体的价电子结构与α~x,α~T曲线[J].吉林大学学报.1990(2):39-42
    182.邢胜娣.Fe-C和Fe-Ni-C马氏体相变的价电子分析[J].浙江大学学报.1989,23(3):349-355
    183. Naka S, Tsuzuki A, Ihirano S I. Diamond formation and behaviour of carbides in several 3d-transition metal-graphite systems [J]. Journal of Materials Science. 1984,19(1):259-262
    184. Sterenberg L E, Slesarev V N, Korsunskaya I A. Experimental Study of the Interaction Between the Melt, Carbides and Diamond in the Fe-C System at High Pressures [J]. High Temp High Press.1975,7(5):517-522
    185. Kamenetskaya D S, Shterenberg L E. T-P-NC phase diagram for the tantalum-carbon system. [J]. Acad. Nauk. Ukrssr.1980:32-38
    186. Kamenetskaya D S, Shterenberg L E. Thermodynamic calculation of phase equilibrial in the TaC-C region at pressure up to 1 OGPa. [J]. Sverkhtverdye Mat. 1982(3):7-11
    187.钮震,许斌,田彬,高才,马中全.金刚石/金属触媒界面表征及金刚石生长的热力学分析[J].人工晶体学报.2010,39(6):1367-1371
    188.王勇,刘鹏,李木森,郝兆印,李云凯.新型碳源和触媒合成金刚石的研究[J].金刚石与磨料磨具工程.2004(1):14-15
    189.刘鹏,李木森,裴饴初,郝兆印,程开甲.铁碳化合物的制备及高温高压合成金刚拓[J].机械工程材料.2000,24(3):31-32
    190. Strong H M, Chrenko R M. Diamond growth rates and physical properties of laboratory-made diamond [J]. The Journal of Physical Chemistry.1971,75(12): 1838-1843
    191.崔建军,许斌,宫建红,万杜怡,李木森,李洪岩.铁基触媒中金刚石单晶的生长对初生渗碳体的消耗[J].人工晶体学报.2006,35(2):363-366

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700