用户名: 密码: 验证码:
稀土添加铌酸盐玻璃陶瓷复合介电材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技进步与工程需求的加快,储能器件的小型化与轻型化己成为业界一致的目标。在此基础上应运而生的通过熔融快冷与可控结晶技术制备岀的兼具高介电常数与高击穿场强的新型玻璃陶瓷复合介电材料在实现储能器件小型化与轻型化的过程中扮演了极其重要的角色。玻璃陶瓷复合介电材料之所以具有如此良好的特性在于其中的陶瓷相提供了高介电常数,其中的非晶玻璃相提供了高击穿场强的特性,根据介电材料的储能密度与其介电常数呈线性关系而与其击穿场强存在二次方的关系,可以预见玻璃陶瓷复合介电材料具有获得高储能密度的潜力,因此玻璃陶瓷复合介电材料对实现储能器件小型化与轻型化的目标是非常有利的。然而由于玻璃陶瓷复合介电材料问世时间较短,相关理论与实验研究还未全面展开,在工程化考核中所体现的综合性能还不够理想,因此对现有的玻璃陶瓷开展性能改善的工作显得尤其重要。
     本课题组之前深入系统的研究了由钨青铜结构相(A1)4(A2)2Nb10O30与钙钛矿结构相NaNbO3作为陶瓷相与SiO2非晶玻璃相组成的铌酸盐基玻璃陶瓷中钨青铜相的A位元素一元和二元替换与复合,形成了基于Ba、Sr、Pb在钨青铜相的A位元素替换与复合所构成的铌酸盐玻璃陶瓷成分三角形体系。通过研究陶瓷相的析出过程、显微结构以及玻璃陶瓷的各项介电性能,得出在铌酸盐玻璃陶瓷中钨青铜相的A位元素替换与复合对以上性能的影响。通过调控纳米陶瓷相的析晶过程而实现对玻璃陶瓷的结构与介电性能的改善。
     本论文正是建立在课题组之前研究的基础之上,选取五个关键的成分点即BaO-Na2O-Nb2O5-SiO2、SrO-Na2O-Nb2O5-SiO2、PbO-Na2O-Nb2O5-SiO2、(Pb06, Ba0.4)O-Na2O-Nb2O5-SiO2、(Pb0.4,Sr0.6)O-Na2O-Nb2O5-SiO2作为基础玻璃陶瓷成分体系,通过添加不同种类与含量的稀土氧化物,系统研究稀土添加对铌酸盐玻璃陶瓷中的陶瓷相析出、显微结构以及介电性能的影响,以期实现通过添加微量稀土而达到进一步改善铌酸盐玻璃陶瓷的结晶与介电性能的目的。
     通过差热分析(DTA)得到玻璃转变温度与结晶温度都随着稀土添加而升高,同时玻璃的可加工性能得到改善。研究了稀土添加铌酸盐玻璃陶瓷的结晶行为。随着热处理温度的上升,BaO-Na2O-Nb2O5-SiO2体系玻璃陶瓷经历了陶瓷相由单一钨青铜结构到钨青铜与钙钛矿结构两相共存的晶相演化过程。Rietveld全谱分析表明在高温热处理的BaO-Na2O-Nb2O5-SiO2体系玻璃陶瓷中,稀土离子掺杂到陶瓷相中。在BaO-Na2O-Nb2O5-SiO2-Lu2O3体系玻璃陶瓷(1000℃结晶)中当Lu2O3添加量大于1mol%时,有新的结晶相岀现。在PbO-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd)与(Pb0.4, Sr0.6)O-Na2O-Nb2O5-SiO2-La2O3体系玻璃陶瓷(900℃结晶)中随着稀土添加岀现了异于钨青铜与钙钛矿两种结构相的另一种具有焦绿石结构的晶体相。
     对基本介电性能的研究表明,随着稀上添加铌酸盐玻璃陶瓷的介电常数升高,特别是在BaO-Na2O-Nb2O5-SiO2-La2O3体系玻璃陶瓷(1000℃结晶)中当La2O3添加量由0增大到3mol%时,其介电常数由328提高到754,提高了130%。介电损耗都能够保持较低的水平。在一些体系中,稀土添加起到了提高介电常数与介电损耗的频率与温度稳定性的作用。
     对于SrO-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd)、 PbO-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd)、(Pb0.6, Ba0.4)O-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd)与(Pb0.4, Sr0.6)O-Na2O-Nb2O.5SiO2-R2O3(R=La, Gd)体系玻璃陶瓷,稀土添加改善了其介电常数电场稳定性。在SrO-Na2O-Nb2O.5-SiO2-R2O3(R=La, Gd)、 PbO-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd)(?)本系玻璃陶瓷中,稀土添加降低了漏电流密度。添加稀土与升高热处理温度都使极化曲线包围的面积与最大极化强度Pmax增加,然而在SrO-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd)、 PbO-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd)与(Pb0.4, Sr0.6)O-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd)体系玻璃陶瓷中,极化曲线包围的面积与最大极化强度P_max随着稀土添加而减小
     高温热处理的铌酸盐玻璃陶瓷的直流击穿场强都符合二参数Weibull(?)布函数,并且添加稀土都提高了玻璃陶瓷的平均击穿场强强。借助玻璃陶瓷在接近击穿时的极化曲线,得到玻璃陶瓷的储能密度与能量释放密度都随着稀土添加而得到改善。
     显微分析表明纳米陶瓷颗粒均匀的分布于玻璃基体中,玻璃陶瓷结构致密。随着结晶温度升高,陶瓷相的尺寸与含量都逐渐变大。稀土添加起到优化玻璃陶瓷显微结构的作用,在BaO-Na2O-Nb2O5-SiO2-Lu2O3体系玻璃陶瓷中,随着Lu2O3含量增加,生成一种含Lu的新相。HAADF-STEM与EDS mapping分析表明,BaO-Na2O-Nb2O5-SiO2-Gd2O3体系玻璃陶瓷中的Gd元素进入了陶瓷相,正是由于这种掺杂效应而对玻璃陶瓷整体的介电性能产生影响。
With the progress of science and technology and speed of engineering demand, to make the energy storage devices smaller and lighter has become the industrial consensus target. Glass-ceramic, which is produced through melt and fast cooling followed by controlled crystallization techniques and has both the high dielectric constant and high breakdown strength, plays an important role in the miniaturization and lightweight of the devices. According to the relationship that the energy storage density of an ideal dielectric grows linearly with the dielectric constant and quadratically with the breakdown strength, it is easy to predict that dielectric glass-ceramic composite has the very good potential to acquire high energy storage density, thus it is favorable for the miniaturization and lightweight of the energy storage devices. However, because the dielectric glass-ceramic is known for a short period of time, the related theoretical and experimental research have not yet been in full swing, the comprehensive performances shown in the engineering are not completely ideal, it is of great importance to improve the performances of the dielectric glass-ceramics.
     Glass-ceramic composites constituted of nano-ceramics of (A1)4(A2)2Nb10O30with tungsten bronze structure and NaNbO3with perovskite structure and amorphous SiO2glass matrix were investigated systematically by our research group before. Based on the substitution among elements of Ba, Sr and Pb in the A-site of the tungsten bronze structured crystals, the composition triangle of niobate glass-ceramics was formed. The effect of the substitution in the A-site of the tungsten bronze structured crystals on the precipitation process of nano-ceramics, the microstructure of glass-ceramics and various dielectric properties was studied. Both the structural and dielectric properties of the niobate glass-ceramics were improved through regulating the precipitation of nano-ceramic phases.
     For the present investigation, five key compositions of BaO-Na2O-Nb2O5-SiO2, SrO-Na2O-Nb2O5-SiO2. PbO-Na2O-Nb2O5-SiO2.(Pb0.6, Ba0.4)O-Na20-Nb2O5-SiO2and (Pb0.4, Sr0.6)O-Na2O-Nb2O5-SiO2were selected as the basic glass-ceramic composition. Different types and contents of rare earth oxides were added to them and the consequent study were conducted on the effect of rare earth addition on the precipitation process of nano-ceramics, the microstructure and various dielectric properties of the niobate glass-ceramics. The purpose of this study is to further improve the crystallization properties and dielectric properties of niobate glass-ceramics by adding trace rare earth.
     Differential thermal analysis (DTA) showed that the glass transition temperature and the crystallization temperature were increased by rare earth addition, and the processing performance of glass was improved. The crystallization behaviors of the niobate glass-ceramics added with rare earth oxides were studied. As the temperature of heat-treatment increased, the nano-scale ceramics in the glass-ceramic in BaO-Na2O-Nb2O5-SiO2system underwent a phase evolution from the single tungsten bronze structure to the coexistence of both tungsten bronze and perovskite structures. The whole profile Rietveld analysis displayed that the rare earth ions doped into the nano-ceramic phases in the glass-ceramic in BaO-Na2O-Nb2O5-SiO2system crystallized under high temperature. When the amount of Lu2O3was larger than1mol%. a new crystalline phase appeared in the glass-ceramic in BaO-Na2O-Nb2O5-SiO2-Lu2O3system (crystallized under1000℃). In the glass-ceramics with the compositions of PbO-Na2O-Nb2O5-SiO2-R2O3(R=La. Gd) and (Pb0.4, Sr0.6)O-Na2O-Nb2O5-SiO2-La2O3, another crystalline phase with pyrochlore structure was formed.
     Research on the basic dielectric properties showed that the dielectric constant of the niobate glass-ceramics increased with the addition of rare earth oxides. Especially in the glass-ceramics in BaO-Na2O-Nb2O5-SiO2-La2O3system, as the addition of La2O3rose from0to3mol%, the dielectric constant of glass-ceramic increased from328to754, which is about130%higher. The loss of glass-ceramic samples could remain relatively low. In several glass-ceramic systems, rare earth addition plays an important role in improving both the frequency and the temperature stability of the basic dielectric properties including dielectric constant and loss.
     For glass-ceramics in systems of SrO-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd), PbO-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd),(Pb0.6, Ba0.4)O-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd) and (Pb0.4, Sr0.6)O-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd), the electric field stability of dielectric constant was improved by rare earth addition. In glass-ceramics in systems of SrO-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd) and PbO-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd), the addition of rare earth decreased the leakage current density. Adding rare earth and increasing heat-treatment temperature enlarged the surrounded area of the P-E curve and increased the maximum polarization Pmax. However, in the glass-ceramics in systems of SrO-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd), PbO-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd) and (Pbo.4, Sr0.6)O-Na2O-Nb2O5-SiO2-R2O3(R=La, Gd), the area surrounded by the P-E curve and the maximum polarization Pmax were decreased by rare earth addition.
     The dc breakdown strength of niobate glass-ceramics crystallized at high temperature followed the two-parameter Weibull distribution well and all the plots showed a relatively good linearity. The average breakdown strength of glass-ceramic in basic composition was increased by rare earth addition. By means of polarization curve measured under the electric field in close to breakdown, the improvement of stored energy density and discharged energy density by rare earth addition were observed.
     Microscopic analysis showed that the nano-ceramic particles uniformly distributed in the glass matrix and the glass ceramics were of a compact structure. As the crystallization temperature increased, the size and content of nano-ceramic particles increased gradually. The addition of rare earth optimized the microstructure of the niobate glass-ceramics. A new crystalline phase containing Lu could be clearly seen in the glass-ceramic in BaO-Na2O-Nb2O5-SiO2-Lu2O3system with the amount of Lu2O3higher than1mol%. Observation of HAADF-STEM and EDS mapping demonstrated the Gd doped into the nano-ceramics. It is the very doping effect of rare earth ions that influenced the dielectric properties of niobate glass-ceramics.
引文
[1]马文蔚改编.物理学中册[M].第四版.北京:高等教育出版社,2004:83-85
    [2]Fletcher N. H., Hilton A. D., Ricketts B. W. Optimization of Energy Storage Density in Ceramic Capacitors [J]. Journal of Physics. D:Applied Physics,1996,29(1): 253-258
    [3]Chowdary K. R., Subbarao K C. Liquid Phase Sintered BaTiO3[J]. Ferroelectrics, 1981. 37(1):689-692
    [4]Sarkar S. K.. Sharma M. L. Liquid Phase Sintering of BaTiO3 by B2O3 and PbB2O4 Glasses and Its Effect on Dielectric Strength and Dielectric Constant[J]. Materials Research Bulletin, 1989, 24(7): 773-779
    [5]Huang J. J., Zhang Y. Liquid Phase Sintering of Barium Titanate Ceramics for High Energy Storage Density Capacitors[J]. Key Engineering Materials, 2008. 368-372 PART 1:40-42
    [6]Young A., Hilmas W. G., Zhang S. C., et al. Effect of Liquid-phase Sintering On the Breakdown Strength of Barium Titanate[J]. Journal of the American Ceramic Society. 2007.90(5): 1501-1504
    [7]Huebner W.. Zhang S. C. Gilmore B.. et al. High Breakdown Strength, Multiplayer Ceramics for Compact Pulsed Power Applications[J]. Digest of Technical Papers-IEEE International Pulsed Power Conference. 1999.2: 1242-1245
    [8]Huebner W.. Zhang S. C. High Energy Density Dielectrics for Symmetric Blumleins[J]. IEEE International Symposium on Applications of Ferroelectrics, 2000, 2: 833-836
    [9]Zhang Q. M., Wang L., Luo J.. et al. Improved Energy Storage Density in Barium Strontium Titanate by Addition of BaO-SiO2-B2O3 Glass[J]. Journal of the American Ceramic Society, 2009,92(8): 1871 -1873
    [10]Wu R., Du P. Y., Weng W. J.. et al. The Structures and Dielectric Properties of Ba0.8<0Sr0.20TiO3/Pb0.82La0.18TiO3 Composite Thick Films with Addition of PbO-B2O3 glass[J]. Journal of the European Ceramic Society, 2006,26(9): 1611-1617
    [11]黄佳佳,张勇,陈继春.高储能密度介电材料的研究进展[J].材料导报,2009,23(14):307-311
    [12]王珏,王德生,严萍,等.高储能密度复合绝缘材料的研究[J].电工电能新技术2005,24(2):24-27
    [13]Lin Y, Boeker A., He J. B., et al. Self-Directed Self-Assembly of Nanoparticle/Copolymer Mixtures[J]. Nature, 2005,434: 55-59
    [14]Stoyanov H., McCarthy D., Kollosche M., et al. Dielectric Properties and Electric Breakdown Strength of a Subpercolative Composite of Carbon Black in Thermoplastic Copolymer[J]. Applied Physics Letters,2009,94(23):232905
    [15]Maliakal A., Katz H., Cotts P. M., et al. Inorganic Oxide Core, Polymer Shell Nanocomposite as a High K Gate Dielectric for Flexible Electrics Applications[J]. Journal of the American Chemical Society,2005,127(42):14655-14662
    [16]Guo N., DiBenedetto S. A., Tewari P., et al. Nanoparticle, Size, Shape, and Interfacial Effects on Leakage Current Density, Permittivity, and Breakdown Strength of Metal Oxide-Polyolefin Nanocomposites:Experiment and Theory[J]. Chemistry of Materials, 2010,22(4),1567-1578
    [17]Tomer V., Randall C. A., Polizos G., et al. High- and Low-field Dielectric Characteristics of Dielectrophoretically Aligned Ceramic/Polymer Nanocomposites[J]. Journal of Applied Physics,2008,103(3):034115
    [18]Beall G. H. Synthesis and Design of Glass Ceramics[J]. Journal of Materials Education,1992,14:315-361
    [19]Beall G. H., Pinckney. Nanophase Glass-Ceramics[J]. Journal of the American Ceramic Society,1999,82(1):5-16
    [20]McCauley D., Newnham R. E., Randall C. A. Intrinsic Size Effect in a Barium Titanate Glass-Ceramic[J]. Journal of the American Ceramic Society,1998,82: 979-987
    [21]福格尔.玻璃化学[M].北京:轻工业出版社,1998:35-38
    [22]周亚栋.无机材料物理化学[M].武汉:武汉工业大学出版社,1994:226
    [23]Bauer J., Roger U., Simons P. Validation of a Mathematical Glass Tank Model[J]. Glass Science and Technology,1999,72(6):171-181
    [24]林亢.普通工业玻璃退火与应力的几个问题I[J].玻璃,2000,27(1):11-16
    [25]Sadel A., Van der Muhll R., Ravez J., et al. Ferroelectric and Pyroelectric Studies of A Crystal of Composition Lio.o2Nao.9gNb03[J]. Ferroelectrics,1983,47:169-175
    [26]向勇,谢道华.ABO3型氧化物的结构与性能及其应用,材料工程,2000,9:15-18
    [27]关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,2008:350-353
    [28]Ramadass N. ABO3-Type Oxides—Their Structure and Properties—A Bird's Eye View[J]. Materials Science and Engineering.1978,36(2):231-239
    [29]Kingery W. D., Bowen H. K., Uhlmann D. R. Introduction to Ceramics[M]. New York: John Wiley & Sons. 1976: 1032
    [30]Callister W. D. Materials Science and Engineering: an Introduction[M]. New York: John Wiley & Sons. 1985: 602
    [31]Jaeger R. E., Egerton L. Hot Pressing of Potassium-Sodium Niobates[J]. Journal of the American Ceramic Society. 1962,45(5): 209-213
    [32]Darlington N. W., Megaw H.D. The Low-Temperature Phase Transition of Sodium Niobate and the Structure of the Low-Temperature Phase. N[J]. Acta Crystallographica, 1973. B29(10): 2171-2185
    [33]Lefkowitz J., Lukaszewicz K., Megaw H. D. The High-Temperature Phases of Sodium Niobate and the Nature of Transitions in Pseudosymmetric Structures[J]. Acta Crystallographica, 1966, 20: 670-683
    [34]Chen J., Feng D. TKM Study of Phases and Domains in NaNbO3 at Room Temperature[J]. Physica Status Solidi (A) Applied Research. 1988,109(1): 171-185
    [35]Chen J.. Feng D. In-Situ TKM Studies of Para-Ferro Phase Transitions in NaNbO3[J]. Physica Status Solidi (A) Applied Research. 1988. 109(2): 427-434
    [36]Neurgaonkar R. R., Cory W. K., Oliver J. R.. et al. Development and Modification of Photorefractive Properties in the Tungsten Bronze Family Crystals Optical Kngineering[J]. Optical Engineering. 1987. 26(5): 392-405
    [37]Magneli A. Crystal Structure of Tetragonal Potassium Tungsten Bronze. Arkiv for Kemi, 1949.24:213-221
    [38]钱逸泰.结品化学[M].合肥:中国科学技术大学出版社,1988:269
    [39]Ravez J., Simon A. Some Solid State Chemistry Aspects of Lead-Free Relaxor Ferroelectrics[J]. Journal of Solid State Chemistry, 2001.162(2): 260-265
    [40]Ravez J. Ferroelectricity in Solid State Chemistry[JJ. Comptes Rendus Chimie, 2000, 3(4): 267-283
    [41]Neurgaonkar R. R., Nelson J. G., Oliver J. R. Ferroelectric Properties of the Tungsten Bronze M2+6M4+2Nb8O30 Solid Solution Systems[J]. Materials Research Bulletin. 1992, 27(6): 677-684
    [42]孙大亮,宋永远,姜全忠,等.光折变KNSBN掺Cu晶体的生长[J].人工晶体学报,1992,21(2):110-113
    [43]张高科,欧阳世翕.吴伯麟,等.关于钨青铜结构铌酸盐晶体的通式及其阳离子 占位探讨[J].人工晶体学报,1996,25(3):261-265
    [44]Simon A., Ravez J. Solid-State Chemistry and Non-Linear Properties of Teragonal Tungsten Bronzes Materials[J]. Comptes Rendus Chimie.2006,9(10):1268-1276
    [45]Neurgaonkar R. R., Cory W. K., Oliver J. R., et al. Growth and Optical Properties of Ferroelectric Tungsten Bronze Crystals[J]. Ferroelectrics,1993,142(1):167-188
    [46]Abrahams S. C., Jamieson P. B., Bernstein J. L. Ferroelectric Tungsten Bronze-Type Crystal Strucutres. III. Potassium Lithium Niobate K(6-x-y)Li(4+x)Nb(10+y)O30[J]. Journal of Chemistry Physics,1971,54:2355-2364
    [47]Kim M. S., Lee J. H., Kim J. J., et al. Densification Behavior and Electric Properties of K3Li2(Nb1-xTax)5O15 Ceramics[J]. Integrated Ferroelectrics,2005,69(1):11-20
    [48]Kim M. S., Lee J. H., Kim J. J., et al. Microstrucutre Evolution and Dielectric Properties of Ba5-xNa2xNb10O30 Ceramics with Different Ba-Na Ratio[J]. Journal of Solid State Electrochemistry,2006,10(1):18-23
    [49]Gonzalez E. G., Pardo A. T., Jimenez R., et al. Structural Singularities in Ferroelectric Sr2NaNb5O15[J]. Chemistry of Materials,2007,19(14):3575-3580
    [50]Wei L. L., Yang Z. P., Gu R., et al. The Phase Formation, Microstrucutre, and Electric Properties of Tungsten Bronze Ferroelectric Sr2NaNb5O15 Ceramics[J]. Journal of the American Ceramic Society,2010,93(7):1978-1983
    [51]Lanfredi S., Cardoso C. X., Nobre M. A. L. Crystallographic Properties of KSr2Nb5O15[J]. Materials Science and Engineering B,2004.112(2-3):139-143
    [52]Tribotte B., Haussonne J. M., Desgardin G. K2Sr4Nb10O30-Based Dielectric Ceramics Having the Tetragonal Tungsten Bronze Strucutre and Temperature-Stable High Permittivity [J]. Journal of the European Ceramic Society,1999,19(6-7):1105-1109
    [53]Mather G. C., Dussarrat C., Etourneau J., et al. A Review of Cation-Ordered Rock Salt Superstructureoxides[J]. Journal of Materials Chemistry,2000,10(10):2219-2230
    [54]Yamaguchi O., Mateui K., Shimizu K. Crystallization of Hexagonal BaNb2O6[J]. Journal of the American Ceramic Society,1985,68(7):C-173-C-175
    [55]Turik A. V., Khasabova G. I., Chernysheva L. K., et al. Dielectric Relaxation in PbNb2O6 Single Crystals[J]. Soviet Physics Solid State,1984.26(8):1406-1409
    [56]Lee W. J., Fang T. T. Nonisothermal Reaction Kinetics of SrNb2O6 and BaNb2O6 for the Formation of SrxBa1-xNb2O6[J]. Journal of the American Ceramic Society,1998, 81(1): 193-199
    [57]Reece M. J., Worrell C. A., Hill G. J., et al. Microstructures and Dielectric Properties of Ferroelectric Glass-Ceramics[J]. Journal of the American Ceramic Society, 1996, 79: 17-26
    [58]Herczog A. Microcrystalline BaTiO3 by Crystallization from Glass[J]. Journal of the American Ceramic Society, 1964, 47(3): 107-115
    [59]Herczog A. Application of Glass-Ceramics for Electronic Componentsand Circuits[J]. IEEE Transactions on Parts. I lybrids, and Packaging. 1973. PHP-9: 247-256
    [60]Gorzkowski E. P.. Pan M J.. Bender B. A., et al. Effect of Additives on the Crystallization Kinetics of Barium Strontium Titanate Glass-Ceramics[J]. Journal of the American Ceramic Society. 2008,94(4): 1065-1069
    [61]Chen J. C., Zhang Y., Deng C. S.. et al. Effect of the Ba/Ti Ratio on the Microstructures and Dielectric Properties of Barium Titanate-Based Glass-Ceramics[J]. Journal of the American Ceramic Society. 2009, 92(6): 1350-1353
    [62]Huang J. J., Zhang Y.. Ma T., et al. Correlation between Dielectric Breakdown Strength and Interface Polarization in Barium Strontium Titanate Glass Ceramics[J]. Applied Physics Letter. 2010, 96: 042902
    [63]Zhang Y, Huang J. J.. Ma T.. et al. Sintering Temperature Dependence of Energy Storage Properties in (Ba.Sr)TiO3 Glass-Ceramics[J]. Journal of the American Ceramic Society. 2011, 94(6): 1805-1810
    [64]Cheng C. T., Lanagan M., Jones B., et al. Crystallization Kinetics and Phase Development of PbO-BaO-SrO-Nb2O5-B2O3-SiO2-Based Glass-Ceramics[J]. Journal of the American Ceramic Society. 2005, 88(11): 3037-3042
    [65]Cheng C. T., Lanagana M., Lin J. T., et al. Crystallization Kinetics and Dielectric Properties of Nanocrystalline Lead Strontium Barium Niobates[J]. Journal of Materials Research, 2005,20(2): 436-446
    [66]Shyu J. J., Wang J. R. Crystallization and Dielectric Properties of SrO-BaO-Nb2O5-SiO2 Tungsten-bronze Glass-Ceramics[J]. Journal of the American Ceramic Society, 2000, 83(12): 3135-3140
    [67]Shyu J. J., Chen C. H. Sinterable Ferroelectric Glass-ceramics Containing (Sr,Ba)Nb2O6 crystals[J]. Ceramics International, 2003, 29: 447-453
    [68]Layton M. M., Herczog A. Nuclear and Crystallization of NaNbO3 from Glasses in the Na2O-Nb2O5-SiO2 System[J]. Journal of the American Ceramic Society,1967.50(7): 369-375
    [69]Shyu J. J., Yang Y. S. Crystallization of a PbO-BaO-TiO2-Al2O3-SiO2 Glass[J]. Journal of the American Ceramic Society,1995,78(6):1463-1468
    [70]Artl G. The Influence of Microstructure on the Properties of Ferroelectric Ceramics[J]. Ferroelectrics,1990,104:217-227
    [71]Chen J. C., Zhang Y., Deng C. S., et al. Improvement in the Microstructures and Dielectric Properties of Barium Strontium Titanate Glass—Ceramics by AlF3/MnO2 Addition[J]. Journal of the American Ceramic Society,2009,92(8):1863-1866
    [72]Zeng Y. K., Qin X. Y., Jiang S. L., et al. Effect of BaF2 Addition on Crystallization Kinetics and Dielectric Properties of B2O3-Nb2O5-SrO-BaO Glass-Ceramics[J]. Journal of the American Ceramic Society,2011,94(2):469-473
    [73]张若桦.稀土元素化学[M].天津:天津科学技术出版社,1987:1-2
    [74]Pablick C., Ahrens B., Henke B., et al. Crystallization Behavior of Rare-Earth Doped Fluorochlorozirconate Glasses[J]. Journal of Non-Crystalline Solids,2010,357: 2450-2452
    [75]Foulon G., Ferriol M., Brenier A., et al. Obtention of Good Quality Ba2NaNb5O15 Crystals:Growth, Characterization and Structure of Nd3+Doped Single-Crystal Fibres[J]. European Journal of Solid State and Inorganic Chemistry,1996,33,673-686
    [76]Lebbou K., Itagaki H., Yoshikawa A., et al. Effect of Gadolinium (Gd3+) Addition on the Monophased Field and Crystal Growth of Ba2NaNb5O15(BNN)[J]. Journal of Crystal Growth,2001,224:59-66
    [77]Shimazu M., Tsukioka M., Mitobe N., et al. Effect of Gadolinium Content on the Thermal Volume Change of Ba4Na2Nb10O30-Ba3NaGdNb10O30 Solid Solutions at Ferroelectric Phase Transition Temperature [J]. Journal of Materials Science,1990, 25(10):4525-4530
    [78]Xia H. R., Hu L. J., Wang C. J., et al. Energy State of Nd3+ Doped in Barium Sodium Niobate Crystals[J]. Journal of Applied Physics,1998,83(5),2560-2562
    [79]Xia H. R., Li L. X., Yu H., et al. Raman and Infrared Spectra of Nd-Doped Barium Sodium Niobate Crystals[J]. Crystal Research and Technology,1999,34(7):901-910
    [80]Lebbou K., Itagaki H., Yoshikawa A., et al. Effect of Yb3+ Content on Purity and Crystal Growth of Ba2NaNb5O15[J]. Journal of Crystal Growth. 2000. 210: 655-662
    [81]Neurgaonkar R. R., Nelson G. J., Oliver J. R., et al. Ferroelectric and Structural Properties of the Tungsten Bronze System K2Ln3+Nb5O15, Ln=La to Lu[J]. Materials Research Bulletin. 1990, 25(8): 959-970
    [82]Chandramouli K., Srinivas G., Ramam K. Electromechanical Studies of Ce-doped Lead Barium Niobate (PBN60) Ceramics [J]. Scripta Materialia. 2008, 59: 235-238
    [83]郭炜,李玲霞.吴霞宛,等.掺杂稀土元素对细晶BaTiO3系统耐压及介电性能的影响[J].中国稀土学报,2003,23(2).209-214
    [84]薄永平,宁叔帆,陈维,等Dy2O3掺杂对BaTiO3陶瓷结构与性能的影响[J].西安交通大学学报,2004,38(4):24-27
    [85]Amorin H., Guerrero F., Portelles l., et al. Effect of La3+ on the Polarization of the LSBN Ceramic System[J|. Solid State Communication, 1998, 106(8): 555-558
    [86]Amorin H., Portelles, J. J.. Guerrero F., et al. Ferroelectric Properties of the La0.03Sr0.225Ba0.7Nb2-yTiyO6-y/2[J]. Journal of Electroceramics, 1999, 3(4): 371-375
    [87]Geucrrero F., Portelles J. J.. Gonzalez I., ct al. Dielectric Properties of the La3+ Doped Sr0.3-3y/2LayBa0.7 Nb2O6 Ceramic System[J]. Solid State Communication, 1997. 101: 463-466
    [88]Kumar D., Gautam C. R., Parkash O. Preparation and Dielectric Characterization of Ferroelectric (PbxSr1-x)TiO3 Glass-ceramics Doped with La2O3[J]. Applied Physics Letter, 2006, 89: 112908
    [1]Guo R., Shalla A. S., Randall C. A., et al. Polarization Mechanisms of Morphotropic Phase Boundary Lead Barium Niobate (PBN) Compositions[J]. Journal of Applied Physics,1990,67(3):1453-1460
    [2]Wang L., Zhang Q. M.. Du J. Structural Characteristics and Dielectric Properties of Glass-Ceramic Nanocomposites of (Pb, Sr)Nb2O6-NaNbO3-SiO2[J]. Transactions of Nonferrous Metals Society of China,2010,20:1434-1438
    [3]Du J., Jones B., Lanagan M. Preparation and Characterization of Dielectric Glass-Ceramics in Na2O-Pb0-Nb2O5-SiO2 System[J]. Materials Letters,2005,59(22): 2821-282
    [4]孙目珍.电介质物理基础[M].广州:华南理工大学岀版社,2005:143
    [1]Pablick C., Ahrens B., Henke B., et al. Crystallization Behavior of Rare-Earth Doped Fluorochlorozirconate Glasses[J]. Journal of Non-Crystalline Solids,2010,357: 2450-2452
    [2]Foulon G., Ferriol M., Brenier A., et al. Obtention of Good Quality Ba2NaNb5O15 Crystals:Growth, Characterization and Structure of Nd3+ Doped Single-Crystal Fibres[J]. European Journal of Solid State and Inorganic Chemistry,1996,33:673-686
    [3]Xia H. R., Hu L. J., Wang C. J., et al. Energy State of Nd3+ Doped in Barium Sodium Niobate Crystals[J]. Journal of Applied Physics,1998,83(5):2560-2562
    [4]Xia H. R., Li L. X., Yu H., et al. Raman and Infrared Spectra of Nd-Doped Barium Sodium Niobate Crystals[J]. Crystal Research and Technology,1999,34(7):901-910
    [5]Lebbou K., Itagaki H., Yoshikawa A., et al. Effect of Yb3+ Content on Purity and Crystal Growth of Ba2NaNb5O15[J]. Journal of Crystal Growth,2000,210:655-662
    [6]Neurgaonkar R. R., Nelson G. J., Oliver J. R., et al. Ferroelectric and Structural Properties of the Tungsten Bronze System K2Ln3+Nb5O15, Ln=La to Lu[J]. Materials Research Bulletin,1990,25(8):959-970
    [7]Rosenflanz A., Frey M., Endres B., et al. Bulk Glass and Ultrahard Nanoceramics Based on Alumina and Rare-Earth Oxides[J]. Nature,2004,430:761-764
    [8]周亚栋.无机材料物理化学[M].武汉:武汉工业大学出版社,1994:233
    [9]Mendez R. J., Lahoz F., Martin I. R., et al. Optical Properties and Upconversion in Yb3+-Tm3+ Co-doped Oxyfluoride Glasses and Glass Ceramics[J]. Molecular Physics, 2003,101(7):1057-1065
    [10]Guo R. Y., Evans H. T., Bhalla A. S. Crystal Structure Analysis and Polarization Mechanisms of Ferroelectric Tetragonal Tungsten Bronze Lead Barium Niobate, Ferroelemics,1998,206:123-132
    [11]Yu A., Teterin T. N., Bondarenko A., et al. X-Ray Photoelectron Spectroscopy Study of Indirect Exchange Interaction in Orthoniobate Lanthanoids LnNbO4[J]. Journal of Electron Spectroscopy and Related Phenomena,1998,88-91:267-273
    [12]Luo J., Du J., Tang Q., et al. Lead Sodium Niobate Glass-Ceramics Dielectrics and Internal Electrode Structure for High Energy Storage Density Capacitors, IEEE Transactions on Electron Devices,55(12):3549-3554
    [13]Carvajal J. R. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction[J]. Physica B,1993,192(1-2):55-69
    [14]Lebbou K., Itagaki H., Yoshikawa A., et al. Effect of Gadolinium (Gd3+) Addition on the Monophased Field and Crystal Growth of Ba2NaNb5O15(BNN)[J]. Journal of Crystal Growth, 2001,224: 59-66
    [15]Zhao P., Zhang B. P.. Li J. F. Influence of Sintering Temperature on Piezoelectric, Dielectric and Ferroelectric Properties of Li/Ta-Codoped Lead-Free (Na.K)NbO3 Ceramics[J]. Journal of the American Chemical Society. 2008,91(5): 1690-1692
    [16]Schneck J.. Toledano J. C., Joffrin C., et al. Neutron Scattering Study of the Tetragonal-to-Incommensurate Ferroelastic Transition in Barium Sodium Niobate[J]. Physical Review B, 1982, 25(3): 1766-1785
    [17]Zhou Y.. Zhang Q., Luo J., et al, Structural and Dielectric Characterization of Gd2O3-Added BaO-Na2O-Nb2O5-SiO2 Glass-Ceramic Composites[J]. Scripta Materialia. 2011. 65(4): 296-299
    [18]Liu S. J., Wan B., Wang P.. et al. Influence of A-Site Non-Stoichiometry on Structure and Electrical Properties of K0.5Na0.5NbO3-Based Lead-Free Piezoelectric Ceramics[J]. Scripta Materialia, 2010, 63(1): 124-127
    [19]Filipic C., Kutnjak Z., Lortz. R., et al. Low-Temperature Phase Transition in Barium Sodium Niobate[J]. Journal of Physics: Condensed Matter, 2007, 19(23): 236206
    [20]Zhou Y., Zhang Q., Luo J., et al. Structural Optimization and Improved Discharged Energy Density for Niobate Glass-ceramics by La2O3 Addition. Journal of the American Ceramic Society, 2013,96(2): 372-375
    [1]Zhang Y., Huang J.J., Ma T., et al. Sintering Temperature Dependence of Energy Storage Properties in (Ba, Sr)TiO3 Glass-Ceramics[J]. Journal of the American Ceramic Society,2011,94(6):1805-1810
    [2]Du J., Jones B., Lanagan M. Preparation and Characterization of Dielectric Glass-Ceramics in Na20-Pb0-Nb2O5-SiO2 system[J]. Materials Letters,2005,59: 2821-2826
    [3]Singh S., Araegert D. A., Geusic J. E. Optical and Ferroelectric Properties of Barium Sodium Niobate[J]. Physical Review B,1970,2(7):2709-2724
    [4]Pisarski M. Effect of Hydrostatic Pressure on the Dielectric Permittivity of NaNbO3 Single Crystals[J]. Acta Physica Polonica A,1980,57(5):693-698
    [5]Hornebecq V., Elissalde C., Weill F., et al. Study of Disorder in a Tetragonal Tungsten Bronze Ferroelectric Relaxor:A Structural Approach[J]. Journal of Applied Crystallography,2000,33:1037-1045
    [6]Filipic C., Kutnjak Z., Lortz R., et al. Low-Temperature Phase Transition in Barium Sodium Niobate[J]. Journal of Physics:Condensed Matter,2007,19(23):236206
    [7]Hulm J. K. Low Temperature Dielectric Properties of Cadmium and Lead Niobates[J]. Physical Review,1953,92:504-505
    [8]Shyu J. J., Chen C. H. Sinterable Ferroelectric Glass-Ceramics Containing (Sr, Ba)Nb2O6 Crystals[J]. Ceramic International, 2003, 29: 447-453
    [9]Deshpande S. B., Potdar H. S., Godbole P. D., et al. Preparation and Ferroelectric Properties of SBN:50 Ceramics[J]. Journal of the American Ceramic Society. 1992. 75(9): 2581-2585
    [10]Kaur D., Narang S. B., Thtnd K. S. Processing. Dielectric Behavior and Conductivity of Some Complex Tungsten-Bronze Dielectric Ceramics[J]. Journal of Ceramic Processing Research, 2006, 7(1): 31-36
    [11]Liang R. H., Dong X. L., Chen Y., et al. Effect of ZrO2 Doping on the Tunable and Dielectric Properties of Ba0.55Sr0.45TiO3/MgO Composites for Microwave Tunable Application[J]. Materials Research Bulletin, 2006, 41(7): 1295-1302
    [12]Cross L. E., Nicholsonac B. J. The Optical and Eleetrieal Properties of Single Crystals of Sodium Niobate[J]. Philosophical Magazine Series 7,46(376): 453-466
    [1]Waser R., Bottger U., Tiedke S. Polar Oxides:Properties, Characterization and Imaging[M]. Weinheim:WILEY-VCH Verlag GmbH & Co. KGaA.2005:14-20
    [2]Wang S. Y., Cheng B. Y., Wang C., et al. Influence of Ce Doping on Leakage Current in Ba0.5Sr0.5TiO3 films[J]. Journal of Physics D:Applied Physics,2005,38:2253-2257
    [3]Dedyk A. I., Nenasheva E. A., Kanareykin A. D., et al. Tunability and Leakage Currents of (Ba, Sr)TiO3 Ferroelectric Ceramics with Various Additives[J]. Journal of Electroceramics,2006,17(2-4):433-437
    [4]Qu Y. Q., Li A. D., Shao Q. Y., et al. Structure and Electrical Properties of Strontium Barium Niobate Ceramics[J]. Materials Research Bulletin.2002,37(3):503-513
    [5]Gorzkowski E. P., Pan M.-J., Bender B., et al. Glass-Ceramics of Barium Strontium Titanate for High Energy Density Capacitors[J]. Journal of Electroceramics,2007,18: 269-276
    [6]Shyu J. J., Chen C. H. Sinterable Ferroelectric Glass-Ceramics Containing (Sr, Ba)Nb2O6 Crystals[J]. Ceramic International,2003.29:447-453
    [7]Yamazawa T., Honma T., Suematsu H., et al. Synthesis, Ferroelectric and Electrooptic Properties of Transparent Crystallized Glasses with SrxBa1-xNb2O6 Nanocrystals[J]. Journal of the American Ceramic Society,2009.92(12):2924-2930
    [8]Zhang Y., Huang J. J., Ma T., et al. Sintering Temperature Dependence of Energy Storage Properties in (Ba, Sr)TiO3 Glass-Ceramics[J]. Journal of the American Ceramic Society,2011,94(6):1805-1810
    [1]Wang S. Y., Cheng B. Y., Wang C., et al. Influence of Ce Doping on Leakage Current in Ba0.5Sr0.5TiO3 Films[J]. Journal of Physics D:Applied Physics,2005,38:2253-2257
    [2]Fletcher N. H., Hilton A. D., Ricketts B. W. Optimization of Energy Storage Density in Ceramic Capacitors[J]. Journal of Physics D:Applied Physics,1996,29(1): 253-258
    [3]Chu B. J., Zhou X., Ren K. L., et al. A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed[J]. Science,2006,313:334-336
    [4]Young A. L., Hilmas G. E, Zhang S. C., et al. Mechanical vs. Electrical Failure Mechanisms in High Voltage, High Energy Density Multilayer Ceramics Capacitors[J]. Journal of Materials Science,2007.42:5613-5619
    [5]Luo J., Du J.. Tang Q., et al. Lead Sodium Niobate Glass-Ceramics Dielectrics and Internal Electrode Structure for High Energy Storage Density Capacitors[J]. IEEE Transactions on Electron Devices,55(12):3549-3554
    [6]Zeng Y. K., Qin X. Y.. Jiang S. L., et al. Effect of BaF2 Addition on Crystallization Kinetics and Dielectric Properties of B2O3-Nb2O5-SrO-BaO Glass-Ceramies[J]. Journal of the American Ceramic Society,2011,94(2):469-473
    [7]Huang J. J., Zhang Y., Ma T., et al. Correlation between Dielectric Breakdown Strength and Interface Polarization in Barium Strontium Titanate Cilass Ceramics[J]. Applied Physics Letter,2010,96:042902
    [1]Zhou Y. Zhang Q., Luo J.. et al. Structural Optimization and Improved Discharged Energy Density for Niobate Glass-Ceramics by La2O3 Addition[J]. Journal of the American Ceramic Society. 2013,96(2): 372-375
    [2]Zeng Y. K., Qin X. Y. Jiang S. L., et al. Effect of BaF2 Addition on Crystallization Kinetics and Dielectric Properties of B2O3-Nb2O5-SrO-BaO Glass-Ceramics[J]. Journal of the American Ceramic Society, 2011,94(2): 469-473
    [3]Yu A., Teterin T. N.. Bondarenko A., et al. X-Ray Photoelectron Spectroscopy Study of Indirect Exchange Interaction in Orthoniobate Lanthanoids LnNbO4[J]. Journal of Electron Spectroscopy and Related Phenomena. 1998. 88-91: 267-273
    [4]Zhou Y. Zhang Q., Luo J.. et al. Structural and Dielectric Characterization of Gd2O3-Added BaO-Na2O-Nb2O5-SiO2 Glass-Ceramic Composites[J]. Scripta Materialia, 2011,65(4): 296-299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700