用户名: 密码: 验证码:
渤黄海沉积物中的多环芳烃和多氯联苯及其与生态环境的耦合解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋沉积环境中多氯联苯(PCBs)和多环芳烃(PAHs)的研究对于揭示其污染历史、来源途径、迁移转化以及评价其对环境的潜在生态风险都有重要的科学意义和应用价值,本研究选择我国典型近海中比较开阔的南黄海和受人为影响严重的渤海湾沉积物中的PAHs和PCBs作为主要研究对象,结合对生态环境对应关系的剖析,系统研究了沉积物中PAHs和PCBs的地球化学分布特征、影响控制因素、演变趋势、潜在生态风险等,获得了以下系统的认识:
     1.南黄海表层沉积物中多环芳烃和多氯联苯的分布与沉积类型及模式相一致,受控于“沉积类型-动力过程-来源途径”。PCBs含量(范围:518~5848 pg/g,平均值:1715 pg/g)低于受人为影响严重的长江口、珠江口和渤海,分布具有中部海区>东部海区>西部海区的特征;PCBs随着沉积物粒径的减小和粘土含量的增加而增加,且与总有机碳(r=0.61,p<0.01)含量呈显著线性正相关,表明PCBs在沉积物中的分布受控于被水动力过程原动力控制的沉积类型与沉积模式。
     2. 1914~2004年间,南黄海沉积物中PAHs和PCBs的变化比较显著,在时间序列上经历了三个明显的不同阶段。近90年来,PAHs和PCBs在柱状样中垂直分布随深度的增加而降低,即近年南黄海沉积物中PAHs和PCBs的残留水平比上世纪初明显增加。其中1914~1932年间,PAHs和PCBs保持在较低的水平;1932~1962年间,PAHs和PCBs的含量发生急剧的变化,在1932~1944和1956~1962年两个时间段,PAHs和PCBs的含量达到峰值;自1962年至今,PAHs和PCBs呈稍有增加趋势。PAHs的组成和特征组分比值分析显示,1920~1944年间PAHs主要来自石油产品泄漏,1944~1980年间,主要来自草/木材/煤燃烧,1980年至2004年则显示出石油和燃烧产物混合来源的特征。
     3.渤海湾沉积物中的PAHs、PCBs、DDTs和HCHs的分布模式不同,反映了这四种污染物的地球化学行为存在着明显的差异性。PAHs、PCBs、DDTs和HCHs的含量范围为149.0~393.4 ng/g,360.8~1728.3 pg/g,462.2~2007.3 pg/g和4.31~33.8 ng/g。马颊河口、海河口和黄河口附近的海区的沉积物中PAHs和PCBs的含量显著高于渤海湾内其它站位,DDTs在湾外沉积物中的含量大于湾内,在海河口附近站位测得HCHs含量的最高值,在其它站位其浓度变化不大。PAHs特征成分的比值显示渤海湾沉积物中PAHs主要来源于草/木材/煤燃烧的产物经过大气的输运过程进入水体;DDTs和HCHs的组成显示,在DDTs和HCHs被禁用后仍有新的输入源。
     4.南黄海沉积物POPs总体水平不高,其环境污染危害和潜在生态风险不大,从沉积物POPs的角度来说南黄海的环境质量较好。潜在生态危害指数评价表明,渤海湾沉积物中芴可能会产生潜在的生态风险,DDTs和HCHs的含量低于一类沉积物质量标准值,总体而言,其沉积物质量良好,潜在生态风险较低。
     论文的创新性点在于:1)首次研究了近百年南黄海沉积物中多环芳烃和多氯联苯的演变趋势,判断了其来源并对近百年二者的潜在生态风险进行评价。2)系统剖析了南黄海及渤海湾的生态环境与PAHs和PCBs的耦合关系,对阐明POPs的毒理效应有重要的科学意义。3)系统解析了渤海湾沉积物中PAHs,DDTs和HCHs的污染现状,来源和迁移途径,可为科学开发和利用渤海海域提供重要的理论依据。
The studies on the residue of Polycyclic Aaromatic Hydrocarbons (PAHs) and Polycyclic Biphenyls (PCBs) in the sediment environments are of important scientific and practical significance in revealing their sources, transition modes, contamination history and potential threat on environments. In this study, PAHs and PCBs in the sediments from the southern Yellow Sea and Bohai Bay, typical semi-enclosed seas, were analyzed with GC/MS. By virtue of systemic analyzing the coupling relationships between PAHs and PCBs concentrations and the sediment environment characteristics, as well as the factors controlling their adsorption and variation tendencies, were studies in detail, which were helpful to evaluate and establish sound scientifically priorities for future managements for them. Four conclusions were drawn as followed:
     The horizontal distribution pattern of PCBs in the sediments from the southern Yellow Sea was coincident with the sedimentation pattern and controlled by the mode of‘sedimentation type-dynamical process-sources’. PCBs concentrations ranged from 518 to 5848 pg/g, with the average of 1715 pg/g. The horizontal distribution of PCBs followed the sequence: the middle area>the west coast>the east coast. PCBs concentrations increased with the sediment particle size decreasing and the clay contents increasing, moreover, PCBs concentrations positively linearly related with TOC contents, suggesting that the adsorption of PCBs were predominantly controlled by sediment texture and the organic matter. As well-known, the hydrodynamics conditions were the driving force to the particles sedimentation. Consequently, the driving factor controlling PCBs distribution was the hydrodynamics conditions of the southern Yellow Sea.
     From 1914 to 2004, PAHs and PCBs concentrations varied significantly, so that the past century was divided into three periods based on their concentrations variation. The vertical distribution illuminated that PAHs and PCBs levels declined with depth, indicating that their concentrations at present were much higher than in the early of this century with respect to sedimentation time. Therein, the concentrations of PAHs and PCBs kept in low constant level from 1914 to 1932. During the period of 1932~1962, PAHs and PCBs underwent huge variation with the variation range of 24~62%. Their discharge was up to the peaks in the periods of 1932~1944 and 1956~1962. From 1962 to 2004, PAHs and PCBs levels elevated slightly. PAHs compositions and isomeric compound ratios were generally used as the indexes to apportion PAHs sources. From 1920 to 1944, PAHs mainly derived from petroleum production; from 1944 to 1980, the predominant source was the production from grass/wood/coal combustion; and from 1980 to 2004, PAHs composition presented the multi-sources of petroleum and combustion.
     The distribution modes of PAHs, PCBs, DDTs and HCHs in the sediments collected from Bohai Bay were not in the same, indicating that difference existed in their biogeochemical behavior and sources. The concentrations of PAHs, PCBs, DDTs and HCHs were in the range of 149.0~375.3 ng/g, 360.8~1728.2 pg/g, 462.2~2007.3 pg/g and 4.3~33.8 ng/g. PAHs and PCBs concentrations were higher at the stations close to Majiahe River, Haihe River and Huanghe River. DDTs concentrations in the off-bay stations were higher than those in the in-bay stations, while no significant variations of HCHs concentrations were found. The isomeric compounds ratios suggested that PAHs in the sediments from Bohai Bay mainly derived from grass/wood/coal combustion and transferred into the aquatic environment through atomospheric movement. DDTs and HCHs compositions indicated that DDTs and HCHs were still in use after their legal banish.
     After comparing the POPs concentrations in the sediments from the southern Yellow Sea and Bohai Bay with the eco-risk thresholds, it was found that the quality of sediments of the southern Yellow Sea was clear and the potential risk rarely occurred. However, Fluorene and“dioxin-like PCBs”could probably pose risk on the environment of Bohai Bay.
     The original ideas of this paper were that: 1) The PAHs and PCBs distribution variation mode in the past century were studied for the first time, meanwhile, their sources and contamination history were traced and their potential eco-risk were evaluated. 2) The coupling relationships between PCBs and sediment environment were analyzed systemically, which was of precious scientific significance for assess their toxicity. 3) The sources, transition modes and contamination status of PAHs, PCBs, DDTs and HCHs in the sediments from Bohai Bay were analyzed in detail. The results could lay down the theorical foundation for developing and using the Bohai Sea properly and protecting the Bohai Sea environment.
引文
[1]毕新慧,徐晓白.多氯联苯的环境行为.化学进展,2000,12(2):152-160.
    [2]陈满荣,余立中,许立远等.长江口滩涂沉积物中PCBs及其空间分布.洋环境科学,2003,22(2):20-23.
    [3]陈伟琪,洪华生,张珞平等.珠江口表层沉积物和悬浮颗粒物中的持久性有机氯污染物.厦门大学学报:自然科学版,2004,43,增刊:230-235.
    [4]陈兴吴.β-BHC(乙体)微生物厌气解的研究.环境化学,1983,2:31-36.
    [5]陈志华,石学法,王相芹.南黄海表层沉积物碳酸盐及Ca、Sr、Ba分布特征.海洋地质与第四纪地质,2000,20(4):9-16.
    [6]党志,于虹,黄伟林等.土壤/沉积物吸附有机污染物机理研究的进展.化学通报,2001,35:853-868.
    [7]丁文兰.渤海和黄海潮汐潮流分布的基本特征.海洋科学集刊,1985,25:27-39.
    [8]董札先,苏纪兰,王康善.黄渤海潮流场及其与沉积物搬运的关系.海洋学报,1989,11(1):202-214.
    [9]杜欣丽.多氯联苯对生态环境的破坏.节能与环保,2003,6:39-4.
    [10]方杰.浙江沿海沉积物和海洋生物中持久性有机污染物及重金属的分析与研究.浙江大学博士学位论文,2007,46-50.
    [11]耿存珍,李明伦,杨永亮等.青岛地区土壤中OCPs和PCBs污染现状研究.青岛大学学报(工程技术版)2006,21(2):42-48.
    [12]何小青,李攻科,熊国华等.微波碱解法消除土壤样品中多氯联苯测定中有机氯农药的干扰.分析化学,2000,28(1):26-30.
    [13]胡好国,万振文,袁业利.南黄海浮游植物季节性变化的数值模拟与影响因子.海洋学报,2004,26(6):74-88.
    [14]贾青竹,全燮.天然水沉积物中吸附态多氯芳烃缺氧脱氯生物降解研究进展.天津轻工业学院报,2003,1:1-5.
    [15]瞿福平,张晓健.氯苯类有机物生物降解性及共代谢作用的研究.中国环境科学,1997,17(2):142-145.
    [16]康跃惠,林峥,张干等.珠江三角洲河口及邻近海区沉积物中含氯有机污染物的分布特征.中国环境科学,2000.20(3):245-249.
    [17]康跃惠,盛国英,李芳柏等.珠江口现代沉积物柱芯样多环芳烃高分辨沉积记录研究.2005,25(1):45-51.
    [18]蓝先洪,张训华,张志珣.南黄海沉积物的物质来源及运移研究.海洋与湖沼通报,2005,4:53-60.
    [19]李凤业,杨永亮,何丽娟,等.南黄海东部泥区沉积速率与物源探讨.海洋科学,1999,(5):37-40.
    [20]李洪,付宇众,周传光等.大连湾和锦州湾表层沉积物中有机氯农药和多氯联苯分布特征.海洋环境科学,1998,17(2):73-76.
    [21]李勤凡,王建华.二噁英微生物降解的研究进展.家畜生态学报,2005,26 (4):1-3.
    [22]林承坤.黄海粘土沉积物的来源与分布.地理研究,1992,11(2):41-51.
    [23]林慧良,王保军,桑向国.南黄海中部海区海底地貌特征.海洋地质动态,2004,20(8):10-13.
    [24]林建清,王新红,洪华生等.湄洲湾表层沉积物中多环芳烃的含量分布及来源分析.厦门大学学报(自然科学版),2003,42(5):633-638.
    [25]林秀梅,刘文新,陈江麟等.渤海表层沉积物中多环芳烃的分布与生态风险的评价.环境科学学报,2005,25(1):70-75.
    [26]刘芳文,颜文,黄小平等.珠江口沉积物中重金属及其相态分布特征.热带海洋学报,2003,22(5):16-24.
    [27]刘季昂,王文华,王子健.第二松花江水体沉积物中难降解污染物的种类和含量.中国环境科学,1998,18(6):518-520.
    [28]刘丽艳,李一凡,姜安玺等.持久性有机污染物农药研究进展.哈尔滨工业大学学报,2005,37(10):1410-1414.
    [29]刘萍,孟宪红,何玉英等.中国对虾(Fenneropenaeus chinensis)黄、渤海3个野生地理群遗传多样性的微卫星DNA分析.海洋与湖沼,2004,35(3):252-257.
    [30]刘文新,陈江麟,林秀梅等.渤海表层沉积物中DDTs、PCBs及酞酸酯的空间分布特征.环境科学学报,2005,25(1):58-63.
    [31]刘志伟.食物中的PCBs及其对健康的损害.武汉工学院学院报,2004,4:12-13.
    [32]罗孝俊,陈社军,麦碧娴等.珠江三角洲地区水体表层沉积物中多环芳烃的来源、迁移及生态风险评价.生态毒理学报,2006,1(1):18-25.
    [33]罗孝俊.珠江三角洲河流、河口和邻近南海海域水体、沉积物中多环芳烃和有机氯农药的研究.中国科学院研究生院博士毕业论文,2004,p29.
    [34]罗雪梅,刘昌明,何孟常等.土壤与沉积物对多环芳烃类有机物的吸附作用.生态环境,2004,13(3):394-398.
    [35]马沛,钟建江.微生物降解多环芳烃的研究进展.生物加工过程,2003,1(1):41-45.
    [36]麦碧娴,林峥,张干等.珠江三角洲河流和珠汀口表层沉积物中柯机污染物研究——多环芳烃和有机氯农药的分布及特征.环境科学学报,2000,20(2):192-197.
    [37]聂湘平,蓝崇钰,栾天罡等.珠江广州段水体、沉积物及其底栖生物中的多氯联苯.中国环境科学,2001,21(5):417-421.
    [38]齐君.胶州湾现代沉积速率与沉积物中重金属的累积分析.中国科学院研究生院硕士毕业论文,2004,23-24.
    [39]秦蕴珊,赵一阳,陈丽蓉等.黄海地质.北京:海洋出版社,1989,p1.
    [40]秦蕴珊,李凡,徐善民等.南黄海海水中悬浮体的研究.海洋与湖沼,1989,20(2):101-112.
    [41]申顺喜,李安春,袁巍.南黄海中部的低能沉积环境.海洋与湖沼,1996,27(5):518-523.
    [42]申顺喜.南黄海陆架沉积学研究.海洋科学,1993,(5):24-28.
    [43]沈东升,徐向阳,冯孝善.微生物共代谢在氯代有机物生物降解中的作用.环境科学,1993,15:84-87.
    [44]石学法,陈春峰,刘焱光等.南黄海中部沉积物粒径趋势分析及搬运作用.科学通报,2002,47(6):452-456.
    [45]宋金明.中国近海生物地球化学.济南:山东科技出版社,2004,591.
    [46]孙军,刘东艳,柴心玉.莱州湾及潍河口夏季浮游植物生物量和初级生产力分布.海洋学报,2002,24(5):81-90.
    [47]汤毓祥,邹娥眉,李兴宰等.南黄海环流的若干特征.海洋学报,2000,22(1):1-16.
    [48]王俊.黄海秋、冬季浮游植物的调查研究.海洋水产研究,2003,24(1):15-23.
    [49]王连生,邹惠仙,韩朔暌等.多环芳烃分析技术.南京:南京大学出版社,1988.
    [50]王雄清,林英,弓加文等.多氯联苯对环境的污染和对动物及人体的危害.乐山师范学院学报,2002,17(4):51-55.
    [51]魏复盛,徐晓白,阎吉昌等.水和废水监测分析方法指南.北京:中国环境科学出版社,1997,p373.
    [52]温伟英,张观希,杜万成.珠江口水体污染的研究.广州:广东高等教育出版社,1995,99-108.
    [53]吴启航,麦碧娴,杨清书等.珠江广州河段沉积物中多环芳烃赋存状态初步研究.地球化学,2004,33(1):37-45.
    [54]吴仁铭,亚临界水萃取在分析化学中的应用.化学进展,2002,14(1):32-36.
    [55]奚旦立,孙裕生,刘秀英.环境检测.北京:高等教育出版社,1987,p1.
    [56]徐晓琳,李红莉,高虹等.我国水生生态系统优先控制有机污染物的研究现状.环境科学研究,2003,16(2):27-30.
    [57]许东禹.东海陆架泥质沉积作用.海洋地质与第四纪地质,1985,5(2):17-25.
    [58]杨发忠,颜阳,张泽志等.多环芳烃的研究进展.云南化工,2005,32(2):44-49.
    [59]杨毅,刘敏,许世远等.长江口潮滩表层沉积物中PCBs和OCPs的分布.中国环境科学,2003,23(2):215-219.
    [60]于非,张志欣,兰健等.南黄海春季水温分布特征的分析.海洋科学进展,2005,23(3)281-288.
    [61]张俊增,王兆文,王秀凤.东营市有机污染物(多氯联苯)的污染调查与防治对策.山东环境,1999,4:22-23.
    [62]张文君.POPs公约简介.农药,2000,39(10):43-46.
    [63]张宗雁,郭志刚,张干等.东海泥质区表层沉积物中有纪律农药的分布.中国环境科学,2005,25(6):724-728.
    [64]张祖麟,洪华生,哈里德等.厦门西港表层沉积物中有机氯化合物的污染的特征及变化趋势.环境科学学报,2000,20(6):731-735.
    [65]郑丙辉,秦延文,孟伟等.1985-2003年渤海湾水质氮磷生源要素的历史演变趋势分析.环境科学,200,28(3):494-499.
    [66]郑海龙,陈杰,邓文靖.土壤环境中的多氯联苯(PCBs)及其修复技术.土壤,2004,36(1):16-20.
    [67]郑海涛,刘菲,刘永刚.固相萃取——气相色谱法测定水中多环芳烃.岩矿测试,2004,23(2):148-152.
    [68]中国科学院海洋研究所海洋地质研究室.渤海地质.北京:科学出版社,1985,P2.
    [69]中国淘汰杀虫剂类持久性有机污染物战略.中国国家环境保护总局斯德哥尔摩履约办公室,北京大学环境学院,2004.
    [70]周发琇,王鑫,鲍献文.黄海春季还雾形成的气候特征.海洋学报,2004,26(3):28-37.
    [71]周俊丽,吴莹、张经.快速萃取在海洋有机物分析中的应用.海洋科学,2004,28(4):70-75.
    [72]朱光磊,刘维省,卢妍妍等.燃煤烟尘多环芳烃成分谱特征的研究.环境科学研究,2001,14(5):4-8.
    [73] Barrick, R. C., Phral, F. G. Hydrocarbon geochemistry of the Puget Sound region III: Polycyclic aromatic hydrocarbons in sediments. Estury Coastal Shelf Science, 1987, 25(2): 175-191.
    [74] Behymer, T. D., Hitles, R. A. Photolysis of polycyclic aormatic hydrocarbons adsorbed in fly ash. Environmental Science and Technology, 1988, 22: 1311-1319.
    [75] Bondi, G., Mirza, U. B., Al-Omair, A., et al. Spatial distribution of Polychlorinated Biphenyls in coastal marine sediments receiving industrial effluents in Kuwait. Archives of environmental contamination and toxicology, 2006, 50: 166-174.
    [76] British Crop Protection Council. Pesticide manual: basic information on the chemicals usedas active components of pesticides. Issued by the British Crop Protection Council. Thirteenth Edition, London: The Council, 2003.
    [77] Brown, J. F. Jr., Wagner, R. E., Feng, H., et al. Environmental dechlorination of PCBs. Environmental Toxicology and Chemistry, 1987, 6: 579-593.
    [78] Budzinski, H., Jones, I., Bellocq, J., et al. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 1997, 58: 85-97.
    [79] Cantwell, M. J., King, J. W., Burgess, R. M., et al. Reconstruction of contaminant trends in a salt wedge estuary with sediment core dated using a multiple proxy approach. Marine Environment Research, 2007, 64: 225-226.
    [80] Cardellicchio, N., Buccolieri, A., Giandomenico, S., et al. Organic pollutants (PAHs, PCBs) in sediments from the Mar Piccolo in Taranto (Ionian Sea, Southern Italy). Marine Pollution Bulletin, 2007, 55: 451-458.
    [81] Chen, M. R., Yu, L. Z., Xu, S. Y. Spatial distribution of Polychlorinated Biphenyls (PCBs) contaminants in the tidal-flat sediments of Yangtze Estuary. Marine Science Bulletin, 2003, 5(2): 22-28.
    [82] Cho, Y. G., Lee , C. B., Choi, M. S. Geochemistry of surface sediments off the southern and western coasts of Korea. Marine Geology, 1999, 159: 111-129.
    [83] Chough, S. K. Further evidence of fine-grained sediment dispersal in the southeastern Yellow sea. Sediment Geology, 1985, 41: 159-172.
    [84] Colombo, J. C., Cappelletti, N., Barreda, A., et al. Vertical fluxes and accumulation of PCBs in coastal sediments of the Río de la Plata estuary, Argentina. Chemosphere, 2005, 61(9): 1345-1367.
    [85] Crine, J. P. Hazards decontamination and replacement of PCBs. A comprehensive Guide. New York and Londaon Plenum Press, 1986, p12.
    [86] Davide, M., Brondyk, L. M., Sonzogni, W. C. Distribution of PCB congeners in Sheboygan River (Wisconsin) sediments. Great Lakes Reserch, 1994, 20: 510-522.
    [87] Dunnivant, F. M., Coates, J. T., Elzerman, A. W. Labile and non-labile desorption rate constants for 33 PCB congeners from lake sediment suspensions. Chemosphere, 2005, 61: 332-340.
    [88] Fowler, S. W. Critical review of selected heavy metal and chlorinated hydrocarbon concentrations in the marine environment. Marine Environment Research, 1990, 29: 1-64.
    [89] Fraser, M. P, Cass, G. .R., Simoneit, B. R., et al. Air quality model evaluation date for organics C6-C22 nonPolar and semiPolar aormatic hydrocabrons. Enviornmental Seience and Teehnology, 1998, 32: 1760-1770.
    [90] Gauthier, T. D., Seltz, W. R., Grant, C. L. Effects of structural and compositional variations of dissolved humic materials on pyrene Koc value. Environmental Science and Technology, 1987, 21: 243-248.
    [91] Ghosh, U., Gillette, J. S., Luthy, R. G., et al. Microscale location, characterization and association of polycyclic aromatic hydrocarbons on harbor sediment particles. Enviornmental Seience and Teehnology, 2000, (34): 1729-1736.
    [92] Goguo, A., Stratigakis, N., Kanakidou, M., et al. Ogranic aerosols in Eastern Mediterranean: components soures reconciliation by using molecular markers and atmospheric back tarjectories. Organic Geochemistry, 1996, 2579-2596.
    [93] Gschwend, P. M., Hites, R. A. Flux of Polycyclic aromatic hydrocarbon to marine and lacustrine sediment in the northeastern United States. Geochimica et Cosmochimica Acta, 1981, 45: 2359-2367.
    [94] Guzzella, L., Roscioli, C., Vigano, L., et al. Evaluation of the concentration of HCH, DDT, HCB, PCB and PAH in the sediments along the lower stretch of Hugli estuary, West Bengal, northeast India. Environment International, 2005, 31: 523- 534.
    [95] Hallare, A. V., Kosmehl, T., Schulze, T., et al. Aseessing contamination levels of Laguna Lake sediments (Philippines) using a contact assay with zebrafish (Danio rerio) embryos. The Science of Total Environment, 2005, 347: 254-271.
    [96] Hawthorne S. B., Bj?klund E., B wadt, S., Mathiasson, L., Determining PCBs sorption/desorption behavior on sediments using selective supercritical fluid extraction 3. Sorption from water. Environmental Science and Technology, 1999, 33: 3152-3159.
    [97] Haws, L. C., Su, S. H., Harris, M., et al. Development of a refined database of mammalian relative potency estimated for dioxin-like compounds. Toxicological Science, 2006, 89, 4-30.
    [98] He, Z. P., Song, J. M, Zhang, N. X., Zhang, P., et al. Variation Characteristics and evaluation of ecological risk of heavy metals in the south Yellow Sea surface sediments. Environmental Monitoring and Assessment, 2008, DOI 10. 1007/S10661-008-0552-7.
    [99] Hong, H., Xu, L., Zhang, L., et al. Enviornmental fate and chemistry of organic Pollutants in the sediments of Xiamen and Vietoria Harbours. Marine Pollution Bulletin, 1995, 31, 229-236.
    [100] Huckins, J. N., Manuweera, G. K., Petty, J. D., et a1. Liquid Containing SPMDs for Monitoring Organic Contaminants in Water. Enviornmental Science and Technology, 1993, 27(12): 2489-2496.
    [101] Iwata. H, Tanabe S, Aramoto M, et al. Persistent organochlorine residues in sediments from the Chukchi Sea, Bering Sea and Gulf of Alaska. Marine Pollution Bulletin, 1994, 28: 746-753.
    [102] Jin, X. Long-term changes in fish community structure in the Bohai Sea, China. Estuarine Coastal Shelf Science, 2004, 59(1): 163-171.
    [103] Kamens, R. M., Fulcher, J. N., Guo, Z. Eeffets of temperature on wood soot PAH decay in atmosphere with sunlight and low Nox. Atmospheric Enviornment, 1986, 20: 1579-1587.
    [104] Kamens, R.M., Guo, Z., Fulcher, J.N., et al. Influence of humidity, sunlight, and temperatureon the daytime decay of polyaormatic hydromatic hydrocarbons on atmospheric soot particles. Environmental Science and Technology, 1988, 22, 103-108.
    [105] Kondo, M. Oceanographic investigations of fishing ground in the East China Sea and the Yellow Sea. II. Characteristics of the mean temperature and salinity distributions measured at 50 m and near the bottom. Bull. Seikai. Reg. Fish Lab, 1985, 62: 19-66.
    [106] Koh, J. R., Chio, H. K., Hong. S, H., et al. A preliminary report of persistent organochlorine pollutants in the Yellow Sea. Marine Pollution Bulletin, 2005, 50: 217-222.
    [107] Lee, H. J., Chough, S. K. Sediment distribution, dispersion and budget in the Yellow Sea. Marine Geology, 1989, 87: 195-200.
    [108] Lee, K. T., Tanabe, S., Koh, C. H. Contamination of Polychlorinated Biphenyls (PCBs) in sediments from Kyeongii Bay and nearby areas, Korea. Marine Pollution Bulletin, 2001, 42(4): 273-279.
    [109] Li, H., Fu, Y. Z., Zhou, C. G., et al. Distribution characteristics of organochlorine Pestieides and PCBs in the surface sediments in Dalian Bay and Jinzhou Bay. Marine Enviornment Science, 1998, 17, 73-76.
    [110] Lima, A. L. C., Eglinton, T. I., Reddy, C. M. High-resolution record of pyrogenic polycyclic aromatic hydrocarbon deposition during the 20th century. Environmental Science and Technology, 2003, 37: 4855-4863.
    [111] Lin, C., Ning, X., Su, J., et al. Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976-2000. Journal of Marine Systems, 2005, 55(3-4): 223-234.
    [112] Liu, M., Yang, Y., Hou, S., et al. Chlorinated ogranic contaminants in surface sediments from the Yangtzw Estuary and nearby coastal areas, China. Marine Pollution bulletin, 2003, 46, 659-676.
    [113] Liu, W. X., Chen, J. L., Hua, J., et al. Multi-residues of organic pollutants in surface sediments from littoral areas of the Yellow Sea, China. Marine Pollution Bulletin, 2008, 56: 1091-1103
    [114] Long, E. R., MacDonald, D. D., Smith, S. L., et al. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuary sediments. Environment Management 1995, 19: 81-97.
    [115] Luthy R G, Aiken G R, Cunninghah S D, et al. Sequestration of hydrophobic organic contaminants by geosorbents[J].Environ Sci Technol, 1997,31:3341-3347
    [116] Ma, M., Feng, Z., Guan, C., et al. DDT, PCBs and PAHs in sediment from the intertidal zones of the Bohai Sea and the Yellow Sea. Marine Pollution bulletin. 2001, 42(2): 132-136.
    [117] Macrae, J. D., Hall, K. J. Biodegradation of polycyclic aromatic hydrocarbons (PAH) in marine sediments under denitrifying conditions. Water Science and Technology, 1998, 38: 177-185.
    [118] Martinis, B. De. M., Okamoto, R. A., Kado, N. Y., et al. Polycyclic aromatic hydrocarbons in a bioassay fractionated extract of PM10 collected in Sao Paulo, Brazil. AtomsphereEnvironment, 2002, 36: 307-314.
    [119] Milliman, J. D., Shen, H. T., Yangand, Z. S., et a1. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Continential Shelf Research, 1985, 4: 37-45.
    [120] Modak, D. D. Mobile and bound forms of trace metals in sediments of the lower Ganges. Water Research, 1994, 26(11): 1541-1548
    [121] Moon, H. B., Yoon, S. P., Jung, R. H., et al. Wastewater treatment plants (WWTPs) as a source of sediment contamination by toxic organic pollutants and fecal sterols in a semi-enclosed bay in Korea. Chemosphere, 2008, 73: 880-889.
    [122] Muller, A., Mathesius, U. The palaeo environments of coastal lagoons in the southernern Baltic Sea, I. The application of sedimentary Corg/N ratios as source indicators of organic matter. Palaeogr. Palaeoclim., Palaeoecol. 1999, 145, 1-16. [123 Negre, A., Burns, K., Boyle, S. Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environment Pollution, 2006, 143: 456-467.
    [124] Nies, L., Vogel, T. Effects of organic substrates on dechlorination of Arochor 1242 in anaerobic sediments. Applied Environment Micrology, 1990, 56: 2612-2617.
    [125] Palma-Fleming, H., Cornejo, C., Gonzalez, M., et al. Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in coastal environments of Valdivia and Valparaiso, Chile. Journal of the Chelien Chemical Society, 2008, 53(2): 1533-1538.
    [126] Pereira, W. E., Hosteller, F. D., Rapp, J. B. Distributions and fates of chlorinated pesticides, biomarker and polycyclic aromatic hydrocarbons in sediments along a contaminated gradient from a point-source in San Francisco Bay, California. Marine Environment Research, 1996, 41(3): 299-314.
    [127] Readman, J. W., Fillmann, G., Tolosa, I., et al. Petroleum and PAH contamination of the Black Sea. Marine Pollution Bulletin, 2002, 44: 48-62.
    [128] Reddy, S. M., Basha, S., Joshi, H. V., et al. Seasonal distribution and contamination levels of total PHCs, PAHs and heavy metals in coastal waters of the Alang-Sosiya ship scrapping yard, gulf of Cambay, India. Chemosphere, 2005, 61(11): 1587-1593.
    [129] Ribick, M. A., Dubay, G. R., Petty, J. D., et al. Toxaphene residues in fish: identification, quantification, and confirmation at part per billion levels. Environmental Science and Technology, 1982, 16: 310-318.
    [130] Roberto, A., Laura, P., Jose, L. M., et al. Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions. Chemosphere, 2005, 60: 1231-1236.
    [131] Schmidt, M. W., Noack, A, G. Black carbon in soils and sedimental analysis, distribution, implications and current challenges. Global Biogeoehemical Cycles, 2000, 14: 777-793.
    [132] Sekine T, Hasegawa Y, Solvent Extraction Chemistry, Marcel Dekker, NewYork, 1997.
    [133] Sicre, M. A., Marty, J. C., Saliot, A., et al., Aliphatic and Aromatic hydrocarbons in the Mediterranean Aerosol. International Journal of Environmental Analytical Chemistry, 1987,29(1): 73-94.
    [134] Song Jian-zhong, Peng Ping-an, and Huang Wei-lin. Black carbon and kerogen in soils and sediment 1: Quantification and characterization. Environment Science and Technology, 2002, 36, 3690-3697.
    [135] SRI. Directory of chemical producers. Menlo Park, CA: SRI Intemational, 1990, 843.
    [136] Stow D A V. Distinguishing between fine-grained turbidites and contourites on the Nova Scotian deep water margin. Sedimentology, 1979, 26: 371-387
    [137] Tolosa I., Bayouna, J. M., Albaiges, J. Aliphatic and polycyclic aormatic hydrocarbons and sulphur/oxygen derivatives in northwestern Meditearrnean sediments: spatial and temporal variability fluxes and budgets. Enviornmental science and technology, 1996, 30, 2495-2503.
    [138] USEPA. Guidance for the reregistration of pesticide products containing heptachlor as the active ingredient. Washington, DC: U.S.Environmental Protection Agency, Office of Pesticide and Toxic Substances, 1986.
    [139] USEPA. Suspended, canceled, and restricted pesticides. Washington, DC: U.S. Environmental Protection Agency. Office of Pesticides and Toxic Substances, 1990.
    [140] Van den Berg, M., Birnbaum, S. L., Bosveld, A. T. C., et al. Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for human and wildlife. Environmental Health Perspectives, 1998, 106(12): 775-792.
    [141] Van den Berg, M., Birnbaum, S. L., Denison, B., et al. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for Dioxins and Dioxin-like compounds. Toxicological Science, 2006, 93(2): 223-241.
    [142] Van Meter, P. C., Mahler, B. J., Furlong, E. T. Urban sprawl leaves its PAH signature. Enviornmental science and technology, 2000, 34: 4064-4070.
    [143] Vane, C. H., Harrison, I., Kim, A. W,, et al. Status of organic pollutants in surface sediments of Barnegat Bay-Little Egg Harbor Estuary, New Jersey, USA. Marine Pollution Bulletin, 2008, 56: 1802-1814.
    [144] Vane, C. H., Harrison, I., Kim, A. W. Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in sediments from the Mersey Estuary, U.K. the Science of Total Environment, 2007, 374: 112-126.
    [145] Voice, T. C., Weber, J. K. Sorption of hydrophobic compounds by sediments, soils and suspended solids-1. Journal of Water Research , 1983, 17: 1433-1441.
    [146] Weber J R, Leboeuf T, Huang W. Contaminant interactions with geosorbent organic matter: Insights drawn from polymer sciences .Water Research, 2001, 35(4): 853-868.
    [147] Willett, K. I., Ulrich, E. M., Hites, R. A. Differential Toxicity and Environmental Fates of Hexachlorocyclohexane Isomers. Enviornmental science and technology, 1998, 32(15): 2197-2207.
    [148] Wu, Q. D. Temperature determines the pattern of anaerobic microbial dechlorination of Aroclor 1260 primed by 2,3,4,6-Tetrachlorabiphenyl in woods ponds sediment. AppliedEnvironmental Microbiology, 1997, 63: 4818-4825.
    [149] Xu, S. F., Jiang, X., Dong, Y. Y., et al. Polychlorinated organic compounds inYangtzw River sediments. Chemosphere, 2001, 20: 128-131.
    [150] Yang, S., Youn, J. S. Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments. Marine Geology, 2007, 243: 229-241.
    [151] Yunker, M. B., Macdonald, R. W., Vingarzan, R., et al. PAhs in he Fraser River Basin: a critical appraisal of PAHs ratios as indicators of PAH source and composition. Organic Geochemstry, 2002, 32: 489-515.
    [152] Zhang, B., Tang, Q., Jin, X. Decadal-scale variations of trophic levels at high trophic levels in the Yellow Sea and the Bohai Sea ecosystem. Journal of Marine Systems, 2007, 67(3-4):304-311.
    [153] Zhu, E. Q, et al. Proceedings of the ftrst internatimal coflfcrence on Asian marine geology. Bejing: Marine Press, 1990, 351-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700