用户名: 密码: 验证码:
汾酒用曲块制作机理及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械制曲的生产方式有着生产效率高、产品一致性好、劳动强度低等方面的优点,但是也存在提浆效果差等方面的缺点。甚至造成某些国内知名白酒曲块制作方式的“人工踩制方式”与“机械制曲方式”的反复倒换、举棋不定的现象。
     首先对定型化生产以来确定了的汾酒用大曲生产的前六个环节进行深入的分析和研究,并同时对其中模盒的清洗环节、料斗下料速度控制环节进行了深入实验研究、数值模拟仿真优化。对料斗下料速度进入可控范围的条件进行研究并提出了几个关键的控制参数;对模盒清洗环节中喷雾清洗喷嘴的喷嘴形式、安装角度、安装高度、供水压力等参数进行实验研究并运用MATLAB中的ANFIS工具对实验数据进行规律提炼并指导关键参数的优选工作。
     本文以公认的合格的大曲曲块的密度参数分布作为切入点,设计了对大曲的密度进行了分层、分区、分点的方式进行的密度测定的物理实验。得出了以大曲密度可以综合体现大曲的提浆效果与密实程度两个重要因素的参数——分点密度差,以及该参数在合格曲块中的分布规律。
     为了得到曲块的在不同压缩速度、不同含水率、弹性后效、不同重复压缩次数等因素影响下的曲块的密实程度以及曲块的提浆效果的变化程度,本文组织了大量的压缩致密实验,对压缩过程的规律进行归纳和总结,并得出了一组在现行条件下的制曲工艺参数。
     为了摸清曲块密度分布规律的影响因素、改善机械制曲的提浆效果,本文又从曲块压制过程中的压力分布、潮湿颗粒模型、侧压力分布实验、侧压摩擦系数等方面着手,结合宏观物理实验现象,开展了压制成型的机理分析和提浆机理的分析。主要从造成曲块密度分布特性的原因进行了细观层面上进行分析,对曲块的压制成型的机理和细观层面上的提浆机理结合物理实验的现象进行了分析。
     本文设计了三种实验压曲的锤头,结合目前针对颗粒状物料有独到优势的PFC系列模拟仿真软件,对三种锤头的压缩的过程进行了仿真,指出了一种可以保证压缩效果但是又改善提浆效果的空间曲面压曲锤头。三种压曲锤头分别是:平板压曲锤头、仿生压曲锤头、空间曲面压曲锤头。通过整板压曲锤头压缩对仿真的数值模型进行了标定和验证。仿真后证明,这种压曲锤头的交变压力作用影响范围最广泛、最均匀,提浆效果也最为明显。
     最后,结合本文中提出的三项关键技术和特定的外围约束条件下,在山西某清香型酒厂的车间进行了现场的工业试制试验。选定的空间曲面压曲锤头并结合本文提出的一组压缩工艺参数,在实验室内进行了密度分布测试和分点测试,结果表明与人工踩制的曲块在密度分布上和提浆效果上相类似。
     试验结果表明,课题组研制开发的机械制曲设备在装备了带有空间曲面的压缩锤头、扇形喷嘴的清洗设施、恒速稳定供料的料斗后,做出的曲块优于现行的平板锤头压制的效果,且与人工踩制的曲块的参数分布情况更加贴近。
Mode of production in Mechanical starter-making have saveral advantages such as higher efficacy, better consistency of products, lower intensity of labour, etc. But there are also drawbacks of poor effect in purifying syrup etc., which cause the phenomenon, the choice of starter-making way between artificial and mechanical cannot determine.
     In this paper, firstly, analysis and research the key technology in the first six links of starter making. At the same time, did a deeply experimental study and numerical simulation optimization on box cleaning process and hopper speed control methods. As the results, some key arguments were listed for hopper, installation angle, installation height, water supply pressure parameters for nozzles of cleaning were chosen, guided by the ANFIS tools in MATLAB.
     In this paper, the accepted starter qualified of the density of the distribution parameters as a starting point, and designed the density of starter stratification, zoneing density by the physics experiment. The key paramete integrated the density of starter purifying syrup effect and the degree of compaction, two important factors, density difference between center and border, and distribution law of the parameters in qualified starter were obtained.
     In order to get variations of purifying syrup effect and the compaction degree of starter in different compression speed, different moisture content, elastic lag, different repeat times of compression etc,. This paper organized a lot of compression density experiments, summarized the compression process of the law. As conclusiones, a group of starter-making procession parameters was aquired, in the current conditions.
     Research effortes were done to understanded the density distribution rule and improve purifying syrup result of starter, on pressure distribution, damp particle model, side pressure distribution experiment, side pressure coefficient of friction, etc. Combined with the macro physical experiment phenomenon, the mechanism of compression molding and purifying syrup was studied, at the microscopic level.
     In this paper, three kinds of experimental hammer designed, and were simulated by using PFC2D. One kind of perfect hummer with space curve surface was proposed, that result to compression and purifying syrup perfectively. The three kinds of experimental hammer were list as follows, flat hammer, bionic hammer, space surface hammer. The compression numerical model was corrected by simulating the compression process for flat hammer. By using the simulation tool, the last hummer was perfect to purifying syrup because its alternating role was very widespread.
     After test density distribution, the results of purifying syrup and the rule of density distribution were similar to the artificial way of starter making. Finally, integrateing three key technologies and particular peripheral constraints, in the factory of Fen-chiew Company, pilot production was done. The special hummer and the technological parameter were used simultaneously.
     The pilot production results showed that the densification effects of mechanical system equipment with the special hummer, the special fan cleaning nozzle and the special hopper of developed by research group, was similar to the artificial way and was superior to the current technological parameter.
引文
[1]朱梅.世界著名的六大蒸馏酒[J].黑龙江发酵,1980-3-1:1-1.
    [2]李洁,帝亚吉欧“控股”水井坊再起波澜,[N]华夏酒报,2010-01-11.
    [3]朱梅.从玉冰烧大量出口谈我国白酒降低浓度的问题[J].黑龙江发酵,1982,05:13-13.
    [4]郝泽华.走近汾酒[J].企业文化,2007-12-23,33-34.
    [5]梁红一.汾酒与世博会背后的故事[J].山西档案,2010-06,51-54.
    [6]驰原,等.清香汾酒王者回归[N].中国国门时报,2010-11-24(005).
    [7]虞丽萍.人口年龄结构模型建模和预测[D].上海:上海交通大学,2007.
    [8]胡晓纯.白酒行业增势迅猛[N].中国联合商报,2010-07-26(C04版).
    [9]林华.外资巨头畅饮中国白酒[J].中国外资,2010-04,46-49.
    [10]吴正武.白酒行业:业绩增长底气十足[N].证券时报,2010-07-22 (C02)
    [11]许德富,等.试述大曲的内在品质[J].2003,05:19-20.
    [12]敖宗华.国内主要大曲相关标准及研究进展[J].2010,2:104-108.
    [13]沈才洪.对传统大曲功用的再解析[J],酿酒,2006,3:85-87.
    [14]朱宝镛.中国酒经[M].上海:上海文化出版社,2000,59-61.
    [15]曹英,等.杏花村汾酒何以千年香醉人[N].中国经济时报,2005-12-28(B16)
    [16]王秋君.解析千年汾酒活力之本[N].中华工商时报,2003-01-10(专题)
    [17]李增胜.汾酒大曲生产发展史[J].酿酒科技,2005,2:85-86.
    [18]杜永贵.微机在汾酒大曲发酵过程中的应用[J].山西食品工业,1994.2:1-15.
    [19]李大和.白酒生产问答[M].北京:中国轻工业出版社,1999,218-219.
    [20]李大和.浓香型大曲酒生产技术(修订版)[M].北京:中国轻工业出版社,1997,128-129.
    [21]刘自力.茅台酒厂志[M].北京:科学出版社,1991,75-76.
    [22]刘念.四川浓香型白酒“五朵金花”制曲比较[J].酿酒科技,2000-2:25-27
    [23]付捷.我国酒厂制曲压块机的现状与发展方向[J].包装与食品机械,2005,23:29-30.
    [24]付捷.机械制曲成套设备研制[J].酿酒,2007,5:42-43.
    [25]谢小林.大曲生产中新技术的应用[J].农村新技术,2009,20:25-26.
    [26]肖熙佩.大曲的生产工艺.黑龙江发酵,1979,03:74-81.
    [27]张静.多点采压压曲机设计及其关键结构件仿真研究[D].太原:太原理工大学,2009.
    [28]李忠祥.一种液压压曲机[P].中国:02223183.8,2002-12-25.
    [29]秦含章.白酒春秋中国蒸馏酒的演变及发展趋向——下[J].酿酒科技,2001,01:19-25.
    [30]李大和.传承创新与时俱进—欢庆建国60周年,回顾近10年白酒业技术进步[J].酿酒,2009-02:3-16.
    [31]熊子书,汾酒大曲的研究[J].黑龙江发酵,1980-04:15-19
    [32]赵迎路.应用数量统计方法分析汾酒大曲理化测定的结果[J].酿酒,1998,04:26-31.
    [33]李大和.建国五十年来白酒生产技术的伟大成就(二)[J].酿酒,1999.2:22-28.
    [34]周恒刚.制曲水分[J].酿酒科技,2004,6:23-25.
    [35]赵迎路.深化曲皮认识提高大曲质量[J].酿酒:1998.2:11-13.
    [36]张玉君.对大曲糖化力指标的分析与看法[J].酿酒,1997,05:16-18.
    [37]谭崇尧.影响大曲“穿衣”的因素及其解决措施[J].酿酒科技,2009,6:70-75.
    [38]王元太.清香大曲曲心窝水现象的工艺解析[J].酿酒科技,2009,2:55-57
    [39]张肖克.制曲行业呼唤大曲质量统一标准[J].酿酒科技,2005.11:25-29.
    [40]李超等.汾型大曲的理化指标和微生物指标分析[J].中国酿造,2009,1:140-142
    [41]钱湘群.秸秆切碎及压缩成型特性与设备研究[D].杭州:浙江大学,2003.
    [42]KanafojskiCz, KarwowskiT.AgrieulturalMaehines Theoryand Construerion. Washington DC:Foreign Scientifie Publisher,1976.134-147.
    [43]杨明韶.牧草压缩过程的研究[J].农业工程学报,1996,12(1):60-64.
    [44]FaborodeMO, O, Callaghan JR. Arheologieal model for the compaction of fibrous agricultural materials[J]. Agricultral Enging Research,1989,42:165-178.
    [45]GrahamVA. Nonlinear viseoelastie behavior during for age waferies[J]. Trans of ASAE, 1984,27(6):1661-1665.
    [46]BilanskiWK. A viseoelastic model for forage watering[J]. CSME,1984,8:70-76.
    [47]Peleg K A. Rheological model of nonlinear viseoelastie solids[J]. JofRheology,1983, 27:411-431.
    [48]Faborode MO. A rheological model for the compaction of fibrous agricultural materials. CSME,1989,42:165-178.
    [49]Faborode M O. Optimizing the compression briquetting of fibrous agricultural materials. J Agri Engng Res,1987,38:245-262.
    [50]王波.揉切后玉米秸秆的压缩试验研究[D].泰安:山东农业大学,2005.
    [51]孙清等.蜂窝状生物质燃料固化成型有限元分析[J].农业机械学报,2009,02:107-109.
    [52]汤爱君.生物质挤压过程中的静水压应力[J].可再生能源,2006,02:29-31.
    [53]孙清等.蜂窝状生物质燃料固化成型有限元分析[J].农业机械学报,2009,02:107-109.
    [54]陈晓青.生物质固化成型制品表面裂纹研究[D].济南:山东大学,2010,4.
    [55]李听等.弹性与非弹性的测量和应用[M].冶金工业出版社,1999.9.
    [56]程伟等.低度酱香郎酒生产工艺研究及展望[J].酿酒科技,2007,08:88-92
    [57]王春光.农业纤维物料压缩研究发展现状[J].中国农业大学学报,1996,06:14-18.
    [58]陆寿鹏.白酒工艺学[M].北京:中国轻工业出版社,1994:12-12.
    [59]陆志新,王海昌.浅谈喷射式清洗中的节能措施[J].化学清洗,1993,12:23-25.
    [60]侯凌云,等.喷嘴技术手册[M].北京:中国石化出版社,2007,22-23
    [61]郭宗泰.高压水清洗技术[M].北京:中国铁道出版社,1984,35-35
    [62]谭崇尧.影响大曲“穿衣”的因素及其解决措施[J].酿酒科技,2009,6:70-75.
    [63]刘自力,等.茅台酒厂志[M].北京:科学出版社,1991,75-76.
    [64]刘念.四川浓香型白酒“五朵金花”制曲比较[J].酿酒科技,2000-2:25-27
    [65]李大和.浓香型大曲酒生产技术(修订版)[M].北京:中国轻工业出版社,1997,128-129.
    [66]晋久工.白酒生产问答[M].北京:中国轻工业出版社,1981:200-200.
    [67]郑水林.超细粉碎原理、工艺设备及应用[M].北京:中国建材工业出版社,1993:34-34.
    [68]中国人民大学商品教研室编.食品与工业品商品学——谷物和大麦[M].北京:中国人民大学商品教研室编,1954:100-102
    [69]白至德.大豆制品的加工[M].北京:中国轻工业出版社,1985:102-102
    [70]顾国贤.酿造酒工艺学[M].北京:中国建材工业出版社,1996:201-201
    [71]缪应庭.饲料生产学(北方本)[M].北京:中国农业科技出版社,1993:85
    [72]许永亮.大米淀粉的分子量分布及其与粘性的相关性研究[J].中国农业科学2007,40(3):566-572.
    [73]同济大学科技情报站编译室.粉体工程学概论[M].上海:1997,30.
    [74]HOTTA K. The capillary binding force of a liquid bridge [J]. Powder Technology,1974, 10:63-68.
    [75]Limpiti S. Effect of moisture content and Stage of maturity on mechanical properties of wheat straw[J]. Thai Journal of Agricultrue Scince,1980,13:277-283
    [76]王民等.秸秆制作成型燃料的试验研究[J].农业工程学报,1993(1):91-100.
    [77]张锐.基于离散元细观分析的土壤动态行为研究[D].吉林:吉林大学,2005.
    [78]周世良,等.强夯数值模拟及设计参数研究[J].港工技术,2008,02:43-46
    [79]周世良,等.强夯加固饱和地基土的数值模拟[J].水运工程,2009,04:140-145
    [80]赵东等,玉米秆粉粒体塑性压缩成型过程的有限元分析[J].力学与实践,2001,23,48-50
    [81]程远方.粉体致密化过程的离散元模拟[D].北京:北京科技大学,2000
    [82]张锐,推土板表面形态对土壤动态行为影响的离散元模[J].农业工程学报,2007,23,13-19
    [83]Oda M, Iwashita K. Mechanics of Granular Materials, A.A. Ballkema, Rotterdam, 1999.
    [84]Belytschko, T. An overview of semidiscretzation and time intergration procedures. Computational Methods for Transient Analysis,1983,1,1-65.
    [85]Ginsberg, J.H., and J.Genin Dynamics, Second Edition[M]. New York:John wiley and Sons,1984.
    [86]P.H.S.W. Kulatilake,etc. Physical and particleflow modeling of jointed rock block behavior under uniaxial loading. International Journal of Rock Mechanics & Mining Sciences, 2001(38):641-657.
    [87]Haiying Huang. Discrete Element Modeling of Tool-Rock Interaction. Ph.D. dissertation,Department of Civil Engineering, University of Minnesota, USA, December 1999.
    [88]Skinner AE. A note on the influence of the interparticle friction on the shearing strength of a random assembly of spherical particles. Geotechnique 1969,19:150-157.
    [89]D.O. Potyondy, P.A. Cundall. A bonded-particle model for rock. International Journal of Rock [J]. Mechanics & Mining Sciences,2004,41:1329-1364.
    [90]Y.P. Cheng, etc. Discrete Element Simulation of Crushable Soil [J]. Geotechnique, 2003,53(7):633-641.
    [91]Li Rui, Kou Ziming. Atomization Cleaning Rate Research for Mold Box Based on Adaptive Neural Fuzzy Inference System[C], Shaozi Li, IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2009), American, IEEE,2010.
    [92]Li Rui, Kou Ziming. High-pressure Water Spray Research Based on Neural Network[J], Applied Mechanics and Materials(ISSN:1660-9336),2010,29-32,139-142.
    [93]Li Rui, Kou Ziming. Research On Fogdrop Diameter Based on Neural Network[C], 2009 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA2009), American, IEEE,2009
    [94]沈怡方.白酒生产技术全书[M].北京:中国轻工业出版社,1998.
    [95]沈才洪,等大曲质量标准的研究第四报:大曲的理化特征指标探讨[J].酿酒科技,2005(9):20-22.
    [96]沈才洪,等.大曲质量标准的研究第二报:大曲酯化力的探讨[J].酿酒科技,2005(3):17-20.
    [97]沈才洪等.大曲质量标准的研究第一报:大曲酒化力的探讨[J].酿酒,2004,31(2):29-3.
    [98]沈才洪等.大曲质量标准的研究第三报:大曲生香力的特征指标探讨[J].酿酒科技,2005(8):20-22.
    [99]赵迎路,李奇.应用数量统计方法分析汾酒大曲理化测定的结果[J].酿酒,1998(4):26-31.
    [100]李超,穆琳,王建耀,等.汾型大曲的理化指标和微生物指标分析[J].中国酿造,2009(1):140-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700