用户名: 密码: 验证码:
铝铁基合金半固态成形技术及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al-Fe合金中AlFe第二相的形貌、尺寸和分布直接决定着合金的最终性能。因此,细化及改善AlFe相尺寸和相貌,强化合金基体成为Al-5Fe基合金实用化的关键。本研究通过采用Cu、Cr、Mn、Zr、Mg、Zn等元素合金化,探索合金元素在Al-5Fe基合金中的相互作用及对第二相形成的影响,确定合金化元素在组织演化及制备工艺过程中的行为;通过半固态挤压热模拟,研究半固态成形工艺对Al-5Fe基合金组织和性能;通过高温拉伸蠕变实验,分析AlFe第二相对合金高温蠕变的强化作用,为Al-5Fe基合金的实用化提供了实验和理论基础。
     研究结果表明:在Al-5Fe基合金中,约3/4的Cu溶入基体,其余的Cu溶于AlFe相或形成其它的含Cu相;Cr只溶解于AlFe相中,而不溶于基体;Mn主要溶解在AlFe相中。溶入AlFe相中的Cu、Cr、Mn可使针状的AlFe相转变成片状、块状、多角状或环形状。Zr、Mg、Zn不溶于AlFe相中,只能间接的阻碍AlFe相的生长。溶于AlFe相中的Cu、Cr、Mn可促进AlFe亚稳相的形成,它们是亚稳的AlFe相的很好形核剂。Al2Cu相是在500℃左右形成。Al7Cu2Fe相可在Al13Fe4相上形核,大部分由包晶反应:L+Al13Fe4(?)Al7Cu2Fe形成,故大部分的Al7Cu2Fe相会依附在Al13Fe4相的边缘或四周,形成“核-壳”结构。但在基体中也发现少量的独立的片状的Al7Cu2Fe相。
     Al-5Fe基合金中的α-Al基体和第二相是顺磁性相,电磁搅拌可以降低其形核的临界半径和临界形核功,使α-Al和第二相颗粒细化。在半固态加热重熔过程中,低熔点的A12Cu、Al7Cu2Fe等相首先在晶界和AlFe相边界溶化,随着加热温度的升高和保温时间的增加,合金中的Cu元素从晶粒内向晶界或AlFe相周围扩散,在液相中富集,使晶内的和晶界的Cu量到达约1:1.6。
     液相在半固态变形中起着强大的调节作用。Al-5Fe基合金在半固态变形时,液相中会富集Cu、Fe元素,并伴随着液相的变化而变化,Cu、Fe在半固态挤压时形成Al7Cu2Fe、Al2Cu等相,其分布与液相的分布一致。当变形增大到一定程度,半固态挤压对孤立封闭的液相区域的应力具有放大效应,为挤压破碎AlFe相创造力学条件。高应变速率变形可减轻液相的偏析,高液相分数可降低真应力峰值,故高液相、高应变速率是一种较好的成型工艺。
     Al-5Fe基合金对蠕变温度和蠕变应力有较大的敏感性。变形过程中,位错按整体攀移的方式越过弥散粒子,位错与弥散粒子之间的相互作用较弱。合金中的AlFe第二相具有有效的承载与传载作用,减小了使基体发生蠕变的有效应力,使合金的蠕变速率下降,提高了材料的抗蠕变能力。AlFe第二相的有效传载是Al-5Fe基合金的强化机制。
     半固态成型具有明显的回溶效应,使半固态成型制备的Al-5Fe基合金挤压态的室温抗拉强度大于270MPa,伸长率大于1%;经后续的低温时效,使合金时效态的抗拉强度高于挤压态的16%,伸长率高于27%,充分利用了合金时效硬化的潜力。Al-5Fe基合金具有很高的高温性能和良好的耐热性,可满足在250℃左右温度工作环境下的工程应用。
The type, size and distribution of AlFe secondary phases in Al-Fe alloys have an effect on the ultimate properties of the alloys directly. Thekey to extend the applications of Al-5Fe based alloys is to control and improve size and feature of theiron-rich phases and strengthen the Al matrix. The researches in this paper focus on the interaction of alloying elements, Cu, Cr, Mn, Zr, Mg and Zn, in Al-5Fe based alloys, and effects of the elements on formation of AlFe phases, and confirm alloying element behavior of microstructure evolution and effect in preparation processing. The effect of semi-solid forming technology on organization and performance of Al-5Fe based alloys is researched by the semi-solid extrusion simulation. The invigorating effect of AlFe phases on elevating temperature creep of Al-5Fe based alloys is analyzed by tensile creep test. It is helpful for practical Al-5Fe based alloys to provide some experiments and theoretical base.
     The results show that Al-5Fe based alloys, accounting for about3/4of the total amount of Cu dissolves in the Al matrix and the rest of Cu dissolves into AlFe phase or forming other Cu-containing phases, Cr dissolves only in AlFe intermetallics rather than in the matrix, Mn dissolves mainly in AlFe phases.Cu.Cr, Mndissolved intoAlFephasesmakesthe morphology of AlFephase in Al-5Fe based alloys evolves fromaciculartolamellar,blocky, multi-angular orringshape. Zr, Mg, Zn don't dissolve in AlFe intermetallics, and hinder the growth of Fe-bearingphases indirectly. Cu, Cr and Mn dissolved in AlFe phase can impel metastableAlFe phase formation. They are a favorable nucleant for forming metastableAlFeintermetallicsin Al-5Fe based alloys.
     In Al-5Fe based alloys,Al2Cu phase is formed at about500℃. Al7Cu2Fe phase can nucleate on Al13Fe4phase, which is froma peritectic reaction:L+Al13Fe4(?)Al7Cu2Fe formation.In a majority of cases, Al7Cu2Fe phase attaches oneself to Al13Fe4phase edges or enveloped the Al13Fe4particles to form a "core-shell" microstructure. Individual a few sheet particles composed of the Al7Cu2Fe phase are also seen in the matrix.
     The α-Al matrix and thesecondary phases in Al-5Fe based alloys are paramagnetic phases, electromagnetic stirring can reduce the nucleation of critical radius and critical nucleation energy, so a-Al and the second phase particlesare refined.In semi-solid heating re-melting process, low melting Al2Cu Al7Cu2Fephasesare first melted at the grain boundaries and AlFe phase boundary, with the increase of heating temperature and holding time, Cu in the alloy will diffuse from intra-grain tointer-grain or AlFe phases surrounding and gather in the liquid phase, A ratio of Cu content in intra-grain and inter-grain reaches about1:1.6.
     On semi-solid deformation, the liquid phase in Al-5Fe based alloys plays a powerful regulating role. Cu and Fe elements would enrich in liquid phase and vary with liquid phase change. Al7Cu2Fe and Al2Cu phasesare formed from Cu and Fein the semi-solid extrusion processing, and their distribution is consistent with the distribution of the liquid phase in the alloy. The deformation increases to a certain extent, semi-solid squeeze hasan amplification effect on the stress of isolation of closed liquid region, resulted in crushing AlFe phase to create mechanical condition.High strain rate can reduce the segregation of the liquid phase.High liquid fraction can reduce the peak true stress.The high liquidfraction and high strain rate would be a good forming process.
     The creepof Al-5Fe based alloys has larger sensitive to creep temperature and stress.In deformation processing, the dislocations general climb over the dispersion particles, an attractive interaction between dislocations and dispersion particles is weak.The AlFe secondary phases in Al-5Fe based alloys are valid provided with bearing loads and transferring loads and reduces effective stress for creep of the matrix, result in the creep rate of the alloy decreases and improves the creep resistance of the material.Al-5Fe based alloys strengthening mechanism is effective load transfer of AlFe secondary phases.
     Semi-solid forming has obvious re-dissolution effect,so that the tensile strength of Al-5Fe based alloys prepared by the semi-solid formation is greater than270MPa, the elongation is greater than1%.The supersaturated solid solution precipitates during subsequent low temperature aging, result in as-aged tensile strength of the alloy higher than as-extruded that16%, elongation higher than27%, taking full advantage of the potential of the alloy age hardening.Al-5Fe based alloys with high temperature performance and good heat resistance can meet the engineering applications in the temperature of the working environment in about250℃.
引文
[1]Kirkwood D H. Semi solid Metal Processing. International Materials Reviews,1994,39(5): 173-189.
    [2]谢水生,黄声宏.半固态金属加工技术及其应用.北京:冶金工业出版社,1999.25.
    [3]邢书明.难变形钢铁材料半固态连铸技术研究:(博士学位论文).北京:北京科技大学,1999.
    [4]Flemings M C. Behavior of metal alloys in the semi-solid state. Metallurgical Transactions A,1991, 22 (5):957-981.
    [5]毛卫民.半固态金属成形技术.北京:机械工业出版社,2004.
    [6]Jung B I, Jung C H, Han T K, et.al. Electromagnetic stirring and Sr modification in A356 alloy. Journal of Materials Processing Technology,2001,111(1-3):69-73.
    [7]印飞,王亦心,红慎章.半固态铸造铝合金材料的研究现状.特种铸造及有色合金,2000(3):44-46.
    [8]潘冶,孙国雄,吴照金.A1-Si-Fe合金中铁相的粒化.铸造,1992(12):6-9.
    [9]Wang H, David H, John St, et.al. Characterization and shear behavior of semisolid Al-7Si-0.35Mg alloy microstructures. Aluminum Transactions,2000(2):57-66.
    [10]Kamado S, Yuasa A, Hitomi T. Effect of stirring conditions on structure and apparent viscosity of semisolid AZ91D magnesium alloy. Journal of Japan Institute of Light Metals,1992,42(12): 734-740.
    II1] Fan Z. Semi solid metal processing. International Materials Reviews,2002,47(2):49-85.
    [12]Flemings M C, Giek R G, Young K P. Rheocasting. Materials Science and Engineering,1976(25): 103-117.
    [13]Spencer D B, Mehrabian R, Flemings M C. Rheological behavior of Sn-15 pct Pb in the crystallization range. Metallurgical Transactions,1972(A3):1925-1932.
    [14]Motegi T, Ogawa N, Kondo I K, et al. Continuos casting of semi-solid Al-Si-Mg alloy. Proceedings of the Sixth International Conference on Aluminum Alloys, ICAA-6, Toyohashi, Japan,1998: 297-326
    [15]李元东,郝远,阎峰云SIMA法对镁合金非枝晶组织的细化作用.第二届半固态金属加工技术研讨会论文集,北京,2002:35-41.
    [16]刘正,张奎,曾小勤镁基轻合金理论基础及其应用.北京:机械工业出版社,2002.
    [17]谢水生.半固态加工技术的工业应用及发展.第二届半固态加工技术研讨会论文集,北京,2002:1-8.
    [18]赵启炽,崔建忠.金属半固态成形工艺及其新分类方法.第二届半固态加工技术研讨会论文集,北京,2002:18-24.
    [19]Jorstad J L, Thieman M, Kamm R S. The newest and most economical approach to semi-solid metal (SSM) casting. Proceedings of the 7th International Conference on Semi-Solid Metal Processing of Alloys and Composites,Tsukuba, Japan,2002:701-706.
    [20]Hirt G, Zillgen M, Cremer R. Recent, advances in thixoforming to produce near net shape components. Processing of the 1st CIDCC, Beijing,1997:78-82.
    [21]Haga T, Kapranos P. Thixoforming process using ingot cast by a cooling slope and low super heat casting, Processing of the 7th International Conference on Semi-solid of Alloys and Composites, Tsukuba, Japan,2002:795-800.
    [22]Young J K, Eisen P. SSM technological alternatives for different applications, Processing of the 6th International Conference on Semi-solid of Alloys and Composites,2000:97-102.
    [23]Haga T. Semisolid strip casting using a twin roll casting equipped with a cooling slope, Processing of the 7th International Conference on Semi-solid of Alloys and Composites, Tsukuba, Japan,2002: 107-112.
    [24]Haga T, Kapranos P. Rheocasting process using a cooling slope low super heat casting. Processing of the 7th International Conference on Semi-solid of Alloys and Composites, Tsukuba, Japan,2002: 801-806.
    [25]Liu D, Athinson H V, Kapranos P. Microstructural evolution and tensile mechanical properties of thixofomed high performance aluminum alloys. Materials Science and Engineering A,2003,361: 213-224.
    [26]Evangelos Tzimas, Antonios Zavaliangos. Evolution of near-equiaxed microstructure in the semisolid state. Materials Science and Engineering A,2000,289(1-2):228-240.
    [27]Xia K, Tausig G. Liquidus casting of a wrought aluminum alloy 2618 for thixoforming, Materials Science and Engineering A,1998,246(1-2):1-10.
    [28]Pan Y, Aoyama S, Liu C. Spherical structure and formation conditions of Semi-solid Al-Si-Mg alloy. Proceedings of the 5th Asian Foundry Congress,Nanjing:South west University Press,1997: 443-445.
    [29]Mao W M, Cui C L, Zhao A M. Effect of pouring process on the microstructure of semi-solid AlSi7Mg alloy. Journal of Materials Science and Technology,2001,17(6):515-519.
    [30]Wang H, Davidson C J, Taylor J A. Semisolid casting of AlSi7Mg0.35 alloy produced by low-temperature pouring. Materials Science Forum,2002,396/402:143-148.
    [31]Ryoichi Shibata, Tomomi Souda, Hideya Yamane. Refinement of grain size of AC4CH aluminum alloy by low temperature pouring. Foundry,1997,69(7); 549-555.
    [32]Haga T, Kapranos P. Simple rheocasting process. Journal of Materials Processing Technology, 2002(130/131):594-598.
    [33]Vieira E A, Junior B A O, Ferrante M. Microstructure and rheology of an A356 alloy in semi-solid state, conditioned by a low pouring temperature technique. Proceedings of the 8th International Conference on Semi-Solid Processing of Alloys and Composites,Limassol,The Worcester Polytechnic Institute and the Metals Processing Institute,2004:243-251.
    [34]Shibata R, Kaneuchi T, Souda T, et al. Formation of spherical solid phase in die casting shot sleeve without any agitation. Proceedings of the 5th International Conference on Semi-Solid Processing of Alloys and Composites,Colorado,Colorado School of Mines,1998:465-470.
    [35]Jorstad J L, Thieman M, Kamm R. Fundamental requirement for slurry generation in the subliquidus casting process and the economies for of SLCTM processing. Proceedings of the 8th International Conference on Semi-Solid Processing of Alloys and Composites,Limassol,The Worcester Polytechnic Institute and the Metals Processing Institute,2004:277-284.
    [36]Julio Aguilar, Martin Fehlbier, Tilman Grimmig. Semi-solid processing of metal alloys. Steel Research,2004(8-9):492-505.
    [37]Doutre D, Hay G, Wales P. SEED:A new process for semi-solid forming. Canadian Metallurgical Quarterly,2004,43(2):265-272.
    [38]Joseph J, Lemieux A. The SEED technology for semi-solid processing aluminum alloys:a metallurgical and process overview. Solid State Phenomena,2006,116-117:472-477.
    [39]路贵民,任栖锋,董杰等.液相线半连续铸造112A1合金的组织.铸造技术,2002,23(3):189-192.
    [40]谷晓峰.ZL201铝合金半固态组织与成形性研究:(博士学位论文).沈阳:东北大学,2002.
    [41]路贵民,董杰,崔建忠等.7075A1合金液相线半连续铸造组织及形成机理.金属学报,2001,37(5):1045-1048.
    [42]张鹏,曾大本,崔建忠等.半固态A1-28Pb铸锭中Pb的分布.清华大学学报(自然科学版),2002,42(4):484-487,
    [43]董杰,路贵民,任栖锋等.液相线铸造法非枝晶半固态组织形成机理探讨.金属学报,2002,38(2):203-207.
    [44]宁志良.控制浇注法制备半固态坯料的研究:(博士后研究工作报告).哈尔滨:哈尔滨工程大学,2007.
    [45]Ji S, Fan Z, Bevis M J. Semi-solid processing engineering alloys by a twin-screw rheomoulding process. Materials Science and Engineering A,2001,299:210-217.
    [46]胡斌,郭洪民,杨湘杰.转动输送管制备半固态ZL101合金浆料.特种铸造及有色合金,2005,25(2):103-105.
    [47]Botha G, Govender G. Recycling of SSM aluminum A356 alloy. Processing of the 7th International Conference on Semi-solid of Alloys and Composites, Japan,2002:207-212.
    [48]Loong C A, Zheng C Q, Shehata M T. Semi-solid casting and forging of A357 aluminum alloy components. Processing of the 7th International Conference on Semi-solid of Alloys and Composites, Japan,2002:13-22.
    [49]Aktinson H V, Kaprnaos P, Kirkwood D H. Alloy development for thixoforming. Processing of the 6th International Conference on Semi-solid of Alloys and Composites, Italy,2000:443-450.
    [50]Tuasig G. Assessment of aluminum feedstock materials for use in thixoforming. Processing of the 6th International Conference on Semi-solid of Alloys and Composites, Italy,2000:489-494.
    [51]Kaprnaos P, Aktinson H V. Thixofomring 2014,6082,7010 and 7055 aluminum wrought alloy. Processing of the 7th International Conference on Semi-solid of Alloys and Composites, Japan, 2002:167-172.
    [52]Aktinson H V. Liu D. Development of high performance aluminium alloy for thixoforming. Processing of the 6th International Conference on Semi-solid of Alloys and Composites, Italy, 2000:51-56.
    [53]Zhnag J X, Kui Z. Semi-solid processing AZ91D. Processing of the 7th International Conference on Semi-solid of Alloys and Composites, Japan,2002:281-286.
    [54]Ji S, Fna Z. Twin screw rheomoulding AZ91Z Mg Alloy. Processing of the 7th International Conference on Semi-solid of Alloys and Composites, Japan,2002:683-688.
    [55]Kleiner S, Beffort O, Fuchs M. Thixocasting of Mg-Al alloy using extruded feedstock material. Processing of the 7th International Conference on Semi-solid of Alloys and Composites, Japan, 2002:257-262.
    [56]Nohn B, Morjan U, Hartment D. Thixoforming of steel. Processing of the 6th International Conference on Semi-solid of Alloys and Composites, Italy,2000:265-272.
    [57]Miwa K, Kawamura S. Semisolid extrusion forming process of stainless steel. Processing of the 6th International Conference on Semi-solid of Alloys and Composites, Italy,2000:279-281.
    [58]Robert M H, Bubenik R L. Rheocasting stainless steels:effect on the microstructure and corrosion characteristics. Processing of the 7th International Conference on Semi-solid of Alloys and Composites, Japan,2002:361-366.
    [59]Weimin Mao, Aimin Zhao, Yun dong, et al. Slurry and rolling of semi-solid 60Si2Mn spring steel. Materials Science and Technology,2003,19(6):613-616.
    [60]Rouff C, Bigot R, Favier V. Caracterization of thixoforging steel during extrusion tests. Processing of the 7th International Conference on Semi-solid of Alloys and Composites, Japan, 2002:355-360.
    [61]Meuser H, Bleck W. Determination of material parameters of steel alloys in the semisolid state. Processing of the 7th International Conference on Semi-solid of Alloys and Composites, Japan, 2002:349-354.
    [62]Mitsuhuar T, Hiroyuki N. Semi-solid processing of cast iron. Processing of the 7th International Conference on Semi-solid of Alloys and Composites, Japan,2002:343-348.
    [63]康永林,毛卫民,胡壮麒.金属材料半固态加工理论与技术.北京:科学出版社,2004.
    [64]褚祥治,齐铁力,刘芳.半固态合金成形技术综述.唐山学院学报,2005,18(4):107-110.
    [65]张存信,高娃.金属半固态成形技术的研究现状及应用进展.新材料产业,2003(8):31-34.
    [66]Giordnao P, Boero F. Thixoformed space-frames for series vehicles study development and application. Processing of the 6th International Conference on Semi-solid of Alloys and Composites, Italy,2000:29-34.
    [67]Bernd M. Serial production of net shaped and weldable structural components by processing thixoalloy. Processing of the 6th International Conference on Semi-solid of Alloys and Composites, Italy,2000:103-108.
    [68]Jorstad J L. Semi solid metal processing:a cost-competitive approach for high integrity aluminum components. Processing of the 6th International Conference on Semi-solid of Alloys and Composites, Italy,2000:227-233.
    [69]Benno N. The semisolid metal (SSM) casting process. Processing of the 6th International Conference on Semi-solid of Alloys and Composites, Italy,2000:641-647.
    [71]Hsuan P. Development on rheomolding of magnesium parts. Processing of the 6th International Conference on Semi-solid of Alloys and Composites, Italy,2000:313-317.
    [72]Walukas S, Lebeau N, Previtt R. Thixomolding technology opportunities and practical uses. Processing of the 6th International Conference on Semi-solid of Alloys and Composites, Italy, 2000:109-114.
    [73]谭建波,李讯,李立新.半固态金属成形技术的发展及应用现状.河北科技大学学报,2003,24(4):24-28.
    [74]Kopp R, Neudenberger D, Winning G. Optimism of the forming variants forging and transverse impact extrusion with alloys in the semi-solid state. Processing of the 6th International Conference on Semi-solid of Alloys and Composites, Italy,2000:295-300.
    [77]Kopp R, Shimahara H. State of R&D and future trends in semi-solid manufacturing. Processing of the 7th International Conference on Semi-solid of Alloys and Composites, Japan,2002:57-65.
    [78]吉天千里.鑄鐵の半熔融半凝固加工.塑性と加工,2000,41(479):1215-1219.
    [79]Ward P J, Aktinson H V, Kikrwood D H. Thixoforming copper induction motor rotor. Processing of the 6th International Conference on Semi-solid of Alloys and Composites, Italy,2000:307-312.
    [80]李亚敏.半固态连铸技术研究现状与展望.热加工工艺,2000(4):46-48.
    [81]宋仁伯.半固态60Si2Mn直接轧制成形技术的研究.特种铸造及有色金属,2002(5):13-15.
    [82]Zhang H Y, Xing S M. Evaluation of mold-filling ability of alloy melt in squeeze casting. Journal of University of science and Technology Beijing,2006(1):61-67.
    [83]张海英.合金熔体充型能力的研究:(博士学位论文).北京:北京交通大学,2005.
    [84]张励忠,邢书明,杜云慧.钢铁材料半固态流变成形工艺参数设计原则.2003年中国压铸、挤压铸造、半固态加工学术年会论文集,深圳,2003:291-293.
    [85]邢书明,张励忠,谭建波.半固态流变成形工艺理论--第2部分流变补缩理论.特种铸造及有色合金,2006,26(4):215-219.
    [86]Luo S J, Keung W C, Kang Y L. Theory and application research development of semi-solid forming in China. Transactions of Nonferrous Metals Society of China,2010,20:1805-1814.
    [87]张志峰,徐骏.轻合金及其复合材料半固态成型技术研究与应用.新技术新工艺,2009(2):19-22.
    [88]黄健,李洪涛,王汝耀.Fe对A1-Si合金强度的影响.兵器材料科学与工程,1990,103(4):1-7.
    [89]刘相法,边秀房,马家骥等.铝合金铁相团球化溶剂的研制,特种铸造及有色合金,1994(5):13-15.
    [90]潘冶,孙国雄.铝合金中铁相形态控制及对性能的影响.特种铸造及有色合金,1993(5):1-3.
    [91]Stefaniay V, Criger A, Turmezey T. Intermetallic phases in the aluminum-side corner of the AlFeSi alloy system. Journal of Materials Science,1987(22):539-546.
    [92]Gowrz S,Samuel F H. Effect of alloying elements on the solidification characteristics and microstructure of Al-Si-Cu-Mg-Fe 380 alloy. Metallurgical and Materials Transactions A,1994, 25A (2):437-447.
    [93]Tonejc A, Bonefacic A. Enhanced solubility of iron in aluminum obtained by rapid quenching technique. Journal of Applied Physics,1969,40(1):419-420.
    [94]Jones H. Observations on a structural transition in aluminium alloys hardened by rapid solidification. Materials Science and Engineering,1969,70(5):1-18.
    [95]Burden M H, Jones H. A metallographic study of the effect of more rapid freezing on the cast structure of aluminum-iron alloys. Metallography,1970(3):307-326.
    [96]Adam C M, Hogan L M. The aluminum-iron eutectic system. Journal of Australian Institute Metals, 1972,17(2):81-90.
    [97]Mcleod A J, Hogan L M, Adam C M, et al. Growth mode of the aluminum phase in Al-Si and Al-Al3Fe eutectics. Journal of Crystal Growth,1973,19(4):301-309.
    [98]Adam C M, Hogan L M. Crystallography of the Al-Al3Fe eutectic. Acta Metallurgica,1975,23(3): 345-354.
    [99]Hughes I R, Jones H. Coupled eutectic growth in Al-Fe alloys:Part 1 Effects of high growth velocity. Journal of Materials Science,1976,11(10):1781-1793.
    [100]Hughes I R., Jones H. Coupled eutectic growth in Al-Fe alloys:Part 2 Thermal stability of the Al-Al6Fe eutectic. Journal of Materials Science,1977,12(2):323-333.
    [101]Adam C M, TanC W, Hogan L M. Structural modification of Al-Al3Fe eutectic alloys,Journal of Crystal Growth,1981,51(3):525-533.
    [102]Ashtari P, Tezuka H, Sato T. Influence of Li addition on intermetallic compound morphologies in Al-Si-Cu-Fe cast alloys. Scripta Materialia,2004,51(1):43-46.
    [103]Liang D, Jones H. The dependence of growth temperature on growth velocity for primary Al3Fe in steady state solidification of hypereutectic Al-Fe alloys. Scripta Metallurgica et Materialia,1991, 25(12):2855-2859.
    [104]Liang D, Jones H. Morphologies of primary Al3Fe in Bridgman solidification and TIG weld traversing of hypereutectic Al-Fe alloys. Materials Science and Engineering A,1993,173(1-2): 109-114.
    [105]Liang D, Jie W, Jones H. The effect of growth velocity on primary spacing of Al3Fe dendrites in hypereutectic Al-Fe alloys. Journal of Crystal Growth,1994,135(3-4):561-564.
    [106]Liang D, Korgul P, Jones H. Composition and solidification microstructure selection in the interdendritic matrix between primary Al3Fe dendrites in hypereutectic Al-Fe alloys. Acta Materialia,1996,44(7):2999-3004.
    [107]I.C. Stone, Jones H. Effect of cooling rate and front velocity on solidification micro structure selection in Al-3.5wt.%Fe-0 to 8.5wt.%Si alloys. Materials Science and Engineering A,1997, 226-228:33-37.
    [108]Griger A, Stefaniay V. Equilibrium and non-equilibrium intermetallic phases in Al-Fe and Al-Fe-Si Alloys. Journal of Material Science,1996,31:6645-6652.
    [109]Gilgien P, Zryd A, Kurz W. Microstructure selection maps for Al-Fe alloys. Acta Materialia,1995, 43(9):3477-3487.
    [110]Wang Y, Jones H, Evans P V. Eutectic solidification characteristics of Bridgman grown Al-3Fe-0.1 V alloy. Journal of Material Science,1998,33:5205-5220.
    [111]Wang Y, Jones H. Effect of growth velocity on the growth temperature of the Al-AlxFe eutectic in Al-2.85Fe-0.12V alloy. Metallurgical and Materials Transactions A,2001,32(5):1251-1253.
    [112]马冰,李荣德,李英民等.二元铝铁合金凝固过程的差热分析研究.铸造,1999,48(3):5-8.
    [113]Dutta B, Rettenmayr M. Effect of cooling rate on the solidification behaviour of Al-Fe-Si alloys. Materials Science and Engineering A,2000,283(1-2):218-224.
    [114]Sahoo K L, Das S K, Murty B S. Formation of novel microstructures in conventionally cast Al-Fe-V-Si alloys. Materials Science and Engineering A,2003,355(1-2):193-200.
    [115]Sahoo K L, Das S K, Murty B S. Formation of quasicrystalline related intermetallic compounds in conventionally cast Al-Fe-V-Si alloy. Journal of Non-Crystalline Solids,2004,334-335:29-32.
    [116]Shek C H, He G, Bian Z, et al. Effect of composition and cooling rate on structures and properties of quenched or cast Al-V-Fe alloys. Materials Science and Engineering A,2003,357(1-2):20-26.
    [117]Han Y, Ban C Y, Guo S J, et al. Alignment behavior of primary Al3Fe phase in Al-Fe alloy under a high magnetic field. Materials Letters,2007,61(4-5):983-986.
    [118]Rosas G, Reyes-Gasga J, Perez R. Morphological characteristics of the rapidly and conventionally solidified alloys of the AlCuFe system. Materials Characterization,2007,58(8-9):765-770.
    [119]Jiang H, Liu Y C, Wei C, et al. Influence of minor Co on the formation of intermetallic phases in the Al91Fe7Si2 alloy. Journal of Alloys and Compounds,2008,466(1-2):92-97.
    [120]Liu Y C, Chen H, Gao Z M, et al. Evolution of cellular spacing during directional solid-state alpha-gamma transformation of Fe-Mn-Al alloy, Journal of Crystal Growth,2009,311: 3761-3764.[121] Rajabi M, Vahidi M, Simchi M, et al. Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al-20Si-5Fe alloys. Materials Characterization,2009,60(11):1370-1381.
    [122]Goulart P R, Cruz K S, Spinelli J E, et al. Cellular growth during transient directional solidification of hypoeutectic Al-Fe alloys. Journal of Alloys and Compounds,2009,470(1-2): 589-599.
    [123]Goulart P R, Lazarine V B, Leal C V, et al. Investigation of intermetallics in hypoeutectic Al-Fe alloys by dissolution of the Al matrix. Intermetallics,2009,17(9):753-761.
    [124]Goulart P R, Spinelli J E, Cheung N, et al. The effects of cell spacing and distribution of intermetallic fibers on the mechanical properties of hypoeutectic Al-Fe alloys. Materials Chemistry and Physics,2010,119(1-2):272-278.
    [125]Huang H J, Cai Y H, Cui H, et al. Influence of Mn addition on microstructure and phase formation of spray-deposited Al-25Si-xFe-yMn alloy. Materials Science and Engineering A,2009,502(1-2): 118-125.
    [126]Taylor J A. The effect of iron in Al-Si casting alloys.35th Australian Foundry Institute National Conference, Adelaide, South Australia,2004:148-157.
    [127]村田清,高田正毅,中田毅等.Structure and wear resistance of Al-Fe alloys produced by centrifugal casting.铸物,1992,64:537-542.
    [128]Hu C, Baker T N. The liquid volume control in the ISM process applied to the Al-Fe system. Acta Metall. Mater.,1994,42(1):51-56.
    [129]Tachai Luangvaranut, Thotsaphon Threujirapapong, Sawai Danchaivijit, et al. Fabrication of Al-Fe alloys by repeated compaction and extrusion of mixture of elemental powders. Journal of Solid Mechanics and Materials Engineering,2007,1(7),931-937.
    [130]Zou Yong, Shigeoki Saji, Kiyoshi Kusabiraki. Effect of Ni addition on formation of amorphous and nanocrystalline phase during mechanical alloying of Al-25at.% Fe-(5,10)at.% Ni powders. Materials Research Bulletin,2002,37(7):123-131.
    [131]Nayak S S, Murty B S, Pabi S K. Structure of nanocomposites of Al-Fe alloys prepared by mechanical alloying and rapid solidification processing. Bulletin of Materials Science,2008, 31(3):449-454.
    [132]Nayak S S, Wollgarten M, Banhart J, et al. Nanocomposites and an extremely hard nanocrystalline intermetallic of Al-Fe alloys prepared by mechanical alloying. Materials Science and Engineering A,2010,527(9):2370-2378.
    [133]Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science,2000,45(2):103-189.
    [134]Stolyarov V V, Lapovok R, Brodova I G, et al. Ultrafine-grained Al-5 wt.% Fe alloy processed by ECAP with backpressure. Materials Science and Engineering A, 2003, 357(1-2): 159-167.
    [135]陈锋,何德坪,舒光冀.超声作用下Al-Fe合金化机制及Al-Fe合金的制备.东南大学学报,1993(5):58-62.
    [136]张宝生,陈洪升,林柏年等.离心铸造制备Al-Fe系金属间化合物梯度功能材料的组织及耐磨性的研究.铸造,1994(1):1-5.
    [137]袁晓光,胡建刚,于海朋等AlSil7Fe3挤压合金的组织和性能.铸造,2002,51(3):157-162.
    [138]袁晓光,赵树国,李胜等.半固态Al-Si-Fe合金组织与性能.铸造,2006,55(6):466-468.
    [139]李荣德,马建超,周振平等.混合稀土对共晶Al-2%Fe合金组织形态的影响.中国稀土学报,2004(5):722-724.
    [140]马健超,李荣德,周振平等.Ca对过共晶Al-5%Fe合金富铁相形态和分布的影响.铸造,2004,53(2):110-114.
    [141]周振平,李荣德,马建超等.Fe含量对Al-Fe合金组织和硬度的影响.铸造,2004(6):456-458.
    [142]李荣德,马建超,周振平.Mn含量对共晶Al-2%Fe合金组织的影响.热加工工艺,2004(4):14-16.
    [143]周振平,李荣德,马建超等.Mg对初生Al3Fe形貌及其生长过程的影响.热加工工艺,2004(5):15-17.
    [144]向青春,王静媛,周振平等.铝铁合金的研究进展与应用状况.铸造,2006,55(4):875-879.
    [145]Gilman P S, Das S K. Rapidly solidified aluminum alloys for high temperature/high stiffness application. Metal Powder Reports, 1989, 44(9): 616-620.
    [146]田荣璋.铝合金及其加工手册.长沙:中南工业大学出版社,1988.
    [147]Froes F H, Kim Y W, Hehmann F, Rapid solidification of Al, Mg and Ti. Journal of Metals, 1987, 39(8): 14-21.
    [148]Grushkoa B, Velikanova T. Formation of quasiperiodic and related periodic intermetallics in alloy systems of aluminum with transition metals. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2007, 31: 217-232.
    [149]Mondolfo L F编著.王祝堂,张振录,郑璇等译.铝合金的组织与性能.北京:冶金工业出版社,1988.
    [150]Kattner U R, Burton B P. Al-Fe. ASM Metals Handbook Volume 3 - Alloy Phase Diagrams. ASM International, 1992,294-295.
    [151]Bian X F, Pan X M, Zhao C, et al. Refinement of Fe4Al13 in Al-Fe alloys by plasma remelting process. Materials Science and Technology, 2001, 17(8): 917-920.
    [152]Cotton J D, Kaufman M J. Microstructural evolution in rapidly solidified Al-Fe alloys: an alternative explanation. Metallurgical Transactions A, 1991, 22A: 927-934.
    [153]Zhang Yanhua, Liu Yongchang, Han Yajing, et al. The role of cooling rate in the microstructure of Al-Fe-Si alloy with high Fe and Si contents. Journal of Alloys and Compounds, 2009, 473: 442-445.
    [154]Sokolovskaya E M, Badalova L M, Poddyakova E I, et al. Thermal stability of metastable phases in rapidly quenched alloys of the system Al-Cr-Zr. Metal Science and Heat Treatment, 1988, 30(8): 606-609.
    [155]Allen C M, O'Reilly K A Q, Cantor B, et al. Intermetallic phase selection in 1XXX Al alloys. Progress in Materials Science, 1998, 43: 89-170.
    [156]Hsieh H Y, Toby B H, Egami T, et al. Atomic structure of amorphous Al90FexCe10-x, Journal of Materials Research,1990,5(12):2807-2812.
    [157]周振平,李荣德,马建超等.Cr对A1-5%Fe合金中初生A13Fe相形貌的影响.材料工程,2006(S1):20-23.
    [158]李荣德,赵素彦,周振平.Cr和Mg对A1-5%Fe合金中初生A13Fe相形貌的影响.沈阳工业大学学报,2008,30(3):284-287.
    [159]周振平,李荣德.Mn和Mg对Al-5Fe合金初生A13Fe相形貌的影响,金属学报,2003,39(6):608-612.
    [160]Huang H J, Cai Y H, Cui H, et al. Influence of Mn addition on microstructure and phase formation of spray-deposited Al-25Si-xFe-yMn alloy. Materials Science and Engineering A,2009,502: 118-125.
    [161]Homonnay Z, Viertes A, Cziraki A, et al. Mossbauer study of Al6(Fe,Mn) formation in Al-rich Al-Fe-Mn alloys. Journal of Radioanalytical and Nuclear Chemistry,1990,139(1):127-134.
    [162]谭敦强,黎文献,唐谊平.A1-Fe系合金中的相及相转变.材料导报,2003,17(5):18-20,27.
    [163]周振平.A1-Fe合金的速热处理和凝固特征的研究:(博士学位论文).沈阳:沈阳工业大学,2008.
    [164]Louis E, Mora R, Pastor J. Nature of star-shaped clusters of FeAl3 in aluminum-iron alloys. Metal Science,1980,14(12):591-594.
    [165]边秀房,王伟民,潘学民等.Al-TM合金熔体的中程有序结构及其演化规律.化学学报,2002,60(7):1215-1219.
    [166]Hunt J D, Jackson K A. Binary eutectic solidification. Transactions of the Metallurgical Society of AIME,1966,236:843-852.
    [167]Young R M K, Clyne T W. An Al-Fe intermetallic phase formed during controlled solidification. Scripta Metallurgica,1981,15:1211-1216.
    [168]Skjerpe P. Intermetallic Phases Formed during DC-Casting of an Al-0.25 Wt Pct Fe-0.13 Wt Pct Si Alloy. Metallurgical Transactions A,1987,18A:189-200.
    [169]Marina Galano, Fernando Audebert, Asuncion Garcia Escorial, et al. Nanoquasicrystalline Al-Fe-Cr-based alloys with high strength at elevated temperature. Journal of Alloys and Compounds,2010,495:372-376.
    [170]Lawther D W, Dunlap R A, Srinivas V. On the question of stability and disorder in icosahedral aluminum-transition metal alloys. Canadian Journal of Physics,1989,67:463-467.
    [171]Freiburg C, Grushko B. An Al13Fe4 phase in the Al-Cu-Fe alloy system. Journal of Alloys and Compounds,1994,210(1-2):149-152.
    [172]V. S. Zolotorevsky, N. A. Belov, M. V. Glazoff. Casting Aluminum Alloys. Oxford:Elsevier Ltd., 2007.
    [173]Freiburg C, Grushko B, Melchers M, et al. Structure of (Al,Cu)13Fe4 with Cu-Contents of 0,2 and 4 at.%. Materials Science Forum,1994,166-169:455-460.
    [174]Rosas G, Reyes-Gasga J, Perez R. Morphological characteristics of the rapidly and conventionally solidified alloys of the AlCuFe system. Materials Characterization,2007,58:765-770.
    [175]Liu K, Cao X, Chen X G. Solidification of iron-rich intermetallic phases in Al-4.5Cu-0.3Fe cast alloy. Metallurgical and Materials Transactions A,2011,42:2004-2016.
    [176]Kamga H K, Larouche D, Bournane M, et al. Solidification of aluminum-copper B206 alloys with iron and silicon additions. Metallurgical and Materials Transactions A,2010,41A:2844-2855.
    [177]Dobrzanski L A, Maniara R, Krupinski M, et al. Microstructure and mechanical properties of AC AlSi9CuX alloys. Journal of Achievements in Materials and Manufacturing Engineering,2007, 24(2):51-54.
    [178]Labisz K, Krupinski M, Dobrzanski L A. Phases morphology and distribution of the Al-Si-Cu alloy. Journal of Achievements in Materials and Manufacturing Engineering,2009,37(2): 309-316.
    [179]Mehdi Hosseinfar, Dmitri Malakhov. The Sequence of intermetallics formation during the solidification of an Al-Mg-Si alloy containing La. Metallurgical and Materials Transactions A, 2011,42A:825-833.
    [180]浅见重则,田中孝一,秀野晃.A1-Mg-Fe-Si合金连统铸造塊の縦の木组織.轻金属,1978,28(7):321-327.
    [182]Zhang L C, He A Q, Ye H Q, et al. Characterization of dispersed intermetallic phases in an Al-8.32wt%Fe-3.4wt%Ce alloy. Journal of Materials Science,2002,37:5183-5189.
    [183]SkjerpeP. Structure of AlmFe. Acta crystallographica, Section B, Structural science,1988,44B: 480-486.
    [184]Allen C M, O'reilly K A Q, Evans P V, et al. The effect of vanadium and grain refiner additions on the nucleation of secondary phases in 1xxx Al alloys. Acta materialia,1999,47(17):4287-4403.
    [185]Liu K, Cao X, Chen X.G. A New iron-rich intermetallic-AlmFe phase in Al-4.6Cu-0.5Fe cast alloy. Metallurgical and Materials Transactions A,2012,43(4):1097-1101.
    [186]Gowri S, Samuel F H. Effect of alloying elements on the solidification characteristics and microstructure of Al-Si-Cu-Mg-Fe 380 alloy. Metallurgical and Materials Transactions A,1994, 25(2):437-448.
    [187]Belov N A, Eskin D G, Andrey A, et al. Multicomponent phase diagrams:applications for commercial aluminum alloys. Oxford:ELSEVIER Ltd,2005.10-12.
    [188]Warmuzek M, Gazda A, Sieniawski J, et al. Processes of the formation of the Fe (Mn)-bearing intermetallic phases in the Al-Fe-(Mn)-Si alloys. Advanced Materials Science,2003,42 (4):81-91.
    [189]Murray J, Peruzzi A, Abriata J P. The Al-Zr System. Journal of Phase Equilibrium,1992,13(3): 278-291.
    [190]Raghavan V. Al-Cr-Mn. Journal of Phase Equilibria and Diffusion,2009,30(6):620-622.
    [191]Raghavan V. Al-Fe-Zr. Journal of Phase Equilibria and Diffusion,2006,27(3):284-287.
    [192]Raghavan V. Al-Fe-Zr. Journal of Phase Equilibria and Diffusion,2010,31(5):459-461.
    [193]大橘照男,市川理衛.A1-Zr-Cr,A1-Zr-Mn三元强制固溶体合金の机械性质.名古屋工业大学学报,1970,22:383-390.
    [194]Vlach M, Stulikova I, Smola B, et al. Characterization of phase development in non-isothermally annealed mould-cast and heat-treated Al-Mn-Sc-Zr alloys. Materials Characterization,2010, 61(12):1400-1405.
    [195]丛红日,边秀房,李辉.A15Fe2合金熔体中程有序结构的研究.化学学报,2002,60(2):287-292.
    [196]丛红日,边秀房,李辉等.液态A180Fe20合金的中程有序结构.物理化学学报,2002,18(1):39-44.
    [197]Qin J Y, Qin X B, Wang W M, et al. Model on medium range order in liquid Al-Fe alloys. Transactions of Nonferrous Metals Society of China,2004,14 (6):1068-1073.
    [198]韩逸,班春燕,郭世杰等.交流磁场对过共晶A1-2.89%Fe合金中含铁相分布的影响.金属学报,2006,42(6):624-628.
    [199]胡汉起.金属凝固原理(第二版).北京:机械工业出版社,2000.
    [200]王晖.强磁场对时合金中析出相凝固行为的影响:(博士学位论文).上海:上海大学,2003.
    [201]冯端.金属物理学(第四卷).北京:科学出版社,1998.304-308.
    [202]严密,彭晓领.磁学基础与磁性材料.杭州:浙江大学出版社,2006.13.
    [203]张天会,晋芳伟,任忠鸣等.强磁场对A1-40%Cu合金中A12Cu析出相的影响.航空材料学报,2011,31(4):24-28.
    [204]班春燕,陈丹丹,韩逸等.强磁场对A1-2.89%Fe合金凝固组织的影响.金属学报,2008,44(10):1224-1230.
    [205]郑峰.铝与铝合金速查手册.北京:化学工业出版社,2008.11.
    [206]胡友秋,程福臻,叶邦角.电磁学与电动力学(上).北京:科学出版社,2008.23-56.
    [207]Spitzer K H, Dubke M, Schwerdtfeger K. Rotational electromagnetic stirring in continuous casting of round strands. Metallurgical Transactions B,1986,17B:119-131.
    [208]张琦,金俊泽,王同敏等.金属液在旋转电磁搅拌器作用下的流动分析,中国有色金属学报,2007,17(1):98-104.
    [209]王承志,贾丹,刘凤国等.金属熔体电磁搅拌电磁-热-流体耦合场三维数值模拟.沈阳理工大学学报,2011,30(6):1-6.
    [210]张红霞,杜永胜,杜晓红.电磁搅拌中旋转磁场及洛伦兹力的数值模拟.大学物理实验,2010,23(5):17-19.
    [211]工程材料实用手册编辑委员会.工程材料实用手册(第2版).北京:中国标准出版社,2002.11.
    [212]郑洪亮,孔凡利,田学雷等.A1-Cu合金成分变化对其凝固潜热影响的研究.山东大学学报(工学版),2008,38(2):1-3,17.
    [213]王晓颖.非均质材料控制加热过程的组织演变与熔化行为:(博士学位论文).西安,西北工业大学,2003.
    [214]路贵民,任栖锋,董杰等.7075A1合金LSC铸锭二次加热中的液固相体积分数.东北大学学报(自然科学版),2002,23(9):876-879.
    [215]Kim W T, Zhang D L, Canter B. Nucleation of solidification in liquid droplets. Metallurgical Transactions A,1991,22A:2487-2501.
    [216]Jiang H T, Li M Q. Effects of isothermal heat treatment on microstructural evolution of semisolid Al-4Cu-Mg alloy. Journal of Materials Engineering and Performance,2004,13(4):48-49.
    [217]Wang S C, Li Y Y, Chen W P, et al. Microstructure evolution of semi-solid 2024 alloy during two-step reheating process. Transactions of Nonferrous Metals Society of China,2008,18(6): 784-788.
    [218]Wang J L, Su Y H, Tsao C Y A. Structural evolution of conventional cast dendritic and spray-cast non-dendritic structures during isothermal holding in the semi-solid state. Scripta Materialia,1997, 37(12):2003-2007.
    [219]Mao W M, Cui C L, Zhao A M, et al. Dynamical coarsening processes of microstructures in non-dendritic AlSi7Mg alloy remelted in semi-solid state. Transactions of Nonferrous Metals Society of China,2000,10(1):25-28.
    [220]Ferrante M, Freitas E D. Rheology and microstructural development of an Al-4wt%Cu alloy in the semi-solid state. Materials Science and Engineering,1999,271(2):172-180.
    [221]路贵民,史立峰,王平等.ZL201合金半固态二次加热时的组织演变.东北大学学报(自然科学版),2006,27(6):669-672.
    [222]Witten T A, Sander L M. Diffusion-limited aggregation. Physical Review B,1983,27(9): 5686-5697.
    [223]Mohammadi H, Ketabchi M, Kalaki A. Microstructure evolution of semi-solid 7075 aluminum alloy during reheating process. Journal of Materials Engineering and Performance,2011,20(7): 1256-1263.
    [224]Adriana Neag, Veronique Favier, Regis Bigot, et al. Microstructure and flow behaviour during backward extrusion of semi-solid 7075 aluminium alloy. Journal of Materials Processing Technology,2012,212:1472-1480.
    [225]曹富荣,管仁国,陈礼清等.二次加热过程中半固态AZ31镁合金的显微组织演变.中国有色金属学报,2012,22(1):7-14.
    [226]Tzimas E, Zavaliangos A. Evolution of near-equiaxed microstructure in the semisolid state. Materials Science and Engineering A,2000,289:228-240.
    [227]Lapkowski W. Some studies regarding thixoforming of metal alloys. Materials Science and Technology,1998,80-81:463-468.
    [228]张佳.半固态/热挤压Al-Fe合金热处理强化机理的研究:(硕士学位论文).沈阳:沈阳工业大学,2011.
    [229]Chen C P, Tsto C Y A. Semi-solid deformation of non-dendritic structures-I phenomenon. Acta Materialia,1997,45(5):1955-1968.
    [230]MargaridoM, Robert M H. Influence of thermo mechanical treatments on the production of rheocast slurries by partial melting. Journal of Materials Processing Technology,2003,133: 149-157.
    [231]Yoon J H, Im Y T, Kim N S. Finite element modeling of the deformation behavior of semi-solid materials. Journal of Materials Science and Technology,2001,113:153-159.
    [232]Jung H K, Kang C G. Induction Heating Process of an Al-Si Aluminum Alloy for Semi-solid Die Casting and its Resulting Microstructure. Journal of Materials Science and Technology,2002,120: 355-364.
    [233]Zhu Y F, Tang J L, Xiong Y Z. The Influences of the Microstructure Morphology of A356 Alloy on its Rheological Behavior in the Semi-solid State. Sci. Technol. Adv. Mater.,2001(2):219-221.
    [234]Chino Y, Konata M, Iwasaki H, et al. An investigation of compressive deformation behavior for AZ91Mg alloy containing a small volume of liquid. Acta Materialia,2003,51:3309-3318.
    [235]刘丹.铝合金液相线铸造制浆及半固态加工艺及理论研究:(博士学位论文).沈阳:东北大学,1999.
    [236]陈魁英,曾松岩,李庆春.A1-Cu合金液固共存区的流变行为.材料科学进展,1991,5(3):195-198.
    [237]李德福,林柏年.液固态合金流变特点的研究.特种铸造及有色合金,2001,21(3):6-8.
    [238]张家泉,于震宗,林家骝.合金凝固过程的微分型本构方程及其蠕变与松弛特征.北京科技大学学报,1995,17(1):41-45.
    [239]Kang C G, Jung H K. A study on solutions for avoiding liquid segregation phenomena in thixoforming process:Part I. constitutive modeling and finite element method simulations for die design. Metallurgical and Materials Transactions B,2001,32B (2):119-127.
    [240]Ludwig O,Drezet J M,Martin CL, et al. Rheological behavior of Al-Cu alloys during solidification: constitutive modeling, experimental identification, and numerical study. Metallurgical and Materials Transactions A,2005,36A (6):1525-1535.
    [241]Vaandrager B L, Pharr G M. Compressive creep of copper containing a liquid bismuth intergranular phase. Acta Metallurgica,1989,37(4):1057-1066.
    [242]罗守靖,程远胜,单巍巍.半固态金属流变学.北京:国防工业出版社,2011.114.
    [243]潘冶,曹洪波,孙国雄.半固态铝硅合金的压缩变形行为与组织变化.中国有色合金学报,2005,15(4):552-557.
    [244]Shiro Toyoshima, Youichi Takahashi. A numerical simulation of forming processes semi-solid materials. ISIJ International,1991,31(6):577-582.
    [245]李润霞,栾新颖,李青等.热处理对铸态过共晶A1-Fe基合金组织和性能的影响.第十二届全国铸造年会暨2011中国铸造活动周论文集,广州,2011:336-341.
    [246]Stephen Martin Collard. High-temperature elastic constants of gold single-crystals:(Doctoral Dissertation). Houston:Rice University,1991.
    [247]张俊善,材料高温变形与断裂,北京:科学出版社,2007.
    [248]Ma Z Y, Tjong S C. Creep defeomation characteristics of deformation of discontinuous reinforced aluminium-matrix composites. Composites Science and Technology,2001,61:771-778.
    [249]Weertman J. Steady-state creep of crystals. Journal of Applied Physics,1957,28:1185-1189.
    [250]Weertman J. Steady-state creep through dislocation climb. Journal of Applied Physics,1957,28: 362-364.
    [251]Mohamed F A, Park K T, Miller A K. Flow stress, subgrain size, and subgrain stability at elevated temperature. Metallurgical Transactions A,1977,8(4):843-850.
    [252]Park K T, Mohamed F A. Creep Strengthening in a Discontinuous SiC-Al Composite. Metallurgical and Materials Transactions A,1995,26A:3119-3129.
    [253]Cadek J, Kuchaiova K, Zhu S J. Creep behaviour of an Al-8.5Fe-1.3V-1.7Si-15SiCp composite at temperatures ranging from 873 to 948 K. Materials Science and Engineering A,2002, A328: 283-290.
    [254]Mishra R S, Pandey A B. Some observations on the high-temperature creep behavior of 6061 Al-SiC composites. Metallurgical Transactions A,1990,21 A:2089-2090.
    [255]Peng L M, Zhu S J, Wang F G, et al. Creep behavior in an Al-Fe-V-Si alloy and SiC whisker-reinforced Al-Fe-V-Si composite. Journal of Materials Science,1998,33:5643-5652.
    [256]Kassner M E. Taylor hardening in five-power-law creep of metals and Class M alloys. Acta Materialia,2004,52:1-9.
    [257]Kocks U F. A statistical theory of flow stress and work-hardening. Philosophical Magazine,1966, 13(123):541-566.
    [258]Li Y, Langdon T G. A unified interpretation of threshold stresses in the creep and high strain rate superplasticity of metal matrix composites. Acta Materialia,1999,47(12):3395-3403.
    [259]Liu P L. Static and cyclic creep behavior of 2024/SiCp and its matrix alloy at high temperature. Materials Science and Technology,1997,13:667-671.
    [260]Pandey A B, Mishra R S, Mahajan Y R. Steady state creep behaviour of silicon carbide participate reinforced aluminium composites. Acta Metallurgica et Materialia,1992,40(8):2045-2052.
    [261]Li Y, Langdon T G. Creep behavior of an Al-6061 metal matrix composite reinforced with alumina particulates. Acta Materialia,1997,45(11):4797-4806.
    [262]Rosler J, Joos R, Arzt E. Microstructure and creep properties of dispersion-strengthened aluminum alloys. Metallurgical Transactions A,1992(23A):1521-1539.
    [263]Rsler J, Arzt E. A new model-based creep equation for dispersion strengthened materials. Acta Metallurgica,1990(38):671-683.
    [264]Arzt E, Wilkinson D S. Threshold stresses for dislocation clumb over hard particles:the effect of an attractive interaction, Acta Metallurgica,1986,34(10):1893-1898.
    [265]Li Y, Langdon T G. A comparison of the creep properties of an Al-6092 composite and the unreinforced matrix alloy. Metallurgical and Materials Transactions A,1998,29(10):2523-2531.
    [266]Henry G, Hcrstmann D著,曾祥华,田继丰,柯伟等译.宏观断口学与微观断口学,北京:机械工业出版社,1990.5-60.
    [267]Michael Kassnerd, Maria-Teresa Perez-Prado. Fundamentals of Creep in Metals and Alloys. Oxford:ELSEVIER Ltd.,2004.215-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700