用户名: 密码: 验证码:
大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大兴安岭北部是东北地区乃至全国的重要有色金属和贵金属成矿带。本次工作对兴华渡口群变质岩、中生代火山岩和各时代侵入岩的代表性岩体进行了岩相学、岩石化学、地球化学、同位素和SHRIMP锆石U-Pb定年及Ar-Ar年龄测试工作,获得了大量高精度年代学和岩石—地球化学资料。在前人原划兴华渡口群细粒花岗闪长岩和二云母石英片岩中首次获得了2400~2600Ma的SHRIMP锆石U-Pb年龄,表明额尔古纳地块存在新太古代—古元古代结晶基底,解决了长期争论的额尔古纳地块基底属性问题;在额尔古纳地块北缘漠河地区获得了504~517Ma的花岗岩类SHRIMP锆石U-Pb年龄,确认了兴凯—萨拉伊尔运动在本区的存在;研究区中生代火山岩40Ar/39Ar年龄为116.7~122.2Ma,为早白垩世火山岩,其形成与中生代蒙古—鄂霍茨克造山带造山过程有关,加厚的下地壳拆沉作用引起的软流圈上涌是本区中生代火山岩形成的根本原因。探讨了大兴安岭北部大地构造演化,自新太古代以来,研究区大致经历了新太古代—古元古代早期构造演化、中元古代—新元古代早期罗迪尼亚超大陆构造演化、新元古代—古生代西伯利亚板块南缘陆缘增生构造演化和中新生代滨太平洋大陆边缘构造演化四大构造旋回,再根据沉积建造、岩浆活动和构造变动等特征进一步划分出10个构造演化阶段,即(1)古陆块形成阶段、(2)额尔古纳地块形成阶段、(3)地块初始裂解阶段、(4)罗迪尼亚超大陆形成阶段、(5)罗迪尼亚超大陆裂解阶段、(6)兴凯—萨拉伊尔造山阶段、(7)古亚洲洋裂解阶段、(8)古亚洲洋封闭—造山阶段、(9)蒙古—鄂霍茨克造山带形成阶段和(10)大陆板内演化阶段。对典型矿床的矿床特征、流体包裹体性质、同位素等进行了研究,认为本区的成矿作用主要发生于海西期和燕山期,尤以燕山期成矿最为重要;主要矿床类型为热液脉型铅锌银矿床、造山型金矿床、斑岩型铜钼矿床、浅成低温热液型金银(铜)矿床、热水喷流沉积型铁多金属矿床、矽卡岩型铁多金属矿床及矽卡岩和中高温热液脉复合型钨锡钼多金属矿床;上述矿床形成于三大动力学体系,海西期成矿作用与古亚洲洋裂解和造山作用有关,燕山早期晚阶段(晚侏罗世)成矿作用与蒙古—鄂霍茨克造山带陆—陆碰撞造山过程有关,燕山晚期早阶段(早白垩世)成矿作用与大兴安岭中生代板内岩浆作用有关。按照矿床成矿系列理论,在大兴安岭北部划分出5个矿床成矿系列和20个矿床式,即(1)与晚古生代火山—沉积盆地演化有关的海底热水喷流沉积成矿系列、(2)与晚古生代中酸性侵入活动有关的铁多金属成矿系列、(3)与中生代陆—陆碰撞有关的金、铜、钨、锡、钼、多金属成矿系列、(4)与中生代板内中、酸性侵入活动有关的铅、锌、银、铜、金成矿系列和(5)与中生代板内中酸性火山岩、次火山岩及斑岩有关的金、银、铜、铅、锌、钼成矿系列。在上述基础地质和典型矿床研究的基础上,总结了区域成矿规律、建立了区域成矿模式和找矿标志。最后,根据区域成矿规律、区域成矿模式和各类型矿床的找矿标志,结合地(质)、物(探)、化(探)和遥(感)等综合资料,对研究区找矿潜力进行了分析,指出了成矿有利地区和地段,进而圈定出15个找矿远景区和24个找矿靶区,为下一步普查找矿工作奠定了基础。
The northern segment of Da Hinggan Mountain is an important metallogenic beltof nonferrous-precious metals in the northeast, and even more, the whole China. Themetallogenic belt is located in the eastern segment of Mongolian-Hinggan compositemega-orogenic belt, which is located between the Erqisi-Suolun-Heihe andMongolian-Okhotsk suture zones. The northern segment of Da Hinggan Mountain consists oftwo massifs, one accretional orogenic belt, and one basin, i.e. Erguna massif in west, NorthXing'an block in east, Erlunchun accretional orogenic belt of middle Late Paleozoic era inmiddle, and Upper Heilongjiang basin in north. The studed area belonged to the continentalmargin accretional belt of southern margin of Siberian plate in pre-Mesozoic, whilesuperimposed by the continental marginal activizing belt of marginal-West Pacific tectonicdomain, with extraordinary complicated tectonic settings. The basic geological problems,such as the nature of the Erguna massif, the evolutional history of Paleo-Asian Ocean and theHinggan-Mongolian orogenic belt, the geodynamic background of Mesozoic volcanic rock innorthern segment, the influence of Mongolian-Okhotsk orogenic belt on Mesozoic tectonicevolution in Northeast China, etc. have long attracted the attention of geologists both atdomestic and abroad, which still need futher study today. The study of fundamental geologyis poor, without a comprehensive and accurate judgement about regional metallogenicgeological setting. Meanwhile, there are different ideas about the genetic types and essentialfeatures of deposits. These have severely affected reconnaissance survey and prospecting.Therefore, the prospecting have not got significant achievement for many years. For theabove-mentioned reasons, the author chose the northern segment of Da Hinggan Mountain asresearch area of doctorial paper. The author will sum up the metallogenic regularities, directprospecting and exploration of nonferrous-precious metals in research area by studies ofmetallogenic settings and typical deposits.
    The author took tectonic-magmatic activity and mineralization as the key, to studysystermatically lithology, petrochemistry, geochemistry and isotope geochemistry of variousintrusive rocks and Mesozoic volcanic rock in north Da Hinggan Mountain. Many newgeochronological data by SHRIMP zircon U-Pb, 40Ar-39Ar, and Rb-Sr isotime line have beenobtained for the metamorphic rocks of Xinghuadukou Group, every epoch typical intrusions,and Mesozoic volcanic rocks in the studied area. On the basis of detailed field investigationon the typical deposits, we studied the fluid inclusions of the typical deposits, and obtainedthe mineralization temperature, salinity, pressure, and depth of the typical deposits in thestudied area. Meanwhile, we analyzed the rare earth elements and trace elements of rocks (orores) and geological bodies from the typical deposits and different geological stages, anddetermined the main source beds. Based on the isotopic data of S, H, O, and Pb, the authorascertained the source of ore substances, nature of ore-forming solution, and genetic types ofdeposits. On the basis of metallogenic regularity, metallogenic model and prospecting criteriaas well as the data of geology, geophysical exploration, geochemical exploration, remotesensing etc. The author discussed the prospecting potential in the northern segment of DaHinggan Mountain.
    A series of high precision geochronological data (2600 Ma±, 2400~2600 Ma, 1888±85 Ma, 892±20 Ma, 504~517 Ma, 450 Ma±, and 193~215 Ma) by SHRIMP U-Pb datingof zircons have been obtsind for the metamorphic rocks and granitoids in the northernsegment of Da Hinggang. The geochronological data showed that there were crystallinebasements of Neoarchean-Paleoproterozoic in the studied area.The basement nature of theErguna massif which has long disputed has been solved. The age of 1888±85 Ma wasconsidered as the age of an important tectonic-hydrothermal event in late Paleoproterozoicwhich represent Xingdong movement, and the age of 892±20 Ma was the age of an regionalmetamorphism. At the same time, the Rodinia supercontinent was formed in the southernmargin of Siberian platform. The discovery of post-collsional granitoids of 504~517 Masuggested that Salair orogenic movement was finished with closured of the north branch ofthe Paleo-Asian Ocean ca. 500 Ma ago. We suggestd that an important magmatic intrusiveevent occurred in 404±15 Ma. Island arc and syncollisional granitoids of 193~251 Ma arepre-orogenic and synorogenic granitoids of the Mongolian-Okhotsk orogenic belt, theirgenesis were closely related to the evolution of the Mongolian-Okhotsk orogenic belt innorthern part of the studied area. Based on high precious geochronological data of SHRIMPzircon U-Pb dating, in view of the features of petrology, petrochemistry, geochemistry andisotope geochemistry, the tectonic evolutions of the northern segment of Da HingganMountain can be roughly divided into 10 stages, i.e. (1) the ancient land massif stage, (2) theErguna massif forming stage, (3) the primary cracking stage of the massifs, (4) the Rodiniasupercontinent forming stage, (5) the cracking stage of Rodinia supercontinent, (6) theXingkai-Sarair orogenic stage, (7) the cracking stage of the Paleo-Asian Ocean, (8) thePaleo-Asian Ocean closing and orogenic stage, (9) the Mongolian-Okhotsk orogenic beltforming stage, and (10) the evolution stage of intracontinent.The geochronological data from 40Ar-39Ar and Rb-Sr isotime line suggested that theMesozoic volcanic rocks in northern part of Da Hinggan Mountain were formed in 130~116.7 Ma, which belong to Early Cretaceous period. The characteristics of major, REE andtrace elements of the Mesozoic volcanic rocks indicated that Tamulangou Formation wasformed in a transform setting of intracontinent from compression to extension, and related tothe collision-super collisional orogenic processes of the Mesozoic Mongolian-Okhotskorogenic belt. The Shangkuli Formation volcanic rock was characterized by those of islandarc, which was affected by Izanaqi plate inclined subducting, and converged beneath theAsian continent. The Yiliekede Formation volcanic rock was formed in an extensionalbackground of intracontinent. In a word, the formation of the Mesozoic volcanic rocks in thearea was closely related to the orogenic process of the Mongolian-Okhotsk orogenic belt, butnot immediately related to the westward subduction of the Pacific plate. The volcanic rockswere probably resulted from the thickened crust, and delamination of lithosphere.Based on study of the typical deposits of Chaganbulagen Pb-Zn-Ag deposit, Shabaosigold deposit, Wunugetushan Cu-Mo deposit, Erentaolegai Ag deposit, etc., the deposit typesof nonferrous-precious metals in the area can be divided into 7 genitic types, i.e.hydrothermal vein Pb-Zn-Ag, orogenic gold, porphyry Cu-Mo (Au), epithermal Au-Ag (Cu),SEDEX Fe-polymetallic ore, skarn Cu-polymetallic ore, and skarn and meso-hyperthermalvein composite type of W-Sn-Mo-polymetallic ore deposits. The mineral species weremainly Pb, Zn and Ag, followed by Au, Cu and Mo. The metallogenic epoch ofnonferrous-precious deposits was Variscan and Yanshanian, major metallogenesis focused onYashanian.The study of fluid inclusions of the typical deposits showed that the ranges ofmineralization temperature of hyperthermal vein Pb-Zn-Ag, orogenic gold, porphyry Cu-Mo,and epithermal Au-Ag (Cu) deposits are 261.4℃±, 266.5~295.2℃, 333.6℃±, and 200~
    260℃, respectively. The mineralization temperatures, from high to low are presented atporphyry Cu-Mo (Au) deposit, orogenic gold deposit, hydrothermal vein Pb-Zn-Ag deposit,and epithermai Au-Ag (Cu) deposit. The salinities of ore-forming solution of thehydrothermal vein Pb-Zn-Ag, orogenic gold, and epithermal Au-Ag (Cu) deposits are all inlow level, ranging 2.23~7.05 wt% NaCl, 2.06~11.23 wt%, and 1.73~5.80 wt%,respectively. The porphyry Cu-Mo (Au) deposits have a wide range of salinity (3.76~50.52wt% NaCl), indicating that there were two stages of solutions, and these deposits probablyexperienced the early stage of porphyry Cu-Mo of meso-hyperthermal and high salinity, andthe late stage of mesothermal and low salinity gold mineralization, respectively. Themetallogenic pressure ranges of the orogenic gold deposit are 54.11~92.73 MPa, withmineralization depths of 5.88 and 7.68 km. The metallogenic pressures of the hydrothermalvein Pb-Zn-Ag deposit and epithermal Au-Ag (Cu) deposit are 21.30 MPa and 17.93 MPa,respectively, mineralized are 2.13 km and 0.60 km in deep. The metallogenic pressures of theporphyry Cu-Mo (Au) deposits are between 64.50 and 114.60 MPa, with mineralizationdepths between 2.15 and 3.82 km. The metallogenic depth sequence of main deposit types inthe northern segment of Da Hinggan Mountain are the the orogenic gold deposit, porphyryCu-Mo (Au) deposits, hydrothermal vein Pb-Zb-Ag deposit, and epithermal Au-Ag (Cu)deposits from deep to shallow, in turn. The value of sulfur isotope (δ34S) of thehydrothermal vein Pb-Zn-Ag deposit, orogenic gold deposit, porphyry Cu-Mo (Au) deposit,epithermal Au-Ag (Cu) deposit, and skarn and meso-hyperthermal vein composite typeW-Sn-Mo-polymetallic ore deposit are -14.1‰~5.4‰, -5.2‰~9.6‰, 1.1‰~3.9‰, -12.2‰~-6.4‰, and -2.9‰~2.6‰, among which the range of 0.0‰~6.0‰ is predominant.The characteristics of sulfur isotope (δ34S) indicated that the origin of sulfur was closelyrelated to anatectic magma, but the value of δ34S from some epithermal and hydrothermalvein deposits (e.g. Siwumuchang gold deposit and Xijinuoshan Pb-Zn-Ag deposit) are farbellow 0‰, which suggested that the sulfur come mainly from host rock or sedimentary rock.The characteristics of H and O isotopic compositions of the deposits showed that theore-forming solution is mainly composed of magmatic water mixed with meteroric water.The heat source were derived from the Mesozoic volcanic-invasive magma. The lead isotopiccomposition of the deposits reflected the characteristics of orogenic lead isotope, and the leadof ore came mainly from the Mesozoic igneous rocks.The northern segment of Da Hinggan Mountain is an important metallogenic provinceof Pb-Zn-Ag deposits. The analysis data of ore-forming trace elements showed that thecontents of Pb, Zn and Ag in all rocks of each epoch are high. The content of gold is higherin the Paleoproterozoic Xinghuadukou Group, Neoproterozoic Jiageda Formation,Lower-Middle Devonian Niqiuhe Formation, and Upper Jurassic Tamulangou Formationthan the average value in the crust or the same rocks in the world. These strata wererecognized as the source bed for gold deposit in studied area. The Lower Cambrian ErgunaheFormation and Lower-Middle Ordovician Duobaoshan Formation were regarded as thesource bed of Cu-Mo deposits. The Xingkai-Salair granitoids were favorable intrusive rocksfor the forming of Ag, Cu, Pb, Zn and Mo deposits. The Variscan-Indosinian granitoids werefavorable intrusive rocks for Ag, Pb, Zn and Mo deposits. The Yanshanian intrusive rock wasore-forming mother rock for Au, Cu, Pb, Zn and Mo deposits.According to the theory of metallogenic series of deposit, the author worked out 5deposit metallogenic series with 20 deposit types in the northern segment of Da HingganMountain, namely, (1) the metallogenic series of SEDEX deposits related to the revolution ofLate Paleozoic volcanic-sedimantary basin, (2) the metallogenic series of Fe-polymetallic ore
    deposits related to the intermediate-acid invasive magma in Late Paleozoic era, (3) themetallogenic series of Au, Cu, W, Sn, Mo and polymetallic ore deposits related to thecontinental-continental collision between the North China and Siberian plates in Mesozoicera, (4) the metallogenic series of Pb, Zn, Ag, Cu and Au deposits related to theintermediate-acid intrusive rock of intraplate in Mesozoic era, and (5) the metallogenic seriesof Au, Ag, Cu, Pb, Zn and Mo deposits related to the Mesozoic volcanic-subvolcanic rocks,and hypabyssal porphyry in intraplate.On the basis of the metallogenic setting, ore-control structure, mineralization etc., thestudied area can be divided into 3 metallogenic belts and 12 metallogenic subbelts, i.e. (1) theDerbugan Pb, Zn, Ag, Au, Cu, Mo and U metallogenic belt in the Yanshanian, (2) theTayuan-Wunuer Fe-polymetallic metallogenic belt in the Variscan-Yanshanian, and (3) theYanshanian Au, Cu, W, Sn and Mo metallogenic belt in the southeastern margin of theMongolian-Okhotsk orogenic belt. Study showed that the Derbugan metallogenic beltproposed by previous researchers cann't comprehensively reflect the characteristics ofmetallogenesis in this area. The author thought that there are 3 obviously differentgeodynamic rigems from Paleozoic to Mesozoic era. Correspondingly, 3 metallogenic beltsof different epochs, different mineral species and different genetic types were formed. (1)The Tayuan-Wunuer Fe-polymetallic metallogenic belt in the Variscan-Yanshanian wascontrolled by the Paleo-Asian Ocean geodynamic rigem. Its metallogenesis in Late Paleozoicera was related to the splitting and orogenesis of the Paleo-Asian Ocean. In EarlyCarboniferous, VHMS type of Fe-polymetallic ore deposit was formed in the metallogenicbelt, subsequently, forming skarn type Fe-polymetallic ore deposit in collisional andpost-collisional stages of the Late Variscan. (2) The metallogenic belt of the southeasternmargin of the Mongolian-Okhotsk orogenic belt was formed in Mesozoic era, under themetallogenic background of collision-post collision. In the belt, the orogenic gold deposit,and skarn and meso-hyperthermal vein composite type W-Sn-Mo deposits were usuallygenerated. These deposits were generally related to acid-ultraacid granitoids of late orogeny.Their metallogenic epoch focused on Late Jurassic (135.6~150.9 Ma). (3) The Derbuganmetallogenic belt is an important Pb, Zn, Ag, Au, Cu, Mo and U metallogenic belt, whosemetallogenic epoch focused on Early Cretaceous (120 Ma±). These deposits were formed inextensional environment of intraplate, with main types of hydrothermal vein Pb-Zn-Agdeposit, porphyry Cu (Mo) deposit and epithermal Au-Ag (Cu) deposit, closely related tocontinental volcanic-subvolcanic rocks of Mesozoic era.On the basis of study on the basic geology, typical deposits and metallogenic series ofdeposits above-mentioned, the metallogenc model and prospecting criteria were set up in thestudied area. Finally, based on the data of geology, geophysics, geochemistry, remote sensingetc., as well as the GIS-based mineral resources database, the author ascertained theprospecting potential of Au, Ag, Cu, Pb, Zn and Mo in the studied area, and pointed outfavorable metallogenic region and district, meanwhile, worked out 15 prospective areas and24 prospecting targets. In addition, the author classified the prospective areas with grade A, Band C in turn according to their prospecting potential from high to low. These works havelaid a foundation for subsequent reconnaissance survey and prospecting.
引文
1. Alexander Yakubchuk. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model. Journal of Asian Earth Sciences, 2004, 23 : 761-779
    2. Atherton M P, Petford N. Generation of sodium — rich magmas from newly underplated basaltic crust. Nature, 1993, 362 : 144-146
    3. Barbarin B. Granitoids main petrogenetic classifications in relation to origin and tectonic setting. Geol J, 1990, 25: 227-238
    4. Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 1999, 46: 605-626
    5. Batchelor R A, Bowden V P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem Geol, 1985, 48(1): 43-55
    6. Berger B R, Henry R W. Advance in the understanding of epithermal gold-silver deposits, with special reference to the Western United State. Economic Geology, 1989, Monograph, 6: 405-423
    7. Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P, ed. Rare Earth Element Geochemistry. Elsevier: 1984, 2: 63-114
    8. Chen W, Zhang Y, Ji Q et al. The magmatism and deformation times of the Xidatan rock series, East Kunlun Mountain. Science in China, Series B, 2002, 45(Supplement): 20-27
    9. Claesson S, Vetrin V, Bayanova T et al. U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia: a record of geological evolution from the Archaean to the palaeozoic. Lithos, 2000, 51(1-2): 95-108
    10. Clayton R N, O'Neil J R, Mayeda T K. Oxygen isotope exchange between quartz and water. J. Geophys. Res., 1972, (B77) : 3057-3067
    11. Engebretson D C, Jones D L, Schermer R G et al. Relative mortions between oceanic and continental plates in the Pacific basins. Geol. Soc. Am., 1985, 206 : 1-59
    12. Fan W M, Guo F, Wang Y J et al. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China. Journal of Volcanology and Geothermal Research, 2003, 121: 115-135
    13. Ferre E C, Caby R, Peucat J J et al. Pan-African post-collisional, ferro-potassic granite and quarts-monzonite plutons of Eastern Nigeria. Lithos, 1998, 45: 255-279
    14. Goldfarb R J, Phillips G N, Nokleberg W J. Tectonic setting of synorogenic gold deposits of the Pacific Rim. Ore Geol. Rev., 1998, 13 (1~5) : 185-218
    15. Groves D I. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Miner. Deposita, 1993, 28 : 366-374
    16. Groves D I, Goldfarb R J, Gebre-Mariam M et al. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rer., 1998, 13 (1~5) : 7-27
    17. Hagemann S G, Brown P E. Geobarometry in Archaean lode-gold deposits. Eur. J. Mineral, 1996, 8: 937-960
    18. Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism. In: Coward M P, Ries A C, eds. Collision Tectonics. Geol Soc Spec Publ, 1986. 19: 67-81
    19. Heald P et al., Comparative Anatomy of volcanic-hosted epithermal deposits:acid-sulfate and adularia-sericita types, Econ.Geol.1987, 82(1): 1-26
    20. Hedenquist J W. Mineralization associated with volcanic-related hydrothermal systems in the circum-pacific Basin[A]. In: Horn M K, ed. Transactions of Fourth Circum-Pacific Energy and Mineral Re-sources Conferences, Singapore[C].Am. Assoc. Pet. Geol., 1987a, 513-524
    21. Hendenquist J W. Volcanic-related hydrothermal system in the Circum-Pacific basin and their potential for minerlization. Mining Geology, 1987b, 37 (3): 347-364
    22. Hedenquist J W et al. The role of magmas in the formation of hydrothermal ore deposits. Nature, 1994, 370 (18)
    23. Hedenquist J W, Antonio A, James R. Evolution of an intrusion-centered hydrothermal system: far Southeast-Lepano porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 1998, 93 (4): 373-404
    24. Hodgson C J, Love D A, Hamilton J V. Giant mesothermal gold deposits: Descriptive characteristics, genetic model and exploration area selection criteria [A]. In : Whiting et al. eds. Giant Ore Deposits [C]. Specia Publication No.2, Society of Economic Geologists, 1993, 157-221
    25. Kerrich R, Cassidy K F. Temporal relationships of lode gold mineralization to accretion, magmatism, metamorphism and deformation──Archean to present : A review. Ore Geol. Rev., 1994, 9: 263-310
    26. Kuster D, Harms U. Post-collisional potassic granitoids from the southern and northwestern parts of the late Neo-proterozoic East African Orogen: A review. Lithos, 1998, 45: 177-195
    27. Li C Y, Wang Q, Liu X Y et al. Explanatory Notes to the Tectonic Map of Asia. Beijing: Cartographic Publishing House, 1982, 1-49
    28. Li J Y, He Z J, Mo S G et al. The late Mesozoic orogenic processes of Mongolia-Okhotsk or evidence from field investigations into deformation of the Mohe area, NE China. Jour Geosci Res NE Asia, 1999, 2(2): 172-178
    29. Liegeois J P, Navez J, Hertogen J et al. Contrasting origin of post-collisional high K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos, 1998a, 45: 1-28
    30. Liegeois J P. Some words on the post-collisional magmatism. Lithos, 1998b, 45: ⅩⅤ~ⅩⅦ
    31. Lindgren W. Mineral deposits. 4th ed. New York and London: Mcgraw Hill, 1933, 930P
    32. Martin H. Adakitic magmas: modern analogues of Archean granitoids. Lithos, 1999, 46: 411-429
    33. Maruyama S. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed. The Island Arc, 1997, 6: 91-120
    34. Nelson D R. Compilation of SHRIMP U-Pb Geochronology Data. Perth: Geological Survey of Western Australia Record, 1999, 189
    35. Nesbitt B E, Murowchick J B, Muehlenbachs K. Dual origin of lode-gold deposits in the Canadian Cordillera. Geology, 1986, 14: 506-509
    36. Parfenov L M, Popeko L I, Tomurtogoo O. Problems of the tectonics of the Mongolia-Okhotsk orogenic belt. Tikhookean. Geol., 1999, 18 (5): 24-43
    37. Parfenov L M, Popeko L I, Tomurtogoo O. Problems of tectonics of the Mongolia-Okhotsk orogenic belt. Geol of Pac Ocean, 2001, 16: 797-830
    38. Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rock. J Petrol, 1984, 25 (4): 956-983
    39. Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol, 1976, 58: 68-81
    40. Pither W S. Granite type and tectonic environment. In: Hsu K, ed. Mountain Building Processes. London: Academic Press, 1983, 19-40
    41. Poli G, Ghezzo C, Conticelli S. Geochemistry of granitic rocks from the Hercynian Sardinia-Corsica batholith: implication for magma genesis. Lithos, 1989, 23: 247-266
    42. Potter R W Ⅱ, Clynne M A, Brown D L. Freezing point depression of aqueous sodium chloride solutions. Econ. Geol., 1978, 73: 284-285
    43. Qin K Z, Wang Z T, Pan L J. Magmatism and metallogenic systemmatics of the southern Ergun Mo, Cu, Pb, Au and Ag belt, Inner Mongolia, China. Resource Geology Special Issue, 1995, 18: 159-169
    44. Ren J S, Wang Z X, Chen B W et al. The Tectonics of China from A Global View ── A Guide to the Tectonic Map of China and Adjacent Region. Beijing: Geological Publishing House, 1999, 1-32
    45. Ridley J, Mikucki E J, Groves D I. Archaean lode-gold deposits: Fluid flow and chemical evolution in vertically extensive hydrothermal systems . Ore Geol. Rev., 1996, 10: 279-293
    46. Salnikova E B, Sergeev S A, Kotov A B et al. U-Pb zircon dating of granulite metamorphism in the Sludyanskiy Complex, eastern Siberia. Gondwana Res, 2000, 1: 195-205
    47. Searle M P, Parrish R R, Hodges K V et al. Shisha Pangma leucogranite. South Tibetan Himalaya: field relations. Geochemistry, age, origin and emplacement. J Geol, 1997, 105: 295-317
    48. Sillitoe R H. Intrusion-related gold deposits [A]. In: Foster R P (Ed.), Gold Metallogeny and Exploration [C]. Blackie, Son, Glasgow, 1991a, pp. 165-209
    49. Sillitoe R H et al. Gold Metallogeny of Chile—an Introduction, Economic Geology, 1991b, 86 (6): 1187-1205
    50. Sillitoe R H. Giant and bonanza gold deposits in the epithermal environment: Assessment of potential genetic factors [A]. In : Whiting et al. eds. Giant Ore Deposits [C]. Specia Publication No.2, Society of Economic Geologists, 1993, 125-155
    51. Sillitoe R H, et al. High sulfidation deposit in the volcaniogenic massivesulfide environment. Economic Geology, 1996, 91 (2): 204-212
    52. Sillitoe R H, Thompson J F H. Intrusion-related vein gold deposits: type, tectono-magmatic settings and difficulties of distinction from orogenic gold deposits. Resource Geology, 1998, 48 (4) : 237-250
    53. Singer D A. 世界级金银铜铅锌矿床的定量分析. 杨卫东, 等编译, 地质地球化学, 1996 (6): 5-13
    54. Sorokin A A, Kudryashov N M, Sorokin A P. Fragment of Paleozoic active margins at the southern periphery of the Mongolia-Okhotsk foldbelt: evidence from the northeastern Argun terrane, Amur River region. Doklady Earth Sciences, 2002, 387A: 1038-1042
    55. Sorokin A A, Yarmolyuk V V, Kotov A B et al. Geochronology of Triassic-Jurassic granitoids in the southern framing of the Mongolia-Okhotsk foldbelt and the problem of early Mesozoic granite formation in central and eastern Asia. Doklady Earth Sciences, 2004a, 399 : 1091-1094
    56. Sorokin A A, Kudryashov N M, Li J Y et al. Early Paleozoic granitoids in the eastern margin of the Argun' terrane, Amur area: first geochemical and geochronologic data. Petrology, 2004b, 12(4): 367-376
    57. Streckeisen, A L. Classification of the common igneous rocks by means of their chemical composition: a provisional attempt. Neues Jahrbuch fur Mineralogie, Monatshefte, 1976, 1: 1-15
    58. Sylvester P J. Post-collision strongly peraluminous granites. Lithos, 1998, 45: 29-44
    59. Tang K D. Tectonic development of Paleozoic fold belts at the north margin of the Sino-Korean craton. Tectonics, 1990, 9(2): 249-260
    60. Taylor S R. Abundance of chemical elements in the continental crust: a new table. Geochim. et Cosmochim. Acta, 1964, 28: 1273-1285
    61. Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 1985, 54-372
    62. Turekian K K, Wedepohl K H. Distribution of the elements in some major units of the Earth's crust. Geological Society of America Bulletin. 1961, 72: 175-192
    63. White N C, Hendenquist J W. Epithermal enviroment and styles of minerlization: viriations and their causes and guideline of exploration, Joural of Geochemical Exploration, 1990, 36 (3): 445-474
    64. Wilde S A, Zhang X Z, Wu F Y. Extension of newly identified 500Ma metamorphic terrain in Northeast China: further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics, 2000, 328: 115-130
    65. Wilde S A, 吴福元, 张兴洲. 中国东北麻山杂岩晚泛非期变质的锆石年龄证据及全球大陆再造意义. 地球化学, 2001, 30 (1): 35-50
    66. Wilde S A, Wu F Y, Zhang X Z. Late Pan-African magmatism in northeastern China: SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif. Precambrian Reseach, 2003, 122: 311-327
    67. Williams I S. U-Th-Pb geochronology by ion microprobe. Rew Econ Geol, 1998, 7: 1-35
    68. Wu F Y, Sun D Y, Li H M et al. The nature of basement beneath the Songliao Basin in NE China: geochemical and isotopic constraints. Phys. Chem. Earth (part A), 2001, 26: 793-803
    69. Zartman R E, Doe B R. Plumbotectonics——the model. Tectonophysics, 1981, 75: 135-162
    70. Zen E A. Phase relations of peralumious granitic rock and their petrogenetic implications. Ann Rew Earth Planet Sci, 1988, 16: 21-51
    71. Zonenshain L P, Kuzmin M I, Natapov L M. Geology of the USSR: plate tectonic synthesis. Am. Geophys. Union Geodyn., 1990, 21: 242
    72. Zorin Yu A, Belichenko V G, Turutanov E Kh, et al. The South Siberia-central Mongolia transect. Tectonophysics, 1993, 225: 361-378
    73. Zorin Yu A, Belichenko V G, Turutanov E K, et al. The East Siberia transect. International geology review, 1995, 37: 154-175
    74. Zorin Yu A. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics, 1999, 306: 33-56
    75. Zorin Yu A, Zorina Lidia D, Spiridonov A M et al. Geodynamic setting of gold deposits in Eastern and Central Trans-Baikal (Chita Region, Russia). Ore Geology Reviews, 2001, 17: 215-232
    76. Попек Л И, Натальин Б А, Беляева Г В, и др. Палеобиогеографическая зональность Палеозоя и Геодинамик Юога Дальнего Востока России.Тихоокеанская Геология, 1993, 5: 19-30
    77. Сорокин А А, Кудряшов Н М, Ли Цзиньи. U-Pb Геохронология гранитоидов Октябрьского комплекса Мамынского террейна (Приамурье). Тихоокеанская Геология, 2004, 23 (5): 54-67
    78. Тамаринов А В, Яловик Л И, Яловик Г А. Золотое оруденение в надвиговых структурах Монголо-Охотского коллизионного шва (Пришилинская и Онон-Туринская зоны). Тихоокеанская Геология, 2004, 23 (3) : 22-31
    79. 陈文, 刘新宇, 张思红. 连续激光阶段升温 40Ar/39Ar 地质年代测定方法研究. 地质论评, 2002, 48(增刊): 127-134
    80. 陈祥. 内蒙古额仁陶勒盖银矿床地质地球化学特征及成因探讨. 地质找矿论丛, 1996, 11(4): 65-75
    81. 陈祥, 李鹤年, 段国正. 内蒙古额仁陶勒盖花岗岩成因与银矿床的形成. 矿产与地质, 1997, 11(2): 91-98
    82. 陈祥. 内蒙古额仁陶勒盖银矿床稳定同位素研究. 内蒙古地质, 2000, (1): 11-16
    83. 陈毓川. 矿床成矿系列. 地学前缘, 1994, (3): 90-94
    84. 程裕淇, 赵一鸣, 陈松年. 中国几组主要铁矿类型. 地质学报, 1978, 61(4): 205-224
    85. 程裕淇, 陈毓川, 赵一鸣, 等. 初论矿床成矿系列问题. 中国地质科学院院报, 1979, 1(1): 32-58
    86. 程裕淇, 陈毓川, 赵一鸣, 等. 再论矿床的成矿系列问题. 中国地质科学院院报, 1983, (6): 1-64
    87. 戴自希. 全球超巨型金属矿床[A], 见: 陈毓川主编, 走向 21 世纪的地学与矿产资源[C], 北京: 地质出版社, 1996
    88. 戴自希. 近年来世界金属矿产勘查的经验与启示, 国外地质科技, 1998 (1): 19-27
    89. 戴自希. 加拿大赫姆洛矿床发现史[A], 见: 陈毓川主编, 当代矿产资源勘查评价的理论方法[C], 北京: 地震出版社, 1999
    90. 戴自希, 王家枢. 矿产勘查百年, 北京: 地震出版社, 2004
    91. 邓晋福, 刘厚祥, 赵海玲, 等. 燕辽地区燕山期火成岩与造山模型. 现代地质, 1996, 10 (2): 137-148
    92. 地质矿产部赴日本火山岩型金矿和黑矿地质考察团. 日本火山岩型金矿和黑矿地质考察报告. 全国黄金地质工作领导小组办公室、浙江省地质矿产局出版, 1987
    93. 段瑞焱, 杨方, 李兰英, 等. 周边国家金矿地质与我国金矿展望. 北京: 地质出版社, 1990, 41-81
    94. 范书义, 毛华人, 张晓东, 等. 大兴安岭中段二叠系地球化学特征及其成矿意义. 中国区域地质, 1997, 16 (1): 89-97
    95. 葛文春, 林强, 李献华, 等. 大兴安岭北部伊列克得组玄武岩的地球化学特征. 矿物岩石, 2000, 20 (3): 14-18
    96. 葛肖虹. 华北板内造山带的形成史. 地质论评, 1989, 35 (3): 255-261
    97. 韩振新, 徐衍强, 郑庆道. 黑龙江省重要金属和非金属矿产的矿床成矿系列及其演化. 哈尔滨: 黑龙江人民出版社, 2003, 58-59
    98. 黑龙江省地质矿产局. 黑龙江省区域地质志. 北京: 地质出版社, 1993, 5-438
    99. 黄汲清, 任纪舜, 姜春发, 等. 中国大地构造基本轮廓. 地质学报, 1977, 51 (2): 117-135
    100.贾伟光, 王晓勇, 张春辉, 等. 黑龙江砂宝斯金矿成矿流体性质研究. 地质与资源, 2004, 13 (3): 148-151
    101.蒋国源, 权恒. 大兴安岭根河海拉尔盆地中生代火山岩. 中国地质科学院沈阳地质矿产研究所所刊, 1988, (3): 23-100
    102.金井秀喜, Hideki, Imai, Geological studies of the minerial deposits in Japan and East Asia. Univ of Tokgo Prees, 1978, 1-392
    103.李本海, 薛秀娣. 新疆阿希金矿Ⅰ号矿脉矿床矿石特征及其成因意义. 新疆地质, 1994, 12 (2): 146-156
    104.李长珠. 额尔古纳成矿带金铜多金属矿成矿条件和成矿系列. 有色金属矿产与勘查, 1999, 8 (6): 329-332
    105.李鹤年, 段国正, 郝立波等. 中国大兴安岭银矿床. 长春: 吉林科学出版社, 1994, 1-238
    106.李锦轶. 中国东北及邻区若干地质构造问题的新认识. 地质论评, 1998, 44 (4): 339-347
    107.李锦轶, 和政军, 莫申国, 等. 大兴安岭北部绣峰组下部砾岩的形成时代及其大地构造意义. 地质通报, 2004a, 23 (2): 120-129
    108.李锦轶, 莫申国, 和政军, 等. 大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约. 地学前缘, 2004b, 11 (3): 157-167
    109.李瑞山. 新林蛇绿岩. 黑龙江地质, 1991, 2 (1): 19-31
    110.李双林, 迟效国, 戚长谋. 中国满洲里-绥芬河地学断面构造地球化学层与构造演化. 地质地球化学, 1996, (6): 45-52
    111.李双林, 欧阳自远. 兴蒙造山带及邻区的构造格局与构造演化. 海洋地质与第四纪地质, 1998, 18 (3): 45-54
    112.李思田主编. 断陷盆地分析与煤聚积规律. 北京: 地质出版社, 1988, 1-321
    113.李宪臣, 秦克章. 内蒙古甲乌拉—查干银铅锌铜矿床主成矿元素分带规律及. 有色金属矿产与勘查, 1999, 8 (6): 512-516
    114.李之彤, 团结沟金矿床的形成条件及其成因类型[A]. 中国地质科学院沈阳地质矿产研究所分刊[C], 北京: 地质出版社, 1980
    115.李之彤, 我国东部中(新)生代火山热液型金矿的地质特征[A]. 金矿地质论文集[C], 北京: 地质出版社, 1982
    116.廖启林, 戴塔根. 新疆北部浅成低温热液型金矿床成矿地球化学特征初探. 地质地球化学, 2000, 28 (2): 19-25
    117.林强, 葛文春, 孙德有, 等. 中国东北地区中生代火山岩的大陆构造意义. 地质科学, 1998, 33 (2): 129-139
    118.刘斌, 沈昆. 流体包裹体热力学. 北京: 地质出版社, 1999, 1-50
    119.刘斌, 朱思林, 沈昆. 流体包裹体热力学参数计算软件及算例. 北京: 地质出版社, 2000, 1-252
    120.刘敦一, 简平, 张旗, 等. 内蒙古图林凯蛇绿岩中埃达克岩 SHRIMP 测年: 早古生代洋壳消减的证据, 地质学报, 2003, 77 (3): 317-327
    121.刘洪林, 董连慧. 阿希金矿地质特征及成因初探. 新疆地质, 1994, 10 (2): 110-119
    122.刘建明, 张锐, 张庆洲. 大兴安岭地区的区域成矿特点. 地学前缘, 2004, 11 (1): 269-277
    123.罗毅, 王正邦, 周德安. 额尔古纳超大型火山热液型铀成矿带地质特征及找矿前景. 华东地质学院学报, 1997, 20 (1): 1-10
    124.吕志成, 段国正, 郝立波, 等. 满洲里—额尔古纳地区岩浆作用及其大地构造意义. 矿物岩石, 2001, 21 (1): 77-85
    125.马家骏. 黑龙江省中生代火山岩初步研究. 黑龙江地质, 1991, 2(2): 1-16
    126.毛景文, 张作衡, 余金杰, 等. 华北及邻区中生代大规模成矿的地球动力学背景: 从金属矿床年龄精测得到启示. 中国科学, (D 辑), 2003, 33(4): 289-299
    127.苗来成, 范蔚茗, 张福勤, 等. 小兴安岭西北部新开岭-科洛杂岩锆石 SHRIMP 年代学研究及其意义. 科学通报, 2003, 48(22): 2315-2323
    128.母瑞身, 韩仲文, 徐庆国. 论我国金矿区域成矿规律[A], 金矿地质论文集[C]. 北京: 地质出版社, 1982
    129.母瑞身, 韩仲文, 徐庆国. 中国金矿成矿规律的初步研究. 沈阳: 沈阳地质矿产研究所, 1985
    130.母瑞身, 低温浅成热液金矿若干问题讨论. 贵金属地质, 1993, 29 (1): 47-53
    131.母瑞身, 田昌烈, 杨芳林, 等. 新疆阿希地区金矿概论. 贵金属地质, 1996, 5 (1): 5-21
    132.毋瑞身, 田昌烈, 沙德铭, 等. 西天山吐拉苏-也里莫墩火山岩带地质特征. 地质论评, 1999, 45 (增刊): 1078-1087
    133.内蒙古自治区地质矿产局. 内蒙古自治区区域地质志. 北京: 地质出版社, 1991, 7-498
    134.内蒙古自治区地质矿产局. 全国地层多重划分对比研究──内蒙古自治区岩石地层. 武汉: 中国地质大学出版社, 1996, 39-40
    135.潘龙驹, 孙恩守. 内蒙古甲乌拉银铅锌矿床地质特征. 矿床地质, 1992, 11 (1): 45-53
    136.齐金忠, 李莉, 郭晓东. 大兴安岭北部砂宝斯蚀变砂岩型金矿地质特征. 矿床地质, 2000, 19 (2): 116-125
    137.秦克章, 王之田, 潘龙驹. 满洲里—新巴尔虎右旗铜、钼、铅、锌、银带成矿条件与斑岩体含矿性评价标志. 地质论评, 1990, 36 (6): 479-487
    138.秦克章, 田中亮吏, 李伟实, 等. 满洲里地区印支期花岗岩 Rb-Sr 等时线年代学证据. 岩石矿物学杂志, 1998, 17 (3): 235-240
    139.权恒, 武广, 张炯飞. 得尔布干成矿带新类型金矿及资源潜力. 贵金属地质, 1998, 7 (4): 302-303
    140.任纪舜, 陈廷愚, 刘志刚. 中国东部构造单元划分的几个问题. 地质论评, 1984, 30 (4): 382-385
    141.沙德铭. 西天山阿希金矿流体包裹体研究. 贵金属地质, 1998, 7 (3): 180-188
    142.沙德铭, 等. 西天山阿希古破火山口构造及其控矿意义. 地质论评, 1999, 45 (增刊): 1088-1094
    143.沙德铭, 董连慧, 母瑞身, 等. 西天山浅成低温金矿容矿火山岩地球化学及成矿环境初探. 地质与资源, 2003, 12 (4): 206-214
    144.邵济安, 唐克东, 王成源. 那丹哈达地体的构造特征及其演化. 中国科学(B 辑), 1991, 21 (7): 744-751
    145.邵济安, 唐克东. 中国东北地体与东北亚大陆边缘演化. 北京: 地震出版社, 1995, 11-39
    146.邵济安, 张履桥, 牟保磊. 大兴安岭中生代伸展造山过程中的岩浆作用. 地学前缘, 1999, 6 (4): 339-346
    147.邵济安, 洪大卫, 张履桥. 内蒙古火成岩 Sr-Nd 同位素特征及成因. 地质通报, 2002, 21 (12): 817-822
    148.邵洁涟. 金属找矿矿物学. 北京: 中国地质大学出版社, 1990, 1-158
    149.沈存利. 赴俄罗斯赤塔州矿山考察报告. 内蒙古地质, 1998, 88 (3): 32-37
    150.宋彪, 李锦轶, 牛宝贵, 等. 黑龙江省东部麻山群黑云斜长片麻岩中锆石的年龄及其地质意义. 地球学报, 1997, 18 (3): 306-312
    151.孙广瑞, 李仰春, 张昱. 额尔古纳地块基底地质构造. 地质与资源, 2002, 11 (3): 129-139
    152.孙丰月, 金巍, 李碧乐, 等. 关于热液脉状金矿床成矿深度的思考. 长春科技大学学报地球学报, 2000, 30 (增刊): 27-30
    153.田世良, 金力夫, 双宝. 额尔古纳成矿带脉状银(铅锌)矿床与塔木兰沟组火山岩的成矿关系. 有色金属矿产与勘查, 1995, 4 (6): 334-340
    154.万天丰. 中国东部中新生代板内变形构造应力场及其应用. 北京: 地质出版社, 1993, 27-29
    155.王成善, 赵治超, 程学儒, 等. 边缘陆块型火山岩的建立与大陆边缘涌动构造. 成都理工学院学报, 1993, 20 (4): 55-66
    156.王道永, 王成善, 杜思清. 内蒙古东北部及周边地区前中生代构造发展演化史. 成都理工学院学报, 1998, 25 (4): 529-536
    157.王荃, 刘雪亚, 李锦轶. 中国华夏与安加拉古陆间的板块构造. 北京: 北京大学出版社, 1991, 1-151
    158.王世称, 陈永清. 成矿系列预测的基本原则及特点. 地质找矿论丛, 1994, 9 (4): 79-85
    159.王之田, 秦克章. 乌努格吐山下壳源斑岩铜钼矿床地球化学特征与成矿物质来源. 矿床地质, 1988, 7 (4): 1-14
    160.吴福元, 葛文春, 孙德有. 走滑构造及对中国东部中生代地质研究的意义. 世界地质, 1994, 13 (1): 105-112
    161.吴福元, Wilde S A, 孙德有. 佳木斯地块片麻状花岗岩的锆石离子探针 U-Pb 年龄. 岩石学报, 2001, 17 (3): 443-452
    162.吴河勇, 杨建国, 黄清华, 等. 漠河盆地中生代地层层序及时代. 地层学杂志, 2003, 27 (3): 193-198
    163.武殿英. 额尔古纳成矿带找矿目标类型. 有色金属矿产与勘查, 1999, 8 (6): 690-691
    164.武广, 王五力. 辽西中生代盆地形成的力学机制及其大陆动力学背景. 沈阳地质矿产研究所集刊, 1997, (5~6): 167-183
    165.武广, 权恒. 上黑龙江拗陷“新类型”金矿地质特征及成矿远景[A]. 见: 中国地质学会编. “九五” 全国地质科技重要成果论文集[C]. “九五” 地质科技重要成果交流会, 北京, 1999. 北京: 地质出版社, 2000, 336-339
    166.武广, 权恒, 李广远. 黑龙江省西吉诺山多金属矿点地质特征. 地质与资源, 2001, 10 (4): 226-234
    167.武广, 李忠权, 李之彤. 辽西中侏罗统海房沟组埃达克质岩的确认及地质意义. 成都理工大学学报(自然科学版), 2003a, 30 (5): 457-461
    168.武广, 李忠权, 李之彤. 辽西地区早中生代火山岩地球化学特征及成因探讨. 矿物岩石, 2003b, 23 (3): 44-50
    169.武广, 李之彤, 王文武. 辽西地区中侏罗统海房沟组地球化学特征及其地质意义. 岩石矿物学杂志, 2004, 23 (2): 97-108
    170.武广, 孙丰月, 赵财胜, 等. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义. 科学通报, 2005, 50 (20): 2278-2288
    171.武广, 孙丰月, 朱群, 等. 上黑龙江盆地金矿床地质特征及成因探讨. 矿床地质, 2006, 待刊
    172.夏军, 王成善, 李秀华, 等. 海拉尔及其邻区中生代火山岩的特征及其边缘陆块型火山岩的提出. 成都地质学院学报, 1993, 20 (4): 67-79
    173.向伟东, 胡绍康, 阎鸿铨, 等. 大兴安岭西坡及邻区银铅锌矿床成矿作用若干问题的探讨. 铀矿地质, 1998, 14 (6): 344-351
    174.谢明谦. 拼帖板块构造及其驱动机制──中国东北及邻区的大地构造演化. 北京: 科学出版社, 2000
    175.许文良, 孙德有, 尹秀英. 大兴安岭海西期造山带的演化:来自花岗质岩石的证据. 长春科技大学学报, 1999, 29 (4): 319-323
    176.阎鸿铨, 胡绍康, 叶 茂, 等. 中、俄、蒙边境成矿密集区与超大型矿床. 中国科学, (D 辑), 1998, 28 (增刊): 43-48
    177.闫全人, 高山林, 王宗起, 等. 松辽盆地火山岩的同位素年代、地球化学特征及意义. 地球化学, 2002, 31 (2): 169-179
    178.杨殿文, 朱志远. 谢尔塔拉铁锌矿床成因初步探讨. 黑龙江地质, 1978, 31 (3): 1-12
    179.杨芳林, 李之彤, 朱群, 等. 古利库金(银)矿床中冰长石的发现及其地质意义. 贵金属地质, 1999, 8 (4): 236-240
    180.杨芳林, 朱群, 李之彤, 等. 古利库金银矿床地质特征和成因. 贵金属地质, 2000, 9 (1): 7-14
    181.尹冰川, 冉清昌. 多宝山超大型铜矿床的成矿构造环境. 矿物学报, 1997, 17 (2): 220-224
    182.臧尧龄, 刘志英, 姜应星, 等. 中国东北部火山岩带多重岩系叠加性及其成因和演化[A]. 见: 李兆鼐, 王碧香主编.火山岩、火山作用及有关矿产[C]. 第二届全国火山岩会议, 天津, 1993, 北京: 地质出版社, 1993, 85-91
    183.翟伟, 杨荣勇, 漆树基, 等. 新疆伊宁县伊尔曼得热泉型金矿地质特征及成因. 矿床地质, 1999, 18 (1): 47-54
    184.翟裕生, 秦长兴. 关于成矿系列与成矿模式. 矿床学参考书(下册). 北京: 地质出版社, 1987a, 214-221
    185.翟裕生, 熊永良. 关于成矿系列的结构. 地球科学, 1987b, 12 (4): 375-380
    186.翟裕生. 成矿系列研究. 现代地质, 1992, 6 (3): 301-308
    187.张长厚. 初论板内造山带. 地学前缘, 1999, 6 (4): 295-308
    188.张德全, 李大新, 赵一鸣, 等. 福建紫金山金矿床——我国首例石英-明矾石型浅成低温热液型铜-金矿床. 地质论评, 1991, 37 (6): 481-497
    189.张德全, 阎升好, 等. 福建紫金山地区中生代构造环境转换的岩浆岩地球化学证据. 地质论评, 2001, 47 (6): 608-616
    190.张德全, 佘宏全, 李大新, 等. 紫金山地区的斑岩-浅成热液成矿系统. 地质学报, 2003, 77 (2): 253-261
    191.张宏, 权恒, 张炯飞, 等. 额尔古纳地区中生代应力场演化及其与金铅锌矿的关系. 贵金属地质, 1998, 7 (2): 104-113
    192.张炯飞, 权恒, 祝洪臣. 小伊诺盖沟金矿特征. 贵金属地质, 1999, 8 (3): 129-135
    193.张炯飞, 权恒, 武广, 等. 得尔布干成矿区(北片)矿产资源远景评价. 地质与资源, 2002, 11 (1) : 43-52
    194.张理刚, 等. 东亚岩石圈块体地质——上地幔、基底和花岗岩同位素地球化学及其动力学. 北京: 科学出版社, 1995, 153-173
    195.张旗, 王焰, 钱青, 等. 中国东部燕山期埃达克岩的特征及其构造—成矿意义. 岩石学报, 2001a, 17 (2) : 236-244
    196.张旗, 王焰, 王元龙. 燕山期中国东部高原下地壳组成初探: 埃达克质岩 Sr、Nd 同位素制约. 岩石学报, 2001b, 17 (4) : 505-513
    197.赵财胜, 武广. 满洲里地区的浅成低温热液矿床. 地质与资源, 2002, 11 (2) : 96-103
    198.赵春荣, 赵淑华, 梁海军. 黑龙江砂宝斯金矿地质特征及找矿方向. 黄金地质, 2000, 6 (4): 28-32
    199.赵国龙, 杨桂林, 傅嘉友, 等. 大兴安岭中南部中生代火山岩. 北京: 北京科学技术出版社, 1989
    200.赵海玲, 邓晋福, 陈发景, 等. 中国东北地区中生代火山岩石学特征与盆地形成. 现代地质, 1998, 12 (1): 56-61
    201.赵明玉, 王大平, 田世良. 得尔布干成矿带中段八大关—新峰山成矿地质条件分析. 矿产与地质, 2002, 89 (16): 70-73
    202.赵一鸣, 毕承思, 邹晓秋, 等. 黑龙江多宝山、铜山大型斑岩铜(钼)矿床中辉钼矿的铼-锇同位素年龄. 地球学报, 1997, 18 (1): 61-67
    203.赵越, 杨振宇, 马醒华. 东亚大地构造发展的重要转折. 地质科学, 1994, 29 (2): 105-119
    204.朱群, 李之彤. 大兴安岭古利库金矿区落马湖变质岩系及其含金性. 地质与资源, 2001a, 10 (4): 204-209
    205.朱群, 武广, 张炯飞, 等. 得尔布干成矿带成矿区划与勘查技术研究进展. 中国地质, 2001b, 28 (5): 19-27
    206.朱群, 王恩德, 李之彤, 等. 古利库金(银)矿床的稳定同位素地球化学特征. 地质与资源, 2004a, 13 (1): 80-84
    207.朱群, 王恩德, 李之彤, 等. 古利库金(银)矿床水平及垂向矿化变化特征. 地质与资源, 2004b, 13 (2): 8-15
    208.朱夏主编. 中国中新生代盆地构造和演化. 北京: 科学出版社, 1983, 1-224
    209.祝洪臣, 张炯飞, 权恒. 下吉宝沟金矿的发现及其地质特征. 贵金属地质, 2000, 9 (2): 65-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700