用户名: 密码: 验证码:
新疆西天山松湖铁矿床地质地球化学特征与成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿吾拉勒铁铜成矿带为西天山地区重要的晚古生代成矿带,总体表现为东铁西铜的特征。松湖中型铁矿位于成矿带中段,赋存于石炭系大哈拉军山组火山-沉积岩系中,为成矿带中典型的火山岩型铁矿。本论文在充分收集前人资料和野外地质调查的基础上,对松湖铁矿开展了基础地质、矿床地质与构造、元素和同位素地球化学、流体包裹体、地质年代学、成矿机制等方面的研究工作,并与国内外的典型火山岩型铁矿进行对比,获得以下主要认识和研究进展:
     (1)矿区围岩为一套火山碎屑岩-沉积岩组合,岩性包括安山质-英安质岩屑晶屑凝灰岩、凝灰质砂岩、含角砾岩屑晶屑凝灰岩、晶屑熔结凝灰岩、灰岩、钙质粉砂岩以及砂屑灰岩,根据其原生沉积构造以及火山碎屑物特征,推断该套岩系形成于滨浅海相洋底浊流沉积作用。
     (2)矿体呈似层状赋存于凝灰质砂岩中,产状陡倾,与围岩基本呈整合接触。主要控矿构造为近东西向等距离分布的高角度压扭性断裂,其次为近东西向、北北西向以及北东向的节理裂隙,构造应力场分析表明其形成于近南北向右行的压剪性应力场中,可能与晚古生代增生造山作用有关。
     (3)矿石矿物主要为磁铁矿,其次为赤铁矿、黄铁矿及黄铜矿,脉石矿物主要为钾长石、绿泥石、方解石、绿帘石及阳起石等。主要呈块状、条带状、团块状、角砾状构造,其次为脉状和浸染状构造,结构主要为半自形-他形粒状,碎裂及重结晶结构发育。磁铁矿的电子探针分析表明,早阶段形成的磁铁矿具有岩浆型磁铁矿的特征,晚阶段磁铁矿则表现为火山热液成因。
     (4)围岩蚀变主要类型包括钾长石化、绿泥石化、阳起石化、绿帘石化、方解石化、黄铁矿化及黄铜矿化等,在垂向和水平方向上均发育分带性。
     (5)根据野外及室内观察的矿物共生组合以及相互穿插关系,将松湖铁矿的成矿作用可分为热液期和表生期,热液期可进一步划分为五个阶段,即钾长石-绿泥石-磁铁矿阶段、阳起石—绿帘石-磁铁矿阶段、硫化物-磁铁矿阶段、石英-方解石-硫化物阶段以及方解石-赤铁矿阶段。
     (6)矿石中的磁铁矿与围岩的稀土元素特征表明二者同源,硫同位素特征表明矿石中的硫来源于岩浆硫,以上表明成矿物质来源于火山作用。
     (7)对成矿作用后期流体的碳氧同位素组成以及流体包裹体研究表明,流体主要为水—岩反应的产物,石英-方解石-硫化物阶段属中温、中-低盐度的NaC1-H2O体系,至方解石-赤铁矿阶段演化至中-低温、高-中盐度的NaC1-H2O体系。
     (8)通过与国内外典型矿床的综合对比,认为松湖铁矿的成因类型为海相火山热液型,矿体形成晚于围岩,成矿作用主要与火山作用及火山期后热液作用有关。构造背景为岛弧靠近弧后盆地一侧,与石炭世南天山洋向伊犁-中天山板块的俯冲作用有关。
The iron copper mineralization belt of Awulale is an important Late Plaeozoic metallogenetic belt in western Tianshan, where the characteristic of mineral resources distribution is that iron deposits locate in the east and copper deposits locate in the west. As a typical volcanogenic iron deposit, the medium-sized Songhu iron deposit is located in the center of the metallogenetic belt, which is hosted by lower Carboniferous Dahalajunshan volcanic-sedimengtary Formation. Based on combination of predecessors works and fieldwork of geological survey, we focused on study of basic geology, ore geology and structure, element and isotope geochemistry, fluid inclusion, geochronology, mineralization mechanism, and comparation with typical volcanogenic iron deposits domestic and overseas, and achieved several understandings and progresses as follows.
     (1) The host rock is a lithological association of volcaniclastic and sedimengtary rock, including andesitic and dacitic debris-crystal fragment tuff, tuffaceous sandstone, debris-crystal fragment tuff with laplli, welded ignimbrite, limestone, calcareous siltstone and calcarenite. According to primary sedimentary structure and features of pyroclastics, the lithological association was sedimented by turbidity in costal or shallow water.
     (2) Ore bodies which occur as stratoids are hosted in tuffaceous sandstone, with steep occurance and in conformity with wallrock. The deposit is controlled by the structures that consisted mainly of near E-W striking faults and subordinately of near N-S, NNW and NE trending faults and joints, which is generated by regional NS-trending dextral shear regime that related to accretionary orogenetic process in late Paleozoic.
     (3) Ore minerals are mainly magnetite, with minor hematite, pyrite and chalcopyrite, while gangue minerals are mainly potassium feldspar, chlorite, calcite, epidote and actinolite etc. Ore structure mainly occur as massive, stripped, agglomerated and brecciated, minor are vein and disseminated, whereas ore textures dominantly display as subhedral-anhedral granular, recystallization and cataclastic are developed. Electron microprobe analyses of magnetite imply that mangnetite formed in early stage show features of magmatic genesis, while the ores in latter stage belong to volcanic hydrothermal type.
     (4) The alteration of wallrock with zonation in vertical and horizontal are mainly of potassic feldspathization, choritization, actinolitization, epidotization, calcitization, pyritization and chalcopyritization etc.
     (5) Field evidence and petrographic observation indicate two periods of metallogensis, including hydrothermal period and supergene oxidation period. Hydrothermal period can be subdivided into five stages, including potassium-chlorite-manetite, actinolite-epidote-magnetite, sulfide-magnetite, quartz-calcite-sulfide and calcite-hematite stages.
     (6) The rare earth element feature of wallrock and magnetite suggest the ore-forming and rock-forming materials were derived from the same source, sulfur isotope datas show sulphur in ores is deprived from the magma, based on that we suggest the ore-forming material sourced from volcanism.
     (7) The fluid in later stage is studied through carbon-oxygen isotope and fluid inclusion, revealed that it is derived from water-rock reaction, which belong to high-middle temperature, middle-low salnity NaCl-H2O system in quartz-calcite-sulfide stage, then evoluted to middle temperature, high-middle salnity NaCl-H2O system in calcite-hematite stage.
     (8) In comparation with typical volcanogenic iron deposits domestic and overseas, we draw the conclusion that the genetic type of Songhu iron deposit is marine volcanic-hydrothermal type, the mineralization is mainly related to volcanism and hydrothermal process in post-volcanic period. The tectonic setting of mineralization is back-arc basin which is formed by the subduction of the Southern Tianshan Ocean northward beneath the Ili-Central Tianshan plate in Carboniferous.
引文
[1]Barton M.D and Johnson D.A.1996. Evaporitic-sourcemodel for igneous- related Fe oxide-(REE-Cu-Au-U) mineralization [J]. Geology,24:259-262
    [2]Barton M.D and Johnson D.A.2000. Alternative brine sources for Fe-Oxide(-Cu-Au) systems:Implications for hydrothermal alteration and metals; in Porter TM(Ed), Hydrothermal iron oxide copper-gold and related deposits:A global perspective. Australia Mineral Foundation Volume 1. Adelaide:43-60
    [3]Bodnar RJ.1983. A method of calculating fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids. Economic Geology,78:535-542
    [4]Bouma A.H.1962. Sedimentology of some Flysch deposits:A graphic approach to facies interpretation. Elsevier Pub. Co, (Amsterdam and New York):1-168
    [5]Bozzo A.T, Chen JR and Barduhn.1973. The propeties of hydrates of chlorine and carbon dioxide. In:Delyannis A, Delyannis E (eds). Fourth International Symposium on Fresh Water from the Sea,3:437-451
    [6]Branney MJ and Kokelaar P.1992. A reappraisal of ignimbrite emplacement:progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bulletin of Volcanology,54:504-520
    [7]Calder. ES, Sparks. R.S.J, Gardeweg.M.C.2000. Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile. Journal of Volcanology and Geothermal Research,104:201-235
    [8]Cas R.A.F.1983. Submarine 'crystal tuffs':their origin using a lower Devonian example from southeastern Australia. Geological Magazine,120:471-486
    [9]Cediel F, Shaw R.P, Caceres C.2003. Tectonic assembly of the Northern Andean block. AAPG Memoir,79:815-848
    [10]Corriveau L.2005. Iron oxide copper gold (±Ag±Nb±P±REE±U) Deposits:a Canadian perspective. Geological Survey of Canada,1-23
    [11]Forster H and Jafarzadeh A.1994. The Bafq mining district in central Iran-A highly mineralized Infracambrian volcanic field. Economic Geology,89:1697-1721
    [12]FriedmannGM, Amiel A.J, Braun M, Miller D.S.1973. Generation of carbonate particles and laminites in algal mats -Example from sea-marginal hypersaline Pool, Gulf of Aqaba, Red Sea. AAPG Bulletin,57:541-557
    [13]Frutos, J., Oyarzfm, J., Shiga, Y., Alfaro, G.1990. The El Laco magnetite flow deposits, northern Chile:An up-to-dete review and new data. In:L. Fontbot6 et al. (Editors), Stratabound Ore Deposits in the Andes. SOC. Geol. Appl. Miner. Dep., Spec. Publ.8, Springer, Berlin, pp.681-690
    [14]Gao J, Li MS, Xiao XC, Tang YQ, He GQ.1998. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China. Tectonophysics,287:213-231
    [15]Gao J, Long LL, Klemd R, Qian Q, Liu DY, Xiong XM, Su W, Liu W, Wang YT, Yang FQ. 2009. Tectonic evolution of the South Tianshan Orogen, NW China:geochemical and age constraints of granitoid rocks. International Journal of Earth Sciences.98:1221-1238
    [16]Gelcich S, Davis D.W, Spooner E.T.C.2005. Testing the apatite-magnetite geochronometer: U-Pb and 40Ar/39Ar geochronology of plutonic rocks, massive magnetite-apatite tabular bodies, and IOCG mineralization in Northern Chile. Geochimica et Cosmochimica Acta, 69(13):3367-3384
    [17]Gill J.B.1987. Early geochemical evolution of an oceanic island arc and backarc:Fiji and the South Figi basin. The Journal of Geology,95(5):589-615
    [18]Gloriea.S, Gravea J.D, Buslovb M.M, Elburg M.A, Stockli D.F, Gerdes.A, P. Van den haute.2010. Multi-method chronometric constraints on the evolution of the Northern Kyrgyz Tien Shan granitoids (Central Asian Orogenic Belt):From emplacement to exhumation. Journal of Asian Earth Sciences,38:131-146
    [19]Hall DL, Sterner SM, Bodnar RJ.1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology,83:197-202
    [20]Henriques F, Martin R.F.1978. Crystal-growth textures in magnetite flows and feeder dykes, El Laco, Chile. Can. Mineral.,16:581-589
    [21]Hildebrand R.S.1986. Kiruna-type deposit:Their origin and relationship to intermediate subvolcnic plutons in the Great Bear magmatic zone, Northwest Canada. Economic Geology,81:640-659
    [22]Hitzman M.W., Oreskes N, Einaudi M.T.1992. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrain Reschear,58: 241-287
    [23]Hoefs J.2009. Stable isotope geochemistry.6th edition. Berlin:Spring Verlag,1-285
    [24]Hou T. Zhang ZC, Kusky T.2011. Gushan magnetite-apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China:Hydrothermal or Kiruna-type?. Ore Geology Reviews,43:333-346
    [25]Jong K.D, Wang B, Faure M, Shu LS, Cluzel D, Charvet J, Ruffet G, Chen Y.2009. New 40Ar/39Ar age constraints on the Late Palaeozoic tectonic evolution of the western Tianshan (Xinjiang, northwestern China), with emphasis on Permian fluid ingress. International Journal of Earth Science,98:1239-1258
    [26]Lahtinen R, Garde A.A, Melezhik V.A.2008. Paleoproterozoic evolution of Fennoscandia and Greenland. Episodes,31(1):20-28
    [27]Lascelles D.F.2007. Black smokers and density currents:a uniformitarian model for the genesis of banded iron-formations. Ore Geology Reviews,32:381-411
    [28]Long LL, Gao J, Klemd R, Beier C, Qian Q, Zhang X, Wang JB, Jiang T.2011. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen:Implications for continental groeth in the southwestern Central Asian Orogenic Belt. Lithos,126:321-340
    [29]Lottermoser B.G 1992. Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews,7 (1):25-41
    [30]Lucia Simone.1980. Ooids:A review. Earth-Science Reviews, Vol 16:319-355
    [31]Majumder T, Whitley J.E, Chakraborty K.L.1984. Raer-earth elements in the Indian banded iron formation. Chemical Geology,45:203-211
    [32]Mark G, Wilde A, Oliver N.H.S, Williams P.J, Ryan C.G 2005. Modeling outflow from the Ernest Henry Fe oxide Cu-Au deposit:implications for ore genesis and exploration. Journal of Geochemical Exploration,85:31-46
    [33]Mark G, Williams P.J, Oliver N H. S, Ryan C and Mernagh T.2005. Fluid inclusion and stable isotope geochemistry of the Ernest Henry Fe oxide-Cu-Au deposit, Queensland, Australia. Mineral Deposit Research:Meeting the Global Challenge, Session 7:785-788
    [34]McBirney A.R.1963. Factors governing the nature of submarine volcanism. Bulletin of Volcanology,26:455-469
    [35]McCrea M.1950. The isotopic chemistry of carbonates and a paleotem-perature scale. J. Chem. Phys.,18:849-857
    [36]McPhie J, Doyle M, Allen R.1993. Volcanic Textures. Hobart, Tasmania, Centre for Ore Deposit Research, Universitoy of Tasmania:21-31; 71-108; 165-180.Middlemost E.A.K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4):215-224
    [37]Nystrom J.O and Hoenriquez F.1994. Magmatic features of iron ores of the Kiruna type in Chile and Sweden:ore textures and magnetite geochemistry. Economic Geology,89: 820-839
    [38]Ohmoto H and Rye RO.1979. Isotopes of sulfur and carbon. In:Geochemistry of Hydrothermal Ore Deposit.2nd edition. Barnes HL ed., J. Wiley and Sons, New York, 509-567
    [39]Ooter L, Goff S, Jackson V.A, Gleeson S.A, Creaser R.A, Samson I.M, Evensen N, Corriveau L, Mumin A.H.2010. Timing and thermochemical constraints on multi-element mineralisation at the Nori/RA Cu-Mo-U prospect, Great Bear magmatic zone, Northwest Territories, Canada. Miner Deposita,45:549-566
    [40]Palladino D.M, Simei S.2002. Three types of pyroclastic currents and their deposits: examples from the Vulsini Volcanoes, Italy. Journal of Volcanology and Geothermal Research,116:97-118
    [41]Philpotts A.R.1967. Origin of certain iron-titanium oxide and apatite rocks. Economic Geology,62:303-315
    [42]Pollard P.J.2006. An intrusion origin for Cu-Au mineralization in iron oxide-copper-gold (IOCG) provinces. Miner Deposita,41:179-187
    [43]Ramos V.1999. Plate tectonic setting of the Andean Cordillera. Episodes,22(3):183-190
    [44]Richard H. Sillitoe.2003. Iron oxide-copper-gold deposits:an Andean view. Mineralium Deposita,38:787-812
    [45]Romer R.L, Martinsson O, Perdahl J.A.1994. Geochronology of the Kiruna iron ores and hydrothermal alterations. Economic Geology,89:1249-1261
    [46]Rudyard F, Perdahl J.A.1995. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types,9:489-510
    [47]Sandrin A, Berggren R, Elming S.K.2007. Geophysical targeting of Fe-oxide Cu-(Au) deposits west of Kiruna, Sweden. Journal of Applied Geophysics,61:92-101
    [48]Shearman D. J, Twyman J, Karimi M.Z.1970. The genesis and diagenesis of oolites. Geological Association of Proc,81(3):565-575
    [49]Sohn.Y.K, Son. M, Jeong. J.O, Jeon.Y.M.2009. Eruption and emplacement of a laterally extensive, crystal-rich, and pumice-free ignimbrite (the Cretaceous Kusandong Tuff, Korea) Sedimentary Geology,220(3-4):190-203
    [50]Soja C M.1996. Island-arc carbonates:characterization and recognition in the ancient geological record [J]. Earth-Science Reviews,41:31-65
    [51]Stosch HG, Romer RL, Daliran F, Rhede D.2011. Uranium-lead ages of apatite from iron oxide ores of the Bafq District, East-Central Iran. Miner Deposita,46:9-21
    [52]Sun S S, McDonough W.F.1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications,42:313-345
    [53]Torab F.M and Lehmann B.2007. Magnetite-apatite deposit of t he Bafq district, Central Iran:Apatite geochemistry and monazite geochronology. Mineralogical Magazine, 71:347-363
    [54]VanderVoo R, Levashova NM, Skrinnik LI, Kara TV, Bazhenov M.2006. Late orogenic, large-scale rotations in the Tien Shan and adjacent mobile belts in Kyrgyzstan and Kazakhstan. Tectonophysics,426:335-360
    [55]Walker GP.L and Croasdale R.1972. Characteristics of some basaltic pyroclastics. Bulletin of Volcanology,35:303-317
    [56]Wang B, Shu LS, Cluzel D, Faure M, Charvet JGeochemical constraints on Carboniferous volcanic rocks of the Yili Block (Xinjiang, NW China):Implication for the tectonic evolution of Western Tianshan. Journal of Asian Earth Sciences,29:148-159
    [57]Wang B, Cluzel D, Shu LS, Faure M, Charvet J, Chen Y, Meffre S. Jong KD.2007. Evolution of calc-alkaline to alkaline magmatism through Carboniferous convergence to Permian transcurrent tectonics, western Chinese Tianshan. International Journal of Earth Science,98:1275-1298
    [58]Wang B, Faure M, Shu LS, Cluzel D, Charvet J, Jong KD, Chen Y.2008. Paleozoic tectonic evolution of the Yili Block, western Chinese Tianshan. Bulletin Society geology, 179:483-490
    [59]Weihed P, Arndt N, Billstrom K, Duchesne J.C, Eilu P, Martinsson O, Papunen H, Lahtinen R.2005. Precambrian geodynamics and ore formation:The Fennoscandian Shield. Ore Geology Reviews,27:273-322
    [60]Windley B, Alexeiev D, Xiao WJ, Kroner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society,164:31-47
    [61]White M.J., McPhie J.1997. A submarine welded ignimbrite-crystal-rich sandstone facies association in the Cambrian Tyndall Group, western Tasmania, Australia. Journal of Volcanology and Geothermal Research, Volume 76(3-4):277-295
    [62]Williams P.J, Barton M.D, Johnson D.A, Fontbote L.H.D, Nicholas H.S, Marschik R. 2005. Iron oxide copper-gold deposits:Geology, space-time distribution, and possible modes of origin. Economic Geology:371-405
    [63]Windley B, Alexeiev D, Xiao WJ, Kroner A, Badarch G.2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society,164:31-47
    [64]Wright JV, Smith AL, Self S.1980. A working terminology of pyroclastic deposits. Journal of Volcano Geotherm Research,8 (2-4):315-336
    [65]Xia LQ, Xu XY, Xia ZC.2004. Petrogenesis of carboniferous rift-related volcanic rocks in Tianshan, Northwestern China. Geological Society Am Bulletin,116:419-433
    [66]Xavier R.P, Wiedenbeck M, Trumbull R.B, Dreher A.M, Monterio L.V.S, Rhede D, Araujo C.EG, Torresi I.2008. Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide copper-gold deposits, Carajas Mineral Province(Brazil)[J]. Geology,36(9):743-746
    [67]Zhang LF, Ai YL, Li XP, Rubatto D, Song B, Williams S, Song SG,Ellis D, Liou J.G.2007. Triassic collision of western Tianshan orogenic belt, China:Evidence from SHRIMP U-Pb dating of zircon from HP/UHP eclogitic rocks. Lithos,96:266-280
    [68]Zhao XF and Zhou MF.2011. Fe-Cu deposits in the Kangdian region, SW China:a Proterozoic IOCG(iron-oxide-copper-gold) metallogenic province. Miner Deposita,46: 731-747
    [69]车自成,刘良,刘洪福,罗金海.1996论伊犁古裂谷.岩石学报,12(3):478-490
    [70]车自成,刘良,罗金海.2002.中国及邻区区域大地构造学.北京:科学出版社,261-277
    [71]陈光远.1987.成因矿物学与找矿矿物学[M].重庆:重庆出版社,222-268.
    [72]陈江峰,满发胜,倪守斌.1995.西天山菁布拉克岩带基性一超基性岩的Nd、Sr同位素地球化学.地球化学,24(2):121-127
    [73]陈正乐,万景林,刘健,李胜祥,郑恩玖,韩效忠,李细根,宫红良.2006.西天山 山脉多期次隆升-剥露的裂变径迹证据.地球学报,27(2):97-106
    [74]陈正乐,李丽,刘健,宫红良,蒋荣宝,李胜祥,郑恩玖,韩效忠,李细根,王成,王国荣,王果,鲁克改.2008.西天山隆升-剥露过程初步研究.岩石学报24(4):625-636
    [75]陈衍景,鲍景新,张增杰,刘玉琳,陈华勇,蔡文俊,Herb Helmstaedt.2004b.西天山艾肯达坂组火山岩系的元素地球化学特征和构造环境.矿物岩石,24(3):36-45
    [76]陈衍景,刘玉琳,鲍景新,张增杰,陈华勇,蔡文俊,Helmstaedt H.2004a.西天山艾肯达坂组火山岩系同位素定年及其构造意义.矿物岩石,24(1):52-55
    [77]崔尚森,吴文奎,姜常义,张学仁,段联合.1997.阿吾拉勒山区中石炭统含矿地层的沉积环境分析.西安地质学院学报,19(1):1-6
    [78]丁振举,刘丛强,姚书振,周宗桂,杨明国.2003.东沟坝多金属矿床矿质来源的稀土元素地球化学限制[J].吉林大学学报(地球科学版),37(4):437-442.
    [79]董连慧,冯京,刘德权,唐延龄,屈迅,王克卓,杨在峰.2010.新疆成矿单元划分方案研究.新疆地质,(28)1:1-15
    [80]董连慧,冯京,庄道泽,李凤鸣,屈迅,刘德权,唐延龄.2011.新疆富铁矿成矿特征及主攻类型成矿模式探讨.新疆地质,29(4):416-422.
    [81]杜保峰,魏俊浩,石文杰,赵少卿,王艳慧,易建.海南石碌铁钴铜(金)矿床与国内外IOCG型矿床的对比研究.地质与勘探,48(2):332-343
    [82]段超,李延河,袁顺达,胡明月,赵令浩,陈小丹,张成,刘佳林.2012.宁芜矿集区凹山铁矿床元素地球化学特征及其对成矿作用的制约.岩石学报,28(1):243-257.
    [83]方维萱,柳玉龙,张守林,郭茂华.2009.全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式.西北大学学报(自然科学版),39(3):404-413
    [84]冯金星,石福品,汪邦耀等.2010.西天山阿吾拉勒成矿带火山岩型铁矿.北京:地质出版社,56-108
    [85]高俊,何国琦,李茂松.1997.西天山造山带的构造变形特征研究.地球学报,18(1):1-9
    [86]高俊,张立飞.1998.西天山高压变质岩的形成环境.新疆地质,16(4):343-352
    [87]高俊,龙灵利,钱青,黄德志,苏文,Reine Klemd.2006.南天山:晚古生代还是三叠纪碰撞造山带?岩石学报,22(05):1049-1061
    [88]高俊,钱青,龙灵利,张喜,李继磊,苏文.2009.西天山的增生造山过程.地质通报,28(12):1804-1816
    [89]郭玉峰,线纪安,王隽人.2005.西天山伊宁-新源-巴仑台地区铁矿找矿远景综述.地质找矿论丛,Vol.20(Sup):162-176.
    [90]郭璇,朱永峰.2006.新疆新源县城南石炭纪火山岩岩石学和元素地球化学研究.高校地质学报.12(1):62-73
    [91]何国琦,成守德,徐新,李锦轶,郝杰.2004.中国新疆及邻区大地构造图(1:2500000)说明书[M].北京:地质出版社.1-65.
    [92]洪为,张作衡,赵军,王志华,李凤鸣,石福品,刘兴忠.2012a.新疆西天山查岗诺尔铁矿床矿物学特征及其地质意义.岩石矿物学杂志,31(2):191-211
    [93]洪为,张作衡,李华芹,李凤鸣,刘兴忠.2012a.新疆西天山查岗诺尔铁成矿时代:来自石榴石Sm-Nd等时线年龄的信息.矿床地质(待刊)
    [94]胡霭琴,王中刚,涂光炽.1997.新疆北部地质演化及成岩成矿规律.科学出版社,38-45
    [95]胡霭琴,张国新,张前锋,陈义兵.1999.天山造山带基底时代和地壳增生的Nd同位素制约.中国科学(D辑),29(2):104-112
    [96]季建清,韩宝福,朱美妃,储著银,刘玉琳.2006.西天山托云盆地及周边中新生代岩浆活动的岩石学、地球化学与年代学研究.岩石学报,22(5):1324-1340
    [97]贾群子.1991.从磁铁矿的标型特征论天湖铁矿的成因.西北地质,12(1):19-25
    [98]姜常义,吴文奎,张学仁,崔尚森.1995.从岛弧向裂谷的变迁-来自阿吾拉勒地区火山岩的证据.岩石矿物学杂志,14(4):289-300
    [99]姜常义,吴文奎,张学仁,崔尚森.1996.西天山阿吾拉勒地区岩浆活动与构造演化.西安地质学院学报,18(2):18-24
    [100]蒋宗胜,张作衡,侯可军,洪为,王志华,李凤鸣,田敬全.2012.西天山查岗诺尔和智博铁矿区火山岩地球化学特征、锆石U-Pb年龄及地质意义.岩石学报(待刊)
    [101]李福东,李先梓,徐永元.1974.苏联土尔盖地区火山—沉积类型铁矿.西北地质,3:69-71.
    [102]李凤鸣,彭湘萍,石福品,周昌平,陈建中.2011.西天山石炭纪火山-沉积盆地铁锰矿成矿规律浅析.新疆地质,29(01):55-60
    [103]李厚民,王瑞江,肖克炎,刘亚玲,李立兴.2010.立足国内保障国家铁矿资源需求的可行性分析.地质通报,29(1):1-7
    [104]李厚民,王登红,李立兴,陈靖,杨秀清,刘明军.2012.中国铁矿成矿规律及重点矿集区资源潜力分析.中国地质,39(3):560-580
    [105]李华芹,谢才富,常海亮,蔡红,朱家平,周肃.1998.新疆北部有色金属矿床成矿年代学.北京:地质出版社,10-25
    [106]李华芹,陈富文.2004.中国新疆区域成矿作用年代学.地质出版社,169-205
    [107]李继磊,苏文,张喜,刘新.2009.西天山阿吾拉勒西段麻粒岩相片麻岩锆石CamecaU—Pb年龄及其地质意义.地质通报,28(12):1852-1862
    [108]李继磊,钱青,高俊,苏文,张喜,刘新,江拓.2010.西天山昭苏东南部阿登套地区大哈拉军山组火山岩及花岗质侵入体的地球化学特征、时代和构造环境.岩石学 报,26(10):2913-2924
    [109]李锦轶,王克卓,李亚萍,孙桂华,褚春华,李丽群,朱志新.2006.天山山脉地貌特征、地壳组成与地质演化.地质通报,25(8):895-909
    [110]李万茂.1985.新疆东部地区几个铁矿床磁铁矿标型特征.西北地质,1-5
    [111]李向东,王庆明,王克卓.1998.天山后碰撞阶段构造演化的新信息—来自阿吾拉勒山中段动力变质岩的证据.地质论评,44(4):443-448
    [112]李永军,李注苍,周继兵,高占华,高永利,佟黎明,刘静.2009.西天山阿吾拉勒一带石炭系岩石地层单位厘定.岩石学报,25(06):1332-1340
    [113]李注苍,李永军,李景宏,栾新东,郭文杰.2006.西天山阿吾拉勒一带大哈拉军山组火山岩地球化学特征及构造环境分析.新疆地质,24(2):120-124
    [114]梁祥济,乔莉.1991.火山岩中交代岩和铁矿的实验研究.岩石矿物学杂志,10(4):300-315
    [115]刘锋,杨富全,李延河,马宝钦,柴凤梅,耿新霞.2009.新疆阿勒泰市阿巴宫铁矿磷灰石微量和稀土元素特征及矿床成因探讨.矿床地质,28(3):251-264
    [116]刘家军,何明勤,李志明,等.2004.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质,23(1):1-9
    [117]刘友梅,杨蔚华,高计元.1994.新疆特克斯县林场大哈拉军山组火山岩年代学研究.地球化学,23(1):99-104
    [118]龙灵利,高俊,钱青,熊贤明,王京彬,王玉往,高立明.2008.西天山伊犁地区石炭纪火山岩地球化学特征及构造环境.岩石学报,24(04):699-710
    [119]卢登蓉,姬金生,吕仁生,陶洪祥.1995.新疆雅满苏铁矿地球化学特征及矿床成因.西北地质,16(1):15-19
    [120]卢登蓉,姬金生,吕仁生,陶洪祥.1996.雅满苏铁矿稀土元素地球化学特征.西安地质学院学报,18(1):12-16
    [121]卢宗柳,莫江平.2006.新疆阿吾拉勒富铁矿地质特征和矿床成因.地质与勘探,42(5):8-11
    [122]罗勇,牛贺才,单强,张兵,周昌平,杨武斌,于学元.2009.西天山玉希莫勒盖达坂玄武安山岩-高钾玄武安山岩-粗安岩组合的发现及其地质意义.岩石学报,25(4):934-943
    [123]罗勇,牛贺才,单强,杨武斌,张兵,周昌平,廖思平,于学元.2010.西天山艾肯达坂二叠纪钾质火山岩的地球化学特征及岩石成因.岩石学报,26(10):2925-2934
    [124]马延红,李注苍,李永军,李景宏,栾新东,郭文杰.2007.西天山阿吾拉勒一带大哈拉军山组的厘定.甘肃科技,23(5):94-96
    [125]莫江平,黄明扬,覃龙芳,卢汉堤.1996.新疆阿吾拉勒陆相火山岩型铜矿成矿研 究.矿产与地质,10(4),217-223
    [126]莫江平,蔡宏渊.1997.新疆穷布拉克铜矿床成矿模式[J].矿产与地质,11(1):26-31
    [127]聂凤军,江思宏,路彦明.2008.氧化铁型铜-金(IOCG)矿床的地质特征、成因机理与找矿模型.中国地质,35(6):1074-1086
    [128]宁芜研究项目编写小组.1978.宁芜玢岩铁矿.北京:地质出版社,1-196
    [129]牛贺才,单强,罗勇,杨武斌,周昌平,廖思平,于学元.2010.西天山玉希莫勒盖达坂石英闪长岩的微量元素地球化学及同位素年代学研究.岩石学报,26(10):2935-2945
    [130]祁志明,吴琦,白玉麟.1985.新疆天山铁矿地质特征及找矿远景.新疆地质,3(4):29-42
    [131]钱青,高俊,熊贤明,龙灵利,黄德志.2006.西天山昭苏北部石炭纪火山岩的岩石地球化学特征、成因及形成环境.岩石学报,22(5):1307-1323
    [132]覃永军,曾键年,王思源,陆建培,杨梅珍,陈津华.2010.安徽庐枞盆地井边铜(金)矿床成矿特征及控矿地质因素探讨.矿床地质,29(5):915-930
    [133]茹艳娇,徐学义,李智佩,陈携露,白建科,李婷.2012.西天山乌孙山地区大哈拉军山组火山岩LA-ICP-MS锆石U-Pb年龄及其构造环境.地质通报,31(1):51-62
    [134]沙德铭,田昌烈,董连慧.2003.西天山中北段铜、金矿床成矿规律初探.新疆地质,21(20):185-189
    [135]单强,张兵,罗勇,周昌平,于学元,曾乔松,杨武斌,牛贺才.2009a.新疆尼勒克县松湖铁矿床黄铁矿的特征和微量元素地球化学.岩石学报,25(6):1456-1464
    [136]单强,曾乔松,张兵,罗勇,周昌平,于学元,杨武斌.2009b.新疆尼勒克县松湖铁矿床成因研究.矿物学报(增刊):47-48
    [137]沈其韩,宋会侠,赵子然.2009.山东韩旺新太古代条带状铁矿的稀土和微量元素特征.地球学报,30(6):693-699
    [138]宋学信,陈毓川,盛继福,艾永德.1981.论火山—浅成矿浆铁矿床.地质学报,1:41-54
    [139]孙景贵,胡受奚,沈昆,姚凤良.2001.胶东金矿区矿田体系中中基性-中酸性脉岩的碳、氧同位素地球化学研究.岩石矿物学杂志,20(1):47-56
    [140]田培仁.1992.伊犁亚板块构造格架与金属矿产控矿特征.矿产与地质,6(3):169-176
    [141]万天丰.2004.中国大地构造学纲要.北京:地质出版社,99-117
    [142]汪帮耀,胡秀军,王江涛,邵青红,凌锦兰,郭娜欣,赵彦锋,夏昭德,姜常义.2011.西天山查岗诺尔铁矿矿床地质特征及矿床成因研究.矿床地质,30(3),386-402
    [143]汪劲草.2009.成矿构造系列的基本问题.桂林工学院学报,29(4):423-433
    [144]汪劲草.2010.成矿构造的基本问题.地质学报,84(1):59-69
    [145]王博,舒良树,Cluzel D, Faure M, Charvet J,马前.2006.新疆伊犁北部石炭纪火山岩地球化学特征及其地质意义[J].中国地质,33(3):498-508
    [146]王军年,白新兰,李岩龙,陈春明.2009.新疆尼勒克县松湖铁矿地质特征.资源环境与工程,23(2):104-107
    [147]王润三,王居里.1992.新疆中天山北缘胜利达坂韧性剪切带。新疆地质,10(3):204-211
    [148]王思源.1990.芒场矿田锡多金属成矿构造解析.地球科学,15(4):421-430
    [149]王兴保.2005.雅满苏铁矿床地质特征及成因浅析.地质找矿论丛,20(增刊):125-128
    [150]王玉往,沙建明,程春.2006.新疆磁海铁(钴)矿床磁铁矿成分及其成因意义.矿床地质,25(suppl):321-324
    [151]王志良,毛景文,张作衡,左国朝,王龙生.2004.西天山古生代铜金多金属矿床类型、特征及其成矿地球动力学演化.地质学报,78(6),836-847
    [152]隗合明,吴文奎,薛春纪.1999.新疆西天山金属矿床,成矿系列及形成演化规律.地质学报,73(3):219-230
    [153]夏林圻,夏祖春,徐学义,李向民,马中平,王立社.2002a.天山古生代洋陆转化特点的几点思考.西北地质,35(4):9-19
    [154]夏林圻,张国伟,夏祖春,徐学义,董云鹏,李向民.2002b.天山古生代洋盆开启、闭合时限的岩石学约束—来自震旦纪、石炭纪火山岩的证据.地质通报,21(2):55-62
    [155]夏林圻,夏祖春,徐学义,李向民,马中平,王立社.2007.天山岩浆作用.北京:中国大地出版社,1-104
    [156]肖晓林,楼法生,吴新华.2008.新疆西天山尼勒克地区铜金属成矿条件及找矿远景分析.新疆地质,26(2),142-146
    [157]肖文交,韩春明,袁超,陈汉林,孙敏,林寿发,厉子龙,毛启贵,张继恩,孙枢,李继亮.2006.新疆北部石炭纪-二叠纪独特的构造-成矿作用:对古亚洲洋构造域南部大地构造演化的制约.岩石学报,22(5):1062-1076,
    [158]肖序常,汤耀庆,冯益民,朱宝清,李锦轶,赵民.1992.新疆北部及其邻区大地构造.北京:地质出版社,42-47;73-103
    [159]谢承祥,李厚民,王瑞江,肖克炎.2009.中国查明铁矿资源储量的数量、分布及保障程度分析.地球学报,30(3):387-394
    [160]熊小林,赵振华,白正华,梅厚钧,许继峰,王强.2001.西天山阿吾拉勒埃达克质岩石成因:Nd和Sr同位素组成的限制.岩石学报,17(4),514-522
    [161]徐国风,邵洁涟.1979.磁铁矿的表型特征及其实际意义.地质与勘探,3:30-37
    [162]徐林刚,毛景文,杨富全,叶会寿,郑建民,李建国,蔡永彪,查小玲,高建京.2007a. 新疆蒙库铁矿床矽卡岩矿物学特征及其意义.矿床地质,26(4):455-463
    [163]徐林刚,杨富全,李建国,蔡永彪,郑建民,黄成林.2007b.新疆富蕴县蒙库铁矿地质地球化学特征.岩石学报,23(10):2653-2664
    [164]徐学义,夏林圻,马中平,王彦斌,夏祖春,李向民,王立社.2006.北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究.岩石学报,022(1):83-94.
    [165]徐志刚.1986.中国东部中生代陆相火山岩型铁矿成矿背景和火山岩浆性质.矿床地质,5(1):13-25
    [166]闫臻,王宗起,张英利,向忠金,闫全人,王涛.2010.北大巴山与志留纪火山作用相关的碳酸盐岩沉积学特征及形成环境.沉积学报,29(1):31-40
    [167]杨武斌,牛贺才,罗勇,单强,周昌平,廖思平,于学元.2010.新疆尼勒克县布谷拉超钾质岩浆岩的40Ar-39Ar年龄和地球化学特征.岩石学报,26(10):3065-3073
    [168]姚书振,周宗桂,宫勇军,丁振举.2011.初论成矿系统的时空结构及其构造控制.地质通报30(4),469-477
    [169]杨富全,毛景文,徐林刚,张岩,刘锋,黄成林,周刚,刘国仁,代军治.2007.新疆蒙库铁矿床稀土元素地球化学及对铁成矿作用的指示.岩石学报,23(10):2443-2456
    [170]杨富全,毛景文,柴凤梅,刘锋,周刚,耿新霞,刘国仁,徐林刚.2008.新疆阿尔泰蒙库铁矿床的成矿流体及成矿作用.矿床地质,27(6):659-680
    [171]叶庆同.1982.粤东一些铁矿床中磁铁矿的表型特征及其成因意义.岩矿测试,1(1):44-51
    [172]应立娟,王登红,李建康,陈郑辉,席忠,杨文华,刘乃忠.2008.新疆乔夏哈拉铁铜金矿床与国内外IOCG矿床的对比研究[J].大地构造与成矿学,32(3):338-345
    [173]应立娟,王登红,李建康,陈郑辉,席忠,杨文华,刘乃忠.2008.新疆乔夏哈拉铁铜金矿床与国内外IOCG矿床的对比研究.大地构造与成矿学,32(3):338-345
    [174]余金杰,毛景文.2002.宁芜玢岩铁矿磷灰石的稀土元素特征,矿床地质,21(1):65-73
    [175]余金杰,毛景文.2002.Kiruna型铁矿床基本地质特征和成矿环境,矿床地质,21(增刊):83-86
    [176]袁涛.2003.新疆西天山莫托沙拉铁(锰)矿床与式可布台铁矿床地质特征对比.地质找矿论丛,18:88-92
    [177]翟裕生,石准立,曾庆丰,林新多.1981.矿田构造与成矿.北京:地质出版社,1-79
    [178]翟裕生,林新多.1993.矿田构造学.北京:地质出版社,7-17;30-39
    [179]张德会.1997.流体的沸腾和混合在热液成矿中的意义[J].地球科学进展,12(6): 546-552
    [180]张荣华.1980.长江中下游玢岩铁矿围岩蚀变的地球化学分带形成机理.地质学报,1:70-85
    [181]张玄杰,郑广如,范子梁,宋燕兵,张婉,温世新.2011.新疆西天山东段航磁推断断裂构造特征.物探与化探35(4):448-454
    [182]张增杰,陈衍景,陈华勇,鲍景新,刘玉林.2003.天山海西期不同类型花岗岩类岩石化学特征及其地球动力学意义.矿物岩石,23(1):15-24
    [183]张作衡,王志良,左国朝等.2008.新疆西天山地质构造演化及铜今多金属矿床成矿环境.北京:地质出版社,180-202
    [184]郑亚东,王涛,王新社.2007.最大有效力矩准则的理论与实践.北京大学学报,43(2):145-156
    [185]郑亚东,王涛,王新社.2007.最大有效力矩准则及相关地质构造.地学前缘,14(4):49-60
    [186]赵爱醒.1990.湖北大冶铁山铁(铜)矿床磁铁矿矿物化学及其成因的研究.地球科学—中国地质大学学报,15(4):385-396
    [187]赵振华,白正华,熊小林,梅厚钧,王一先.2003.西天山北部晚古生代火山浅侵位岩浆岩40Ar/39Ar同位素定年.地球化学,32(4): 317-327
    [188]赵振华,熊小林,王强,白正华,梅厚钧.2004.新疆西天山莫斯早特石英钠长斑岩铜矿床—一个与埃达克质岩石有关的铜矿实例[J].岩石学报,,20(2):249-258
    [189]翟伟,孙晓明,高俊,贺小平,梁金龙,苗来成,吴有良.2006.新疆阿希金矿赋矿围岩大哈拉军山组火山岩锆石SHRIMP年龄.岩石学报,22(5):1399-1406
    [190]周泰禧,陈江峰,谢智,张巽,杨学昌,陈福明.2000.天山托木尔峰花岗质岩石的同位素地球化学特征.岩石学报,016(02):153-160
    [191]朱永峰,张立飞,古丽冰,郭珑,周晶.2005.西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究.科学通报,50:2004-2014
    [192]朱永峰,郭璇,周晶.2006a.西天山石炭系火山岩的岩石学及Sr-Nb同位素地球化学研究.岩石学报,22(5):1341-1350
    [193]朱永峰,周晶,宋彪,张立飞,郭璇.2006b.新疆“大哈拉军山组”火山岩的形成时代问题及解决方案.中国地质,23(3):487-497
    [194]朱永峰,安芳,薛云兴,陈博,张立飞.2010.西南天山特克斯科桑溶洞火山岩的锆石U-Pb年代学研究.岩石学报,26(8):2255-2263
    [195]朱志新,李锦轶,董连慧,王克卓,张晓帆,徐仕琪.2011.新疆西天山古生代侵入岩的地质特征及构造意义.地学前缘,18(2):170-179
    [196]左国朝,张作衡,王志良,刘敏,王龙生.2008.新疆西天山地区构造单元划分、地 层系统及其构造演化.地质论评,54(6):748-767

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700