用户名: 密码: 验证码:
闽北建瓯上房钨矿床成矿作用特征及矿床成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以武夷山成矿带内新发现的建瓯上房大型钨矿床为研究对象,通过系统的野外地质调查、钻孔岩芯观察描述及室内综合分析测试,对上房钨矿床的成矿地质条件、矿化特征、成岩成矿时代、成矿流体性质及成矿物质来源等进行深入研究,在此基础上查明矿床成因和关键控矿因素,探讨武夷山成矿带晚中生代时期(主要为晚侏罗世)构造-岩浆活动与钨矿成矿作用的耦合关系,建立上房钨矿床的成矿模式和找矿预测模型,为闽北地区的钨矿勘查和找矿预测工作提供理论指导。
     上房钨矿床位于武夷山成矿带东缘的闽北建瓯地区,产于黑云母正长花岗岩和斜长角闪岩外接触带,主要赋矿围岩为古元古界大金山组。大金山组由斜长角闪岩及黑云斜长变粒岩组成,岩相学和岩石地球化学研究表明,变粒岩原岩为花岗闪长岩-二长花岗岩,A/CNK为1.08-1.95,属过铝质高钾钙碱性系列。岩石明显亏损Nb、Ta、P、Ti、Sr等,富集Rb、 K、Pb、Th等,具有S型花岗岩特征。斜长角闪岩的地球化学组成与闽北地区新元古代马面山群东岩组斜长角闪片岩相似,Ti、Nb、P、Zr、Th等含量低,Ta和Hf的含量高,(La/Yb)N=1.10~1.62,δEu=0.74~0.99,ISr=0.706452~0.708575,εNd(t)=0.15~1.09,其原岩可能为源自富集地幔的基性侵入岩(辉长岩?),形成于岛弧或活动陆缘环境。斜长角闪岩的LA-ICP-MS锆石U-Pb年龄为388±10Ma(MSWD=1.7),表明是加里东晚期区域变质事件的产物。
     内接触带为上房似斑状中细粒黑云母正长花岗岩体,岩石SiO2含量为71.11-75.39%,MgO、TiO2、P2O5含量低,K2O+Na2O含量为7.78%~8.94%,K2O/Na2O比值为1.39-2.07,A/CNK为1.01-1.11,属准铝质-弱过铝质高钾钙碱性系列。正长花岗岩样品的大离子亲石元素sr、Ba及高场强元素Ti、P强烈亏损;(La/Yb))N=2.20~13.47,δEu=0.11~0.43,ISr=0.711713~0.712804,εNd(t)=-10.10~-9.35,208Pb/204Pb为38.9450~39.0650,207Pb/204Pb为15.6544~15.6705,206Pb/204Pb为18.5630~18.5789,锆石的εHf(t)=-19.2~-14.7。以上地球化学特征表明上房黑云母正长花岗岩属准铝质—弱过铝质高分异I型花岗岩,是华夏地块古元古代地壳物质(古元古代侵入岩)部分熔融的产物。
     上房钨矿床的矿体呈层状、似层状、透镜状产于黑云母正长花岗岩外接触带的斜长角闪岩中,金属矿物以白钨矿、辉钼矿、磁黄铁矿、黄铁矿为主,另有少量黄铜矿、方铅矿和闪锌矿。非金属矿物有石榴子石、透辉石、钠长石、阳起石、透闪石、绿帘石、石英、绿泥石、绢云母、萤石、方解石,矿石类型以阳起石-磁黄铁矿型和透辉石-石英脉型为主。根据矿物组合及矿石结构特征,将上房钨矿床的成矿作用划分为四个阶段:干矽卡岩阶段(石榴子石-透辉石阶段)、湿矽卡岩-氧化物阶段(阳起石-白钨矿阶段)、石英-硫化物阶段、碳酸盐阶段。干矽卡岩阶段形成含石榴子石透辉石矽卡岩,湿矽卡岩阶段主要形成阳起石、透闪石、绿帘石、石英、绿泥石、绢云母等。白钨矿主要在湿矽卡岩-氧化物阶段和石英-硫化物阶段沉淀。
     白钨矿稀土元素含量变化范围581.22μg/g~3440.6μg/g, LREE/HRRR比值为1.09-8.75,属轻稀土弱富集型,可进一步分为高Eu低MREE和低Eu高MREE两类。当LREE/HREE>3.9时,属高Eu低MREE类,δEu=1.19-3.60;当LREE/HREE<3.6时,属低Eu高MREE类,δEu=0.14-0.80。正Eu异常低MREE和负Eu铕异常高MREE白钨矿暗示上房钨矿床的形成与两类含钙矿物的交代作用有关。成矿流体交代斜长角闪岩中的富铕钙长石形成具有正铕异常和低中稀土含量的白钨矿,交代低铕角闪石则形成具有负铕异常和富集中稀土的白钨矿。REE3+与Na-组合以化合价补偿形式有选择性地置换白钨矿晶格中的Ca2+,表明成矿流体为相对封闭富Na+的还原性热液体系。
     白钨矿、石英和方解石中含有丰富的流体包裹体,原生包裹体以富液两相包裹体为主(占总数90%以上)。从主成矿阶段到成矿晚阶段,成矿流体温度集中范围从190~240℃降低为150~180-C;而盐度则从4~6wt.%NaCl equiv.减小至1.2~3.2wt.%NaCl equiv.;密度从0.80~0.90g/cm3升高至0.88~0.94g/cm3。显然,上房钨矿床的成矿流体为中-低温、低盐度、低密度的热液,从主成矿阶段到成矿晚阶段,随着含矿热液温度的降低,其盐度逐渐降低,密度则逐渐上升。石英-硫化物阶段的石英中流体包裹体的氢同位素组成范围为-57.1‰~-76.3%。,石英矿物的氧同位素组成为11.3‰~12.3%。,与之平衡的流体δ18OH2O为0.60%。~1.60%。。硫化物的634S值介于0.78%。-5.29%o,辉铝矿、磁黄铁矿及黄铁矿的δ34S值依次降低(δ34SMo>δ34SCpy>δ34SPy),表明热液体系中硫同位素已达到平衡。氢-氧同位素和硫同位素组成表明,成矿热液体系中的硫主要来自岩浆,而水则为岩浆流体和循环大气降水的混合。。
     采自上房黑云母正长花岗岩两个新鲜样品的LA-ICP-MS锆石U-Pb年龄分别为157.6±1.4Ma (MSWD=1.3)和158.8±1.4Ma (MSWD=3.4),表明上房花岗岩体侵位于晚侏罗世早期。白钨矿的Sm-Nd等时线年龄为162士7Ma(n=5),与白钨矿共生的辉钼矿Re-Os等时线年龄158.1士5.4Ma(n=5)。白钨矿Sm-Nd等时线年龄与辉钼矿Re-Os等时线年龄在误差范围内完全一致,与上房黑云母正长花岗岩的锆石U-Pb年龄相近,表明矿区的成矿作用与岩浆活动具有同时性,进一步说明成矿流体和成矿物质主要来自岩浆。上房钨矿床与华南地区大多数钨矿床的形成时间一致,是同一区域成矿事件和相同成矿动力学背景的产物。本文的最新年代学数据表明,华南地区160-150Ma钨矿床的空间分布已从传统的南岭成矿带中东段湘南、粤北、赣南地区向东延伸至武夷山成矿带的闽西和闽北地区,因此这一成矿带不是如传统观点认为的那样呈近东西向分布,而是具有北东向或北东东向展布的特点,标志着晚侏罗世(160-150Ma)钨矿大规模成矿很可能不限于传统的南岭地区。这一新的认识有利于拓展华南钨矿尤其是武夷山地区钨矿的找矿思路和空间。
     综合成矿地质背景、赋矿地层、容矿岩石、矿化特征、矿物组合、围岩蚀变、成矿流体性质等方面特征分析,认为上房钨矿床属于还原型(磁黄铁矿型)矽卡岩型钨矿矿床,成矿元素w、Mo来源于晚侏罗世正长花岗岩岩浆。
     根据成矿要素的综合研究,首次建立了上房钨矿的成矿模式和闽西北地区钨矿床的区域成矿模式和找矿模型。在闽北建阳小松-建瓯玉山地区应用固体矿产矿床模型综合地质信息预测技术(MgeoM技术)圈定找矿远景区7个,找矿靶区10个,其中A级靶区2处,B级靶区4处,预测潜在W03资源量53万吨。
The newly-discovered Shangfang large-scale scheelite deposit is located in Jian'ou County, Northwest Wuyishan metallogenic belt. Based on detailed field investigation and drilling-core logging, the author carried out a comprehensive study in order to reveal the ore-forming controls, composition and characteristics of of the ores, age and evolution of mineralization and ore-related magmatism, and source of mineralizing fluids and components in the fluids. The results provide, for the first time, significant insights into the genesis of the Shangfang tungsten deposit, enabling to build a metallogenic model for the deposit. When combined with existing geological and geochronological data, this study demonstrates a genetic association between the late Jurassic (160~150Ma) igneous magmatism and tungsten mineralization in the Shangfang mine and within the Wuyishan metallogenic belt, both formed under a continental-margin setting related to the westward subduction of the Paleo-pacific plate. The ultimate objective of this study is to build a predictive model as a guide for future prospecting and exploration of tungsten deposits in northern Fujian Province.
     Orebodies of the Shangfang scheelite deposit are localized along the contact zone between the biotite syenitic granite and the amphibolites of the Paleoproterozoic Dajinshan Formation. The Dajinshan Formation consists mainly of amphibolites and biotite-plagioclase granulite. Petrographic and geochemical analysis suggests that protoliths of the granulite are likely monzonite derived from reworking of Paleoproteroozic crustal components. Rocks of the monzonite are high K-calc-alkaline, and peraluminous with A/CNK ranging from1.08to1.95. These rocks are depleted in Mk Ta、P、Ti、Sr, but enriched in Rb、K、Pb、Th, and reselmbe S-type granites. The amphibolites have ISr=0.706452~0.708575and εNd(t)=0.15~1.09; and resulted likely from metamorphism of precursor gabbroic intrusions derived from an enriched mantle source. An amphibolite sample yielded a LA-ICP-MS zircon U-Pb age of388±10Ma (MSWD=1.7), which likely record the regional metamorphic event of the Late Caledonian.
     Rocks of the Shangfang biotite syenitic granite have71.11%to75.39%SiO2,7.78%to8.94%K20+Na20with K20/Na2O ratios from1.39to2.07and A/CNK of1.01and1.11, but low MgO、TiO2、P2O5contents. They belong to weak peraluminous to peraluminous and high-potassium calc-alkaline granite. They are depleted in LILE (e.g Sr、Ba) and HFSE (e.g. Ti、 P), and have (La/Yb)N=2.20~13.47and δEu=0.11~0.43. The bulk samples have ISr=0.712804~0.711713, εNd(t)=-10.10~-9.35,208Pb/204Pb=38.9450~39.0650,207Pb/204Pb=15.6544~15.6705, and206Pb/204Pb=18.5630~18.5789, which are consistent with zircon εHf(t) of-19.2~-14.7. It is suggested that the granites were formed by remelting of the Paleoproterozoic crustal material of Cathaysian Block.
     The orebodies are mostly layered, stratiform or lenticular and mostly confined within amphibolites that is intruded by the Shangfang syenitie granite. Metallic minerals are dominated by scheelite, molybdenite, pyrrhotite and pyrite with minor chalcopyrite, galena and sphalerite. Nonmetallic minerals are mainly composed of garnet, diopside, albite, actinolite, tremolite, epidote, quartz, chlorite, sericite, fluorite, and calcite. According to mineral assemblages, two types of ores can be recognized:actonolite-pyrrhotite-scheelite and diopside-quartz-scheelite veins.The paragenetic sequences of the ore and alteration minerals indicate four hydrothermal stages in the formation of the deposit, including garnet-diopside (skarn) stage, oxide (actinolite-scheelite stage) stage, quartz-sulfide stage and carbonate stage. Scheelite was mainly precipitated during the oxide stage and, less siginificantly, in the quartz-sulfide stage.
     The scheelite have rare earth elements (REE) ranging from581.22to3440.6μg/g with LREE/HREE ratios from1.09to8.75. They have two distinct chondrite-normalized REE pattern: low MREE with positive Eu anomalies and high MREE with negative Eu anomalies. Low MREE scheelite have LREE/HREE ratios higher than3.9and δEu from1.19to3.60, whereas the high MREE varieties have LREE/HREE lower than3.6and δEu from0.14to0.80. The author proposes that the Eu anomalies in scheelite were formed by metasomatism of ore-forming fluid with Eu enriched or depleted minerals in the country rocks. Scheelite with positive Eu anomalies were formed by fluids equilibrated with plagioclase, whereas the equivalents with negative Eu anomalies were precipitated from amphibole metasomatized fluids. REE3-and Na+can replaces Ca2+in scheelite lattice indicating ore-forming fluids are rich in Na-.
     Scheelite, quartz, and calcite contain abundant fluid inclusions. Primary fluid inclusions mostly have liquid phase with small vapor phase (L+V type)(more than90%). From the main metallogenic stage Ⅱ to the late metallogenic stage Ⅲ, homogenization temperatures decrease from190~240℃to150~180℃; the salinity of ore-forming fluid decrease from4~6wt.%NaCl equiv. to1.2~3.2wt.%NaCl equiv.; but fluid densities increase from0.80~0.90g/cm3to0.88~0.94g/cm3. Fluid inclusion extracted from quartz of stageⅢ have H isotope of-57.1‰to-76.3‰, and the quartz have δ18O from11.3%o to12.3%o, which are equilibrated with ore-forming fluid with δ18O of4.9%o to5.9‰. Sulfides have δ34S values between0.78%o and5.29‰; and the δ34S value of molybdenite, pyrrhotite and pyrite are decreased (δ34SMo>δ34SCpy>δ34Spy), indicating that sulfur isotopic equilibrium between the sulfides and ore-forming fluid. Results of the stable isotopes suggest that sulfur was dominantly derived from magmas, whereas ore-forming fluids have a mixing source of magmatic and meteoric fluids.
     Two samples collected from the Shangfang granites have identical LA-ICPMS zircon U-Pb ages, of157.6±1.4Ma (MSWD=1.3) and158.8±1.4Ma (MSWD=3.4), which represent the emplacement age of granite. The scheelite has a Sm-Nd isochron age of162±7Ma, which is within errors of molybdenite Re-Os isochorn age of158.1±5.4Ma. Both ages are in good agreement with zircon U-Pb ages suggesting that formation of the Shangfang scheelite deposit was synchronous with emplacement of granite intrusions and ore-forming fluids are derived from the intrusions. The ages are also contemporaneous with regional large-scale W mineralization in South China. Our newly obtained geochronological data have shown that the160~150Ma W mineralization in South China have extended from southern Hunan, northern Guangdong and southern Jiangxi (namly the Nanling metallogenic belt) to western and northern Fujian Province of the Wuyi Mountain. The distribution of the W deposits are nearly NE or NEE treading, rather than EW trending as previously thought. This indicates that the Late Jurassic (160~150Ma) large scale W deposites in South China were not limited in the well-known Nanling region, but in a much wider area.
     A combination of regional geology, ore-hosting rocks, mineralization styles, hydrothermal alteration, paragenetic sequences, fluid inclusions, stable isotopes, and geochronology support that the Shangfang scheelite deposit is of reduction skarn in origin (pyrrhotite type). Ore-forming-fluids and metals were derived from late Jurassic granites. A genetic model for the Shangfang W deposit is proposed, which is useful for future mineral exploration in the northwest Fujian Province.Using this model, combined with integrated geological information prediction technique (MgeoM technique), seven prospective zones and ten prospecting target areas have been delineated, among which two areas are level A prospecting targets, four areas are level B prospecting targets, and the predicted WO3resources are up to530000tons.
引文
[1]Andersen T.2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology.192(1-2):59-79.
    [2]Anglin C D, Franklin J M, Jonasson I R, Bell K and Hoffman E.1987. Geochernistry of scheelites associated with Archean gold deposits:Implications for their direct age determ ination. In Current research, Part A:Geological Survey of Canada Paper 8721A.591-596.
    [3]Anglin C D.1990. Preliminary Sm-Nd isotope analyses of scheelites from Val d'Or, Quebec:Geological Survey of Canada Papers, Current Research.90-1:255-259.
    [4]Anglin C D, Jonasson I R and Franklin J M.1996. Sm-Nd dating of scheelite and tounmaline:Implications for the genesis of A rchean gold deposits, Vald'Or, Canada[J]. Economic Geology.91:1372-1382.
    [5]Barnes R G.1982. Stratiform and stratabound tungsten mineralization in the Broken Hill Block, N.S.W[J]. Jour. Geol. Soc. Aust.30:225-239.
    [6]Barth M G, McDonough W F, Rudnick R L.2000. Tracking the budget of Nb and Ta in the cont inental crust[J]. Chemical Geology.165(3/4):197-213.
    [7]Bell K, Anglin C D, Fraklin J M.1989. Sm-Nd and Rb-Sr isotope Systematics of scheelites:possible implications for the age and genesis of vein-hosted gold deposits[J].Geology.17:500-504.
    [8]Beran A, God R, Gotzinger M and Zemann J.1985. A scheelite mineralization in calc-silicate rocks of the Moldanubicum (Bohemian Massif) in Austria[J]. Mineral. Deposita.20:16-22.
    [9]Berg R L.1991. Tungsten skarn mineralizations in a regional metamorphic terrain in northern Norway:a possible metamorphic ore deposit[J]. Mineral. Deposita.26:281-289.
    [10]Bingen B, Stein H.2003. Molybdenite Re-Os dating of biotite dehydration melting in the Rogaland high-temperature granulates, S Norway[J].Earth and Planetary Science Lectters.208:181-195.
    [11]Beurlen H.1995. The mineral resources of the Borborema Province in Northeastern Brazil and its sedimentary cover:a review[J]. Journal of South American Earth Sciences.18:365-376.
    [12]Blackwell S, Khin Z.2001. A petrological and fluid inclusion study of magnetite-scheelite skarn mineralization at Kara, Northwestern Tasmania:implications for ore genesis[J]. Chemical Geology.173: 239-253.
    [13]Blevin P L and Chappell B W.1992. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia:Royal Society of Edinburgh Transactions[J].Earth Sciences.83:305-316.
    [14]Blevin P L and Chappell B W.1995. Chemistry, Origin, and Evolution of Mineralized Granites in the Lachlan Fold Belt,Australia:The Metallogeny of I-and S-Type Granites[J]. Econ. Geol.90:1604-1619.
    [15]Blichert-Toft J and Albarede F.1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett.148:243-258.
    [16]Brugger J, Mass R, Lahaye Y, McRae C, Ghaderi M, Costa S, Lambert D, Bateman R and Prince K.2002. Origins of Nd-Sr-Pb isotopic variations in single scheelite grains from Archaean gold deposits,Western Australia[J]. Chem. Geol.182:203-225.
    [17]Brugger J, Etschmann B, Pownceby M, Liu W H, Grundler P, Brewe D.2008. Oxidation state of europium in scheelite:Tracking fluid-rock interaction in gold deposits[J]. Chemical Geology.257:26-33.
    [18]Chappell B W and White A J R.1984.I-and S-type granites the Lachlan fold belt, outheastern in Australia, in Xu K Q and Tu G, eds., Geology of granites and their metallogenie relations:Beijing, Science Press. 87-101.
    [19]Cherniak D J and Watson E B.2001. Pb diffusion in zircon[J]. Chemical Geology.172(1-2):5-24.
    [20]Chen H C, Lee C Y, Shinjo R.2008. Was there Jurassic paleo-Pacific subduction in South China? Constraints from 40Ar/39Ar dating, elemental and Sr-Nd-Pb isotopic geochemistry of the Mesozoic basalts[J]. Lithos.106(1-2):83-92.doi:10.1016/j.lithos.2008.06.009.
    [21]Clayton R N, Mayeda T K.1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J]. Geochim Cosmochim Acta.27:43-52.
    [22]Crofu F, Hanchar J M, Hoskin P W. et al.2003. Atlas of zircon textures[J]. Reviews Mineral Geochemistry. 53:469-495.
    [23]Cunningham W B.1973. Two New Tungsten Bearing Horizons in the Older Precambrium of Rhodesia[J]. Mineral. Deposita.8:200-203
    [24]Darbyshire D P F, Pitfield P E J, Campbell S D.1996. Late Archean and proterozoic gold-tungsten mineralization in the Zimbabwe Archean craton:Rb-Sr and Sm-Nd isotope constraints[J]. Geology.24: 19-22.
    [25]Eichhorn R, Holl R, Jagoutz E and Scharer U.1997. Dating scheelite stages:A strontium, Neodymium, lead approach from the Felbertal tungsten deposit, Central Alps, Austria[J].Geochimica et Cosmochimica Acta. 61:5005-5022.
    [26]Einaudi M T, Burt D M.1982. Introduction-terminology, classification and composition of skarn deposits[J]. Econ Geol.77:745-763.
    [27]Einaudi M T, Meinert L D, Newberry R J.1981. Skarn deposits. Econ Geol 75th Anniv vol:317-391.
    [28]Feng C Y, Zhang D Q, Li D X, She H Q and Dong Y J.2008. Isotopes and Geochronology of the Meixian-type Pb-Zn-(Ag)Deposits, Central Fujian Rift, South China:Implications for Geological Events[J]. Acta Geologica Sinica.82(4):826-837.
    [29]Francois G, Bernard M, J acquest S, et al.1992. Modeling of the transport and deposition of tungsten in the scheelite-bearing calc-silicate gneisses of the Montagne Noire, France[J]. Contrib Mineral Petrol.112: 371-384.
    [30]Frei R, Nagler T F, Schonberg R and Kramers J D.1998. Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization:Genetic tracing and age constraints of crustal hydrothemal activity[J]. Geochimica et Cosmochimica Acta.62(11):1925-1936
    [31]Geisler T, Schaltegger U, Tomaschek F.2007. Re-equilibration of zircon in aqueous fluids and melts[J]. Elements.3(1):43.
    [32]Geisler T, Ulonska M, Schleicher H, Pidgeon R T, van Bronswijk W.2001. Leaching and differential recrystallization of metamict zircon under experimental herothermal conditions[J]. Contrib Mineral Petrol. 141:53-65.
    [33]Gharderi M, Palin J M, Campbell I H and Sylvester P J.1999. Rare earth element systematics in scheelite from hydrothemal gold deposits in the Kalgoorlie-Norseman region, Western Australia[J]. Econ. Geol.94: 423-438.
    [34]Green T H.1995. Signif icance of Nb/Ta as an indicat or of geochemical processes in the crust-mantle system[J]. Chemical Geology.120(3/4):347-359.
    [35]Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O'Reilly S Y and Shee S R.2000. The Hf isotope composition of cratonic:mantle:LAM-MC-ICPMS analysis of zircon megacryst in kimberlites[J]. Geochim. Cosmochim. Acta.64:133-147.
    [36]Gu X X, Schulz O, Zheng M H, Vavtar F, Liu J M, Fu S H.2007. Rare earth element geochemistry of the Woxi W-Sb-Au deposit, Hunan Province, South China[J]. Ore Geology Reviews.31:319-336.
    [37]Hall D L, Sterner S M, Bodnar R J.1988. Freezing point depression of NaCl-KCl-H2O solutions[J]. Economic Geology.83(1):197.
    [38]Harley S L and Kelly N M.2007. Zircon tiny but timely[J]. Elements.3(1):13.
    [39]Hermann J, Rubatto D, Korsakov A.2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif) Kazakhstan [J]. Contrib Mineral Petrol.141:66-82.
    [40]Holi R, Westenberger H and Maucher A.1972. Synsedimentary-Diagenetic Ore Fabrics in the Strata-and Time-Bound Scheelite Deposits of Kleinarltal and Felbertal in the Eastern Alps[J]. Mineral. Deposita.7: 217-226.
    [41]Holl R, Ivanova G, Grinenko V.1987. Sulfur isotope studies of the Felbertal scheelite deposit, Eastern Alps[J]. Mineral. Deposita.22:301-308
    [42]Hoskin P W O.2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta.69(3):637-648.
    [43]Hoskin P W O and Ireland T R.2000. Rare earth element chemistry of zircon and its use as a provenance indicator[J]. Geology.28(7):627.
    [44]Jaroslav D, Daniel J, Kontak A, Chatterjee K.2009. Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada:genetic implications[J]. Mineral Petrol.6:1350-1365
    [45]Joao A S N, Jean M L, Marcel V, Marie-Lola P, Philippe S.2008. W-Au skarns in the Neo-Proterozoic Serido Mobile Belt, Borborema Province in northeastern Brazil:an overview with emphasis on the Bonfim deposit[J]. Miner Deposita.43:185-205. DOI 10.1007/s00126-007-0155-1
    [46]Kempe U, Belyatsky B V, Krymsky R S, et al.2001. Sm-Nd and Sr isotope systematics of scheelite from the giant Au(-W) deposit Mu-runtau(Uzbekistan):Implications for the age and sources of Au mineralization[J]. Mineralium Deposita.36(5):379-392.
    [47]Kent A J R, Campbell I H and Mcculloch M T.1995. Sm-Nd systematics of hydrothennal scheelite from the Mount Charlotte Mine, Kalgoorlie, Western Australia:An isotopic link between gold mineralization and komatiites[J]. Econ. Geol.90:2329-2335.
    [48]Kilias S P, Konnerup-Madsen J.1997. Fluid inclusion and stable isotope evidence for the genesis of quartz-scheelite veins, Metaggitsi area,central Chalkidiki Peninsula, N. Greece[J]. Mineralium Deposita.32: 581-595
    [49]Kwak T A P and White A J R.1982. Contrasting W-Mo-Cu and W Sn-F skarn types and related Granitoids[J]. Mining Geology.32:339-351
    [50]Kwak T A P.1987. W-Sn skarn deposits. Developments in economic geology. Elsevier, Amsterdam.
    [51]Lee J K W, Williams I S, Ellis D J.1997. Pb, U and Th diffusion in natural zircon[J]. Nature.390(6656): 159-162.
    [52]Li W X, Li X H, Li Z X.2005. Neoproterozoic bimodal magmatism in the Cathaysia block of South China and its tectonic significance[J]. Precambrian Research.136(1):51-66. doi:10.1016/j. precamres.2004.09.008
    [53]Li X H, Chung S L, Zhou H W, et al..2004a. Jurassic intraplate magmatism in southern Hunan-Eastern Guangxi:40Ar-39Ar dating, geochemistry, Sr-Nd isotopes and implications for tectonic of SE China. Aspects of the tectonic evolution of China. In:Malpas J, Fietcher C J N, Ali J R, et al. eds. Geological Society, London, Special Publications 226.
    [54]Li X H, Liu D Y, Sun M, Li W X, Liang X R, Liu Y.2004b. Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China[J]. Geol. Mag.141(2):225-231.
    [55]Li X H.1997. Timing of the Cathaysia Block formation:constraints from SHRIMP U-Pb zircon geochronology[J]. Episodes.20(3):188-192.
    [56]Li X H, Li Z X and Ge W.2003. Neoproterozoic granitoids in Southhina:crustal melting above a mantle plume ca.825 Ma? [J]. Precambrian Research.122:45-83.
    [57]Li X H, Li W X, Li Z X and Liu Y.2008a 850-790Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China:a major episode of continental rift magmatism during the break-up of Rodinia[J]. Lithos.102:341-357.
    [58]Li X H, Wang X C, Li W X and Li Z X.2008b. Petrogenesis and tectonic significance of Neoproterozoic basaltic rocks in South China:From orogenesis to intracontinental rifting[J]. Geochimica.37(4):382-398.
    [59]Li Z X, Zhang L H, Powell C.1995. South China in Rodinia:a part of the missing link between Australia-East Antactica and Laurentia?[J]. Geology.23(5):407-410.
    [60]Li Z X, Li X H, Kinny P D, et al.1999. The breakup of Rodinia:Did it start with a mantle plume beneath South China?[J]. Earth Planet. Sci. Lett.173:171-181.
    [61]Li Z X, Zhang L H, Powell C M A.1996. Positions of the East Asian cratons in the Neoproterozoic supercontinent Rodiniia[J]. Aust J.Earth Sci.43:593-604
    [62]Li Z X, Li X H, Zhou H W, Liu Y, Kinny P D.2002. Grenvillian continental collision in South China new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology.30:163-166
    [63]Li Z X, Li X H, Liu Y, Kinny P D.Wang J, Zhang, S, Zhou H.2003. Geochronology of Neoproterozoic synrift magmatism in the Yangtze Craton, South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research.122:85-109
    [64]Li X H, Li Z X, Zhou H W, Liu Y, Kinny P D.2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China:implications for the initial riftng of Rodinia[J]. Precambrian Research.113:135-154
    [65]Li J W, Vasconcelos P M, Zhang J, et al.2003.40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold province, Eastern China[J]. Journal of Geology.111(6):741-751.
    [66]Li J W, Vasconcelos P, Zhou M F, et al.2006. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong Gold Province, northeastern China:Implications for regional mineralization and geodynamic setting[J]. Economic Geology.101(5):1023-1038.
    [67]Liu Y, Deng J, Li C F, Shi G H & Zheng A L.2007. REE composition in scheelite and scheelite Sm-Nd dating for the Xuebaoding W-Sn-Be deposit in Sichuan[J]. Chinese Science Bulletin.52(18):2543-2550.
    [68]Liu Y, Hu Z, Gao S, et al.2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology.257(1-2):34-43.
    [69]Lu H Z, Liu Y M, Wang C L, Xu Y Z and Li H Q.2003. Mineralization and Fluid Inclusion Study of the Shizhuyuan W-Sn-Bi-Mo-F Skarn Deposit, Hunan Province, China[J]. Economic Geology.98:955-974.
    [70]Lu H Z and CRAWFORD M L.1986. Geological and Fluid Inclusion Studies of the Dongpo Tungsten Skarn Ore Deposit, China[J]. Geochemistry.5(2):140-157.
    [71]Ludwig K R.2003. Users manual for Isoplot 3.00:A geochronological toolkit for Microsoft Excel. Berkeley Geochron Cent Spec Pub. (4):25-32.
    [72]Mao J W, Li YQ, Goldfarb R, et al.2003. Fluid inclusion and nobel gas studies of the Dongping gold deposit, Hebei province, A mantle connection for mineralization?[J]. Economic Geology.98(3):517-534.
    [73]Mao J W, et al.1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance[J]. Geochimica et Cosmochimica Acta.63(11-12): 1815-1818.
    [74]McDonough W F and Sun S S.1995. Composition of the Earth[J]. Chem Geol.120:223-253.
    [75]Meinert L D.1989. Gold skarn deposits—geology and exploration criteria. Econ Geol Monograph 6, The geology of gold deposits:the perspective in 1988:537-552.
    [76]Meinert L D.1992. Skarns and skarn deposits. Geosc Can.19:145-162.
    [77]Mller A O, Brien P J, Kennedy A, et al.2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry:an example from the ultrahigh-temperature granulites of Rogaland (SW Norway)[J]. Geological Society, London, Special Publications.220(1):65.
    [78]Oberthur T, Blenkinsop T G, Hein U F, Hoppner M, Hohndorf A and Weiser T W.2000. Gold mineralization in the Mazowe area Harare-Bindura-Shamva greenstone belt, Zinbabwe:Genetic relationships deduced from mineralogical fluid inclusions and stable isotope studies, and the Sm-Nd isotopic composition of scheelites[J]. Mineral. Deposita.35:138-156
    [79]Ohmoto H, Rye R O.1979. Isotopes of sulfur and carbon. In:Barnes HL (ed) Geochemistry of hydrothermal ore deposits,2nd edn. Springer, Berlin Heidelberg New York.509-567
    [80]O'Neil J R.1977. Stable Isotope in mineralogy[J]. Physics and chemisty.2(1-2):105-123
    [81]Taylor B E, Liou J D.1978. The low-temperature stability of andradite in C-O-H fluids[J]. American Mineralogist.63(3-4):378-393.
    [82]Pearce J A, Harris N B and Tindle A G.1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology.25(4):956-983.
    [83]Pearce J A and Cann J R.1973. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth Planet. Sci. Lett.,19(2):290-300.
    [84]Pearce J A, Norry, M J.1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contrib.Mineral. Petrol.69:33-47.
    [85]Peng B and Frei R.2004. Nd-Sr-Pb isotopic constraints on metal and fluid sources in W-Sb-Au mineralization at Woxi and LiaoJiaping(Western Hunan, China) [J]. Mineral Deposita,39:313-327.DOI 10.1007/S00126-004-0409-0
    [86]Peng J T, Hu R, Zhao J H, Fu Y Z and Lin Y X.2003. Scheelite Sm-Nd dating and quartz Ar-Ar dating for Woxi Au-Sb-W deposit, western Hunan[J]. Chinese Science Bulletin.48 (23):2640-2646
    [87]Peng J T, Zhou M F, Hu R Z, Shen N P, Yuan S D, Bi X W, Du A D and Qu W J.2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit,central Nanling district, South China[J]. Mineralium Deposita.41:661-669.
    [88]Plimer I R.1987.The association of tourmalinite with stratiform scheelite deposits[J]. Mineral. Deposita.22: 282-291.
    [89]Plimer I R.1993. Strata-Bound Scheelite in Meta-evaporites, Broken Hill, Australia[J].Economic Geology. 89:423-437.
    [90]Qi L, Hu J, Gregoire D C.2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta.51:507-513.
    [91]Raith J G.1988. Tourmaline Rocks Associated with Stratabound Scheelite Mineralization in the Austroalpine Crystalline Complex, Austria[J]. Mineralogy and Petrology.39:265-288.
    [92]Raith J G, Grum W, Prochaska W.1995. Polymetamorphism and Polyphase Deformation of the Strata-Bound Magnesite-Scheelite Deposit, Tux-Lanersbach, Eastern Alps, Austria[J].Economic Geology. 90:763-781.
    [93]Raith J G, Stein H J.2000. Re-Os dating and sulfur isotope composition of molybdenite from tungsten deposits in western Namaqualand, South Africa:implications for ore genesis and the timing of metamorphism[J]. Mineralium Deposita.35:741-753.
    [94]Raith J G, Prochaska W.1995. Tungsten deposits in the Wolfram Schist, Namaqualand, South Africa—stratabound versus granite-related genetic concepts[J]. Econ Geol.90:1934-1954.
    [95]Roberts S, Palmer M R, Waller L.2006. Sm-Nd and REE Characteristics [J]. Econ. Geol.101:1415-1425.
    [96]Roedder R.1984. Fluid inclusions[J]. Reviews in Mineralogy.12:644.
    [97]Rowley D B, Xue F, Tucker R D, et al.1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan:U/Pb zircon geochronology[J]. Earth and Planetary Science Letters.151(3-4):191-203.
    [98]Rubatto D, Gebauer D.2000. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe: Some examples from the western Alps[J]. Cathodoluminescence in Geoscience, Springer-Verlag Berlin Heidelberg, Germany.373-400.
    [99]Rubatto D, Gebauer G, Compagnoni R.1999. Dating of eclogue-fades zircons:The age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps) [J]. Earth and PlanetaryScience Letters. 167:141-158.
    [100]Schenk P, Holl R.1991. Evolution of fluids and metamorphic ore remobilization in the Felbertal scheelite deposit, Eastern Alps[J]. Ore Geol Rev.6:125-134.
    [101]Selby D and Creaser R A.2001. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada[J]. Econ. Geol.96:197-204.
    [102]Selby D, Creaser R A, Heaman L M, Hart C J R.2003. Re-Os and U-Pb geochronology of the Clear Creek, Dublin Gulch, and Mactung deposits,Tombstone gold belt, Yukon, Canada:Absolute timing relationships be-tween plutonism and mineralization. [J] Canadian Journal of Earth Sciences.40:1839-1852.
    [103]Sen C, Dunn T.1994. Dehydration melting of a basaltic composition amphibolite at 115 and 210 GPa: Implication for the origin of adakites [J]. Contributions to Mineralogy and Petrology.117:394-409.
    [104]Shabeer K P, Okudaira T, Satish-Kumar M, Rinu-Lal S S and Hayasaka Y.2003. Ca-W metasomatism in high-grade matapelites:An example from scheelite mineralizationan in Kerala Khondalite Belt, southern India[J]. Mineralogical Magazine.67:465-483.
    [105]Shabeer K P, Okudairal T, Santosh M and Hayasaka Y.2001. First Report of Scheelite Mineralization Within Granulite Facies Supracrustals of Kerala Khondalite Belt, Southern India[J]. Gondwana Research.4(4):780-783.
    [106]Skaarup P.1974. Strata-Bound Scheelite Mineralisation in Skarns and Gneisses from the Bindal Area, Northern Norway[J]. Mineral. Deposita.9:299-308
    [107]Soderlund U, Patchett P J, Vervoort J D, Isachsen C E.2004.176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth Planet. Sci. Lett.219:311-324
    [108]Solomon M.1981. An Introduction to the Geology and Metallic Ore Deposits of Tasmania[J]. Econ. Geol. 76:194-206
    [109]Souza J A, Michel J L, Voltinger M, Pascal M L, Sonnet P.2008. W-Au skarns in the Neo-Proterozoic Serido Mobile Belt, Borborema Province in northeastern Brazil:an overview with emphasis on the Bonfim deposit[J]. Miner.Deposita.43:185-205
    [110]Stein H J, Markey R J, Morgan J W, et al.2001. The remarkable Re-Os chronometer in molybdenite:how and why it works[J]. Terra Nova.13:479-486.
    [111]Stein H J, Morgan J W, Markey R J, Hanna J L.998a. An introduction to Re-Os:What's in it for the mineral industry?[J]. Society of Economic Geologists Newsletter.32:8-5.
    [112]Steven N M and Moors J M.1993. Pan-African Tungsten Skarn Mineralization at the Otjua Prospect, entral Namibia[J]. Economic Geology.89:1431-1453
    [113]Stuart F M, Burnard P, Taylor R P, et al.1995. Resolving mantle and crustal contributions to ancient hydrothermal fluid, He-Ar isotopes in fluid inclusions firm Dae Hwa W-Mo mineralisation, South Korea[J]. Geochimica et Cosmochimica Acta.59:4663-4673
    [114]Sun S S, McDonough W F.1989. Chemical and isotopic systematics of oceanic basalt:implications for mantle com-position and processes. In:A.D. Saunders and M.J. Norry (Eds.), Magmatism in the Ocean Basins, Geol Soc Spec Pub.42:528-548.
    [115]Thalhammer O.1987. Boninites as Source Rocks of Tungsten Mineralization at Mittersill, Austria?[J]. Mineralogy and Petrology.37:221-242.
    [116]Thalhammer O, Stumpfl E, Jahoda R.1989. The Mittersill scheelite deposit, Austria [J]. Econ. Geol. 84:1153-1171.
    [117]Tourn S M, Herrmann C J, Ametrano S, Brodtkorb M K.2004.Tourmalinites from the Eastern Sierras Pampeanas, Argentina[J]. Ore Geology Reviews.24:229-240
    [118]Tweto O.1960. Scheelite in the precambrian geneisses of Colorado[J]. Economic Geology.55:1406-1428
    [119]Vavra G, Schmid R, Gebauer D.1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite fades zircon:Geochronology of the Ivren Zone (Southern Alps) [J]. Contrib Mineral Petrol.134:380-404.
    [120]Wang Y J, Fan W M, Guo F, et al.2003. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China:amplacation for the lithosphere boundary between the Yangtz and Cathaysia blocks[J]. International Geology Review.45:532-538
    [121]Wan Y S, Liu D Y, Xu M H, et al.2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in northwestern Fujian Cathaysia block, China:tectonic implications and the need to redefine lithostratigraphic units[J]. Gondwana Research.12(1-2):166-188. doi:10.1016/j. gr.2006.10.016
    [122]Wesolowski D, Cramer J J, Ohmoto H.1988. Scheelite mineralization in skarns adjacent to Devonian granitoids at King Island, Tasmania. In:Taylor R O, Strong D F. (Eds.), Recent Advances in the Geology of Granite Related Mineral Deposits Canadian Institute of Mining and Metallurgy.235-251.
    [123]Wilkinson J J.2001. Fluid inclusions in hydrothermal ore deposits[J]. Lithos.55(1-4):229-272.
    [124]Wood S A and Samson I M.2000. The Hydrothermal Geochemistry of Tungsten in Granitoid Environments:I. Relative Solubilities of Ferberite and Scheelite as a Function of T, P, pH and mNacl[J]. Economic Geology.95:143-182
    [125]Winchester J A, Floyd P A.1977. Ceochemical and isotopic systematics of oceanic bagalts. In:Saunders A D, Norry M J, ed. Magmatism in the Ocean Basins. Geological Society of London Special Publication.42: 313-345.
    [126]Wu G G, Zhang D, Chen B L, et al.2000. Post-Mesozoic transformation of tectonic domain in southeastern China and its geodynamic mechanism[J]. Journal of China University of Geosciences.11(3):288-292.
    [127]Yong W J.1963. Geology and origin of sangdong tungsten mine, republic of Korea[J]. Econ. Geol.58: 1285-1300.
    [128]Yang J H, Wu F Y, Wilde S A.2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton:an association with lithospheric thinning[J]. Ore Geology Reviews.23(3-4):125-152.
    [129]Yuan S D, Peng J T, Shen N P, Hu R Z and Dai T M.2007.40Ar-39Ar isotopic dat ing of the Xianghualing Sn Polymetallic ore field in southern Hunan and its geological implications[J].. Acta Geologica Sinica. 81(2):278-86.
    [130]Zaw K and Singoyi B.2000. Formation of Magnetite-Scheelite Skarn Mineralization at Kara,Northwestern Tasmania:Evidence from Mineral Chemistry and Stable Isotopes[J]. Econ. Geol.95:1215-1230.
    [131]Zhou X M, Li W X.2000. Origin of late Mesozoic igneous rocks in Southeast China:implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics.56:326-337.
    [132]鲍正襄,万溶江,包觉敏.2001.湘西前寒武纪白钨矿床成矿特征及控矿因素[J].江西地质.15(1):39-44.
    [133]包正相.1984.层控白钨矿床新层位及其地质特征[J].地质论评.30(6):595-599.
    [134]毕承思.1987.中国矽卡岩型白钨矿矿床成矿基本地质特征[J].中国地质科学院院报.17:49-64.
    [135]蔡改贫,吴叶彬,陈少平.2009.世界钨矿资源浅析[J].世界有色金属.4:62-65.
    [136]蔡以评,郭小平,夏春金,等.1997.福建省表壳元素丰度[J].福建地质.16(3):163-175.
    [137]曹志敏,李佑国,任建国,李保华,徐士进,王汝成,正路澈也,金田博彰,小林祥一.2002.雪宝顶绿柱石:白钨矿矿床富挥发分成矿流体特征及其示踪与测年[J].中国科学(D).32(1):64-72.
    [138]曹宝森.1983.福建西南部和中部地区早侏罗世海相地层[J].福建地质.2(1):25-35.
    [139]陈骏,陆建器,陈卫峰,等.2008.南岭地区钨锡铌钽花岗岩及其成矿作用[J].高校地质学报.11(4):459-473.
    [140]陈培荣,华仁民,等.2002.南岭燕山早期后造山花岗岩类:岩石学制约和地球动力学背景[J].中国科学(D辑).32(4):275-281
    [141]陈培荣,孔兴功,王银喜,等.1999.赣南燕山早期双峰式火山—侵人杂岩的Rb-Sr同位素定年及意义[J].高校地质学报.5(4):379-383.
    [142]陈润生,林东燕.2006.福建早中生代火山作用研究进展.福建地质.25(4):4-14.
    [143]陈润生,林东燕,江剑丽.2008.福建早侏罗世火山作用的动力学机制及大地构造学意义[J].福建地质.27(2):156-165.
    [144]陈润生,李玉娟.2009.福建中生代火山-斑岩型铜多金属矿特征及成矿作用的动力学机制探讨[J].见福建省地质学会主编,海峡西岸地学进展.福州:福建省地图出版社.39-45
    [145]陈润生,李建威,曹康,瞿承燚,李玉娟.2012.闽北上房白钨矿锆石U-Pb和辉钼矿Re-Os定年及其地质意义[J].地球科学—中国地质大学学报38(2):289-304.doi:10.3799/dqkx.2013.029.
    [146]陈衍景,Pirajno F,赖勇,等.2004.胶东矿集区大规模成矿时间和构造环境[J].岩石学报.(4):751-759.
    [147]陈毓川,裴朱富,张宏良,等.1989.南岭地区与中生代花岗岩类有关的有色及稀有金属矿床[M].北京:地质出版社.
    [148]陈毓川,陶维屏.1996.我国金属、非金属矿产资源及成矿规律[J].中国地质.15(8):10-13.
    [149]陈云钊.2008.闽北地区变质作用基本特征和成矿元索迁移富集规律[J].福建地质.27(2):142-155
    [150]陈云钊.1991.闽北变质岩含矿性及其找矿前景的探讨[J].福建地质.10(3):165-178
    [151]陈郑辉,王登红,屈文俊,等.2006.赣南崇义淘锡坑钨矿的地质特征与成矿时代[J].地质通报.25(4):495-501.
    [152]陈正宏,李寄嵎,谢佩珊,等.2008.利用EMP独居石定年法探讨浙闽武夷山地区变质基底岩石与花岗岩的年龄[J].高校地质学报.(1):1-15.
    [153]陈志刚,李献华,李武显,刘敦一.2003.赣南全南正长岩的SHRIMP锆石U-Pb年龄及其对华南燕山早期构造背景的制约[J].地球化学.32(3):223-229
    [154]邓晋福,赵海玲,莫宣学,等.1996.中国大陆根-柱构造—大陆动力学的钥匙[M].北京:地质出版社.1-110
    [155]池国祥,周义明,卢焕章.2003.当前流体包裹体研究和应用概况[J].岩石学报,19(2):201-212.
    [156]迟实福,姬金生.1985.阳储岭斑岩型钨钥矿床含矿斑岩及矿化特征[J].长春地质学院学报.(1):37-58
    [157]地矿部南岭项目花岗岩专题组.1989.南岭花岗岩地质及其成岩和成矿作用[M].北京:地质出版社.1-471
    [158]丰成友,丰耀东,许建祥,曾载淋,余宏全,等.2007a.赣南张天堂地区岩体型钨矿晚侏罗世成岩成矿的同位素年代学证据.中国地质.34(4):642-650.
    [159]丰成友,许建祥,曾载淋,张德全,屈文俊,余宏全,李进文,李大新,杜安道,董英君.2007b.赣南天门山-红桃岭钨锡矿田成岩成矿时代精细测定及其地质意义.地质学报.81(7):952-963.
    [160]丰成友,黄凡,曾载淋,等.2011.赣南九龙脑岩体及洪水寨云英岩型钨矿年代学.吉林大学学报(地球科学版),(1):111-121.
    [161]冯佳睿,周振华,程彦博.2010.云南南秧田钨矿床流体包裹体特征及其意义[J].岩石矿物学杂志.29(1):50-58
    [162]福建省地质矿产勘查开发局.1998.福建省地质图(1:500 000)及说明书[M].福建:福建省地图出版社.
    [163]福建省地质矿产局.1985.福建省区域地质志[M].北京:地质出版社.
    [164]福建省闽北地质大队.1989.闽北变质岩地层含矿性研究报告[R].
    [165]付建明,李华芹,屈文俊,马丽艳,杨晓君,魏君奇,刘国庆.2008.粤北始兴地区石英脉型钨矿成矿年代的确定及其地质意义[J].大地构造与成矿学.32(1):57-62.
    [166]付建明,李华芹,屈文俊,等.2007.湘南九嶷山大坳钨锡矿的Re-Os同位素定年研究[J].中国地质,34(4):651-656.
    [167]付建明,马昌前,谢才富,等.2004.湖南骑田岭岩体东缘菜岭岩体的锆石SHRIMP定年及其意义[J].中国地质.1(1):96-100.
    [168]付建明,李祥能,程顺波,等.2009.粤北连平地区钨锡多金属矿床成矿时代研究[J].中国地质.(6):1331-1339.
    [169]付建明,马昌前,谢才富等,2004.湘南西山铝质A型花岗质火山-侵人杂岩的地球化学特征及其形成环境[J].地球科学与环境学报,26(4):15-23.
    [170]付建明,马昌前,谢才富,等.2005.湖南金鸡岭铝质A型花岗岩的厘定及构造环境分析[J].地球化学.34(3):215-226.
    [171]郭春丽,王登红,陈毓川,等.2007.赣南中生代淘锡坑钨矿区花岗岩锆石SHRIMP年龄及石英脉Rb-Sr年龄测定[J].矿床地质.26(4):432-442
    [172]甘晓春,李惠民,孙大中,等.1993.闽北前寒武纪基底的地质年代学研究[J].福建地质.12(1):17-31.
    [173]甘晓春,赵风清,金文山,等.1996.华南火成岩中捕获锆石的早元古代—太古宙U-Pb年龄信息[J].地球化学.25(2):112-120.
    [174]甘晓春,沈渭洲,朱金初.1991.广西栗木水溪庙矿床同位素地质研究[J].南京大学学报(地球科学).3(1):48-55.
    [175]高天均,王振民,吴克隆,等.1999.台湾海峡及其周边地区构造岩浆演化与成矿作用[M].北京:地质出版社.
    [176]龚庆杰,於崇文,张荣华.2004.柿竹园钨多金属矿床形成机制的物理化学分析[J].地学前缘.(4):617-625.
    [177]广东冶金地质勘探公司932队.1966.我们是怎样用“五层楼”规律寻找、评价和勘探黑钨石英脉矿床的[J].地质与勘探.(5):15-19.
    [178]顾连兴,杨浩,郑素娟,廖静娟.1990.钨和锡-华南型块状硫化物矿床的特征元素[J].地质论评.36(4):298-304.
    [179]郭春丽,王登红,陈毓川,等.2007.赣南中生代淘锡坑钨矿区花岗岩锆石SHRIMP年龄及石英脉Rb-Sr年龄测定[J].矿床地质.26(4):432-442.
    [180]何红蓼,李冰,韩丽荣,等.2002.封闭压力酸溶ICP-MS法分析地质样品中47个元素的评价[J].分析试验室,21(5):8-12
    [181]华仁民.2005.南岭中生代陆壳重熔型花岗岩类成岩-成矿的时间差及其地质意义[J].地质论评.51(6):633-639.
    [182]华仁民,陈培荣,张文兰,等.2005a.论华南地区中生代3次大规模成矿作用[J].矿床地质.24(2):99-107.
    [183]华仁民,陈培荣,张文兰,等.2005b.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景[J].高校地质学报.11(3):291-304.
    [184]华仁民,毛景文.1999.试论中国东部中生代成矿大爆发[J].矿床地质.18(4):300-308.
    [185]华仁民,李光来,张文兰,胡东泉,陈培荣,陈卫锋,王旭东.2010.华南钨和锡大规模成矿作用的差异及其原因初探[J].矿床地质.29(1):9-23.
    [186]胡瑞忠,毛景文,范蔚茗,华仁民,等.2010.华南陆块陆内成矿作用的一些科学问题[J].地学前缘.17(2):13-26.
    [187]胡雄健,许金坤,程陈华,等.1992.浙西南早元古代花岗岩、伟晶岩的单颗粒锆石U-Pb年龄[J].科学通报.37(11):1016-1018
    [188]蒋少涌,杨竞红,赵葵东,等.2000.金属矿床同位素示踪与定年研究.南京大学学报(自然科学).36(6):669-677.
    [189]蒋国豪,胡瑞忠,谢桂青.2004.江西大吉山钨矿成矿年代学研究[J].矿物学报.24(3):253-256.
    [190]康永孚,李崇佑.1991.中国钨矿床地质特征、类型及其分布[J].矿床地质.10(1):1-22.
    [191]康永孚.1984.华南某些层控钨矿床若干问题的探讨[J].地质与勘探.30(6):1-10.
    [192]康永孚,苗树屏,李崇佑,等.1994.中国钨矿床[M].见:宋叔和主编:中国矿床.北京:地质出版社.1-102.
    [193]康永孚.1981.钨的地球化学与矿床类型[J].地质地球化学.5(11):1-7.
    [194]李峰,姜建军.2008.吉林省浑春市杨金沟白钨矿床地质特征及成因机制探讨[J].吉林地质.27(2):22-25.
    [195]李俊萌.2009.中国钨矿资源浅析[J].中国钨业.24(6):9-13.
    [196]李顺庭,王京彬,祝新友,李超.2011.湖南瑶岗仙钨多金属矿床辉铂矿Re-Os同位素定年和硫同位素分析及其地质意义[J].现代地质.25(2):228-235.
    [197]李顺庭,王京彬,祝新友,等.2011.湖南瑶岗仙复式岩体的年代学特征[J].地质与勘探.(2):143-150.
    [198]李水如,王登红,梁婷,等.2008.广西大明山钨矿区成矿时代及其找矿前景分析[J].地质学报.(7):873-879.
    [199]李红艳,毛景文,孙亚利,等.1996.柿竹园钨多金属矿床的Re-Os同位素等时线年龄研究[J].地质论评.42(3):261-267.
    [200]李武显,周新民.1999.中国东南部晚中生代俯冲带探索[J].高校地质学报.5(2):164-169.
    [201]李献华,王选策,李武显,李正祥.2008.华南新元古代玄武质岩石成因与构造意义:从造山运动到陆 内裂谷[J].地球化学.37(4):382-398.
    [202]李献华,李武显,李正祥.2007.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报.52(09):981-991.
    [203]李献华,王一先,赵振华,等.1998.闽浙古元古代斜长角闪岩的离子探针锆石U-Pb年代学[J].地球化学.(4):327-334.
    [204]李兆麟,杨忠芳.1995.广东莲花山钨矿成岩成矿温度研究[J].矿床地质.24(3):252-260.
    [205]刘斌,段光贤.1987.NaCl—H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报.7(4):59-66.
    [206]刘英俊.1982.论钨的成矿地球化学[J].地质与勘探.28(1):15-23
    [207]刘英俊,李兆麟,马东升.1982.华南含钨建造的地球化学研究[J].中国科学(B辑).(10):939-950
    [208]刘英俊,马东升.1987.钨的地球化学[M].科学出版社.1-232.
    [209]刘珺,叶会寿,谢桂青,等.2008.江西省武功山地区浒坑钨矿床辉钼矿Re-Os年龄及其地质意义[J].地质学报.(11):1572-1579.
    [210]刘希禹.1985.司徒铺白钨矿床及其含矿溶液和岩体成因探讨[J].地质与勘探.30(11):18-23.
    [211]刘家远.2005.西华山钨矿的花岗岩组成及与成矿的关系IJ].地质找矿论丛.20(1):1-7.
    [212]刘善宝,王登红,陈毓川,等.2008.赣南崇义-大余-上犹矿集区不同类型含矿石英中白云母40Ar/39Ar年龄及其地质意义[J].地质学报.82(7):932-940.
    [213]刘善宝,王登红,陈毓川,许建祥,曾载林,应立娟,王成辉.2007.南岭东段赣南地区天山花岗岩体及华岗斑岩脉的SHRIMP定年及意义[J].地质学报.81(7):972-978.
    [214]刘锐,张利,周汉文,等.2008.闽西北加里东期混合岩及花岗岩的成因:同变形地壳深熔作用[J].岩石学报.(6):1205-1222.
    [215]刘锐,周汉文,张利,钟增球,曾雯,向华,靳松,昌新前,李春忠.2009.华夏地块古元古代陆壳再造:锆石微量元素与U-Pb和-Hf同位素证据[J].科学通报.54(7):906-917.
    [216]刘琰,邓军,李潮峰,等.2007.四川雪宝顶白钨矿稀土地球化学与Sm-Nd同位素定年[J].科学通报.52(16):1923-1929.
    [217]林运淮.1982.白钨矿矿床类型及其地质特征[J].地质与勘探.27(6):13-21.
    [218]蔺志永,王登红,李水如.2008.广西王社铜钨矿床的Re-Os同位素年龄及其地质意义[J].地质学报.82(11):1569-1575.
    [219]卢秀全,胡春亭,钟国军.2005.吉林挥春杨金沟白钨矿床地质特征及成因初探[J].吉林地质.24(3):16-21.
    [220]卢作祥,余宏全.1989.国内外层控改造型金锑钨综合矿床的成矿特征与成矿机理[J].地质科技情报.8(1):59-65
    [221]卢焕章,范宏瑞,倪培等.2004.流体包裹体.北京:科学出版社.1-450.
    [222]毛景文,李红艳,王登红,彭聪.1998.华南地区中生代多金属矿床形成与地幔柱关系[J].矿物岩石地球化学通报.23(2):63-65.
    [223]毛景文,张作衡,余金杰,等.2003.华北及邻区中生代大规模成矿的地球动力学——背景:从金属矿床年龄精测得到启示[J].中国科学(D辑:地球科学).(4):289-299.
    [224]毛景文,谢桂青,郭春丽,袁顺达,程彦博,陈毓川.2008.华南地区中生代主要金属矿床时空分布规律和成矿环境[J].高校地质学报.14(4):510-526.
    [225]毛景文,华仁民,李晓波.1999.浅议大规模成矿作用与大型矿集区[J].矿床地质.18(4):291-299.
    [226]毛景文,谢桂青,郭春丽,等.2007.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报.23(10):2329-2338.
    [227]毛景文,谢桂青,李晓峰,等.2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展[[J].地学前缘.11(1):45-55.
    [228]毛景文.1997.超大型钨多金属矿床成矿特殊性_以湖南柿竹园矿床为例[J].地质科学.32(3):351-363.
    [229]梅华林,庄建民,杨传夏.1998.闽北前寒武纪变质岩的P-T-t轨迹和其形成的动力学过程.福建地质.12(3):182-194.
    [230]莫名浈.1990.阳储岭成矿岩体的地球化学特征[J].矿物岩石.10(2):82-91.
    [231]莫柱孙,叶伯丹,潘维祖,等.1980.南岭花岗岩地质学[M].北京:地质出版社.1-363.
    [232]穆治国,黄福生,卢德拱.1988.华南某些含钨花岗岩的K-Ar年龄.岩石矿物学杂志.7(2):109-117.
    [233]南京大学地质系.1981.华南不同时代花岗岩及其成矿关系[M].北京:科学出版社.1-472.
    [234]彭建堂,胡瑞忠,袁顺达,毕献武.2008.湘南中生代花岗质岩石成岩成矿的时限[J].地质论评.54(5):617-625.
    [235]彭建堂,符亚洲,袁顺达,沈能平,张东亮.2006.热液矿床中含钙矿物的Sm-Nd同位素定年[J].52(5):662-667.
    [236]彭建堂,张东亮,胡瑞忠,吴梦君,柳小明,漆亮,虞有光.2010.湘西渣滓溪钨锑矿床白钨矿中稀土元素的不均匀分布及其地质意义[J].地质论评.56(6):810-819
    [237]彭建堂,胡瑞忠,赵军红,符亚洲,林源贤.2003.湘西沃溪Au-Sb-W矿床中白钨矿Sm-Nd和石英Ar-Ar定年[J].科学通报.48(18):1976-1981.
    [238]任云生,赵华雷,雷恩,王辉,鞠楠,吴昌志.2010.延边杨金沟大型钨矿床白钨矿的微量和稀土元素地球化学特征与矿床成因[J].岩石学报.26(12):3720-3726
    [239]任云生,雷恩,赵华雷,等.2010.延边杨金沟大型白钨矿矿床流体包裹体特征及成因探讨[J].吉林大学学报(地球科学版).(4):764-772.
    [240]沈渭洲,王德滋,谢永林,刘昌实.1995.湖南千里山复式花岗岩体的地球化学特征和物质来源.岩石矿物学杂志.14(3):193-202.
    [241]沈渭洲,凌洪飞,李武显.1999.中国东南部花岗岩类Nd-Sr同位素研究[J].高校地质学报.5(1):
    [242]孙大中,赵凤清,庄建民,等.1991.闽北前寒武纪变质岩岩层层序划分和构造演化。
    [243]孙涛,周新民,陈培荣等.2003.南岭东段中生代强过铝花岗岩成因及其大地构造意义.中国科学(D辑),33(12):1209-1218
    [244]时俊峰,张玉生.2003.吉林省浑春杨金沟白钨矿区地质特征及找矿方向[J].吉林地质.22(3):31-35.
    [245]石洪召,林方成,张林奎.2009.钨矿床的时空分布及研究现状[J].沉积与特提斯地质.(4):90-95.
    [246]石礼言,高天钧,等.1996.福建大型隐伏铜矿预测[M].福州:福建科技出版社.
    [247]舒全安,王永基.1984.在扬子板块基底变质岩系中找白钨矿的初步分析[J].地质与勘探.29(10):1-7.
    [248]舒良树.2006.华南前泥盆纪构造演化:从华夏地块到加里东期造山带[J].高校地质学报.12(4):418-431.
    [249]宋学信,张景凯.1990.柿竹园-野鸡尾钨锡钼铋多金属矿床流体包裹体初步研究[J].矿床地质.9(4):44-50.
    [250]孙晓明,余绍桂,叶朝晖.1993.闽北建阳太阳山韧性剪切带型金矿主要地质特征[J].地质与勘探.25(10):22-26.
    [251]孙涛.2006.新编华南花岗岩分布图及其说明[J].地质通报.(3):332-335.
    [252]谭筱虹,李志均,杜再飞.2010.滇东南南温河地区深变质岩中似层状白钨矿[J].云南地质.29(4):382-387.
    [253]陶建华.2008.福建推覆构造研究与找矿突破[J].福建地质.27(2):105-124.
    [254]陶建华,胡明安.2006.闽中地区中新元古代东岩组地层的含矿性研究[J].中国地质.33(2):418-426.
    [255]陶奎元,高天钧,陆志刚,等.1998.东南沿海火山岩基底构造火山-侵入作用与成矿关系[M].北京:地质出版社
    [256]陶奎元,毛建仁,杨祝良,赵宇,邢光福,薛怀民.1998.中国东南部中生代岩石构造组合和复合动力学过程的记录[J].地学前缘.17(4):2-9.
    [257]王成发.1985.关于花岗岩化钨矿的研究[J].地质论评.31(4):322-329.
    [258]王联魁,朱为方,张绍立.1982.华南花岗岩两个成岩成矿系列的演化[J].地球化学.11(4):329-339.
    [259]王蕾,何红蓼,李冰.2003.碱熔沉淀-等离子体质谱法测定地质样品中的多元素.岩矿测试.22(12):86-91.
    [260]王巧云,胡瑞忠,彭建堂,等.2007.湖南瑶岗仙钨矿床流体包裹体特征及其意义[J].岩石学报.(9):2263-2273.
    [261]王强,赵振华,熊小林,李献华,包志伟·2002·华南绍兴-恩平富碱侵入岩带的厘定及其动力学意义初探[J].地球化学.31(5):433-442.
    [262]王永磊.2008.湘南钨锡多金属矿集区构造—岩浆—成矿作用研究.中国地质科学院土博士论文.
    [263]王晓地,汪雄武,孙传敏.2010.甘肃后长川钨矿白钨矿Sm-Nd定年及稀土元素地球化学[J].矿物岩石.30(1):64-68
    [264]王小飞,戚华文,胡瑞忠,毕献武,彭建堂.2010.粤北石英脉型钨多金属矿床中钨锡铋银钼的赋存状态研究[J].地质学报.85(3):405-421
    [265]汪相,陈洁,罗丹.2008.浙西南淡竹花岗闪长岩中锆石的成因研究及其地质意义[J].地质论评.54(3):387-398.
    [266]吴淦国,张达,陈柏林,等.2000.中国东南大陆中生代构造域的转换及其与成矿的关系—以闽西南地区为例[J].地球科学.25(4):390-396
    [267]吴淦国,张达,彭润民,等.2004.东南沿海成矿带矿床形成的时间演化规律研究[J].地学前缘.11(1):237-247.
    [268]吴淦国,陈柏林,黄仁生,吴建设,张达.1999.肖板及其外围金矿成矿规律与找矿方向[J].地质力学学报.5(3):58-64.
    [269]吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报.49(16):1589-1604.
    [270]吴元保,郑永飞,龚冰,等.2005.北淮阳新开岭地区花岗岩锆石U-Pb年龄和氧同位素组成[J].地球科学—中国地质大学学报.30(6):659-672.
    [271]肖庆辉,王涛,邓晋福,等.2009.中国典型造山带花岗岩与大陆地壳生长研究[M].北京:地质出版社.1-108.
    [272]徐克勤,胡受奚,孙明志,叶俊.1982a.华南两个成因系列花岗岩类及其成矿特征[J].桂林冶金地质学院学报.(1):1-10
    [273]徐克勤,胡受奚,孙明志,叶俊.1982b.华南两个成因系列花岗岩及其成矿特征[J].矿床地 质.(2):1-14.
    [274]徐克勤,孙鼐,王德滋,刘昌实,陈充荣.1982c.华南两类不同成因花岗岩岩石学特征[J].岩矿测试.1(2):1-12.
    [275]徐克勤,朱金初,徐士进,等.1989.华南含钨、锡、铌(钽)花岗岩及有关矿床产出的地区环境和地球化学差异[J].南京大学学报(地球科学版).(1):1-16.
    [276]徐克勤,孙鼐,王德滋,胡受奚.1963.华南多旋迥的花岗岩类的侵人时代、岩性特征、分布规律及其成矿属性的探讨[J].地质学报.43(2):141-155.
    [277]徐克勤,朱金初.1987a.华南锡钨矿床的时空分布和成矿控制.载于锡矿地质讨论会论文集[M].北京:地质出版社.50-59.
    [278]徐克勤,程海.1987b.中国钨矿形成的大地构造背景[J].地质找矿论丛.2(2):1-7.
    [279]许建祥,曾载淋,王登红,陈郑辉,刘善宝,王成辉,应立娟.2008.赣南钨矿新类型及“五层楼+地下室”找矿模型[J].地质学报.82(7):880-887.
    [280]许美辉.1992.福建省永定地区早侏罗世双峰式火山岩及其构造环境.福建地质.11(2):50-60.
    [281]姚军明,华仁民,屈文俊,戚华文,林锦富,杜安道.2007.湘南黄沙坪铅锌钨钼多金属矿床辉相矿的Re-Os同位素定年及其意义.中国科学(D辑).37(4):471-477.
    [282]邢光福,杨祝良,毛建仁,等.2002.东南大陆边缘早侏罗世火成岩特征及其构造意义[J].地质通报.21(7):
    [283]熊德信,孙晓明,石贵勇,等.2006.云南大坪金矿白钨矿微量元素、稀土元素和Sm-Nd同位素组成特征及其意义[J].岩石学报.22(3):733-741.
    [284]谢昕,徐夕生,邢光福,等.2003.浙东早白垩世火山岩组合的地球化学及其成因研究[J].岩石学报.19(3):76-84.
    [285]谢窦克,马荣生,张禹慎.1996.华南人陆地壳生长过程与地幔柱构造.北京:地质出版社.174-182.
    [286]薛怀民,陶奎元,沈加林.1996.中国东南沿海中生代酸性火山岩的锶和钕同位素特征与岩浆成因[J].地质学报.70(1):165-172.
    [287]杨燮.1992.湖南沃溪金-锑-钨矿床成矿物质来源及成矿元素的共生机制[J].成都地质学院学报.19(2):20-28.
    [288]杨锋,冯佐海,康志强,肖荣.2011.广西中部大明山钨矿白云母40Ar/39Ar定年及其地质意义.地质通报.30(9):1429-1433.
    [289]叶天竺,肖克炎,严光生.2007.矿床模型综合地质信息预测技术研究.地学前缘.14(5):11-19.
    [290]叶天竺,朱裕生,夏庆霖,等.2004.固体矿床预测评价方法技术[M].北京:大地出版社.1-326.
    [291]叶水泉,唐瑞来,张梅.1999a.论福建省闽中裂谷带成矿系统.有色金属矿产与勘查.8(6):400-403.
    [292]叶水泉,倪人平,吴志强.1999b.福建省梅仙式块状硫化物矿床.火山地质与矿产.20(3):172-180.
    [293]叶玉江.2003.闽中地区块状硫化物矿床及其古构造环境研究.中国地质大学(北京):博士学位论文.
    [294]于津海,魏震洋,王丽娟,等.2000.华夏地块:—个由古老物质组成的年轻陆块.高校地质学报.12(4):440-447.
    [295]翟裕生.1999.论成矿系统.地学前缘.6(1):13-27.
    [296]曾志刚,李朝阳,刘玉平,等.1998.滇东南南秧田两种不同成因类型白钨矿的稀土元素地球化学特征[J].地质地球化学.(2):34-38.
    [297]曾载淋,张永忠,朱祥培,陈郑辉,等.2009.赣南崇义地区茅坪钨锡矿床铼-锇同位素定年及其地质 意义.岩矿测试.28(3):209-214.
    [298]曾雯,张利,周汉文,等.2008.华夏地块古元古代基底的加里东期再造:锆石U-Pb年龄、Hf同位素和微量元素制约.科学通报.53(3):335-344.
    [299]章邦桐,陈培荣,陈迪云,倪琦生.1996.闽北570隐爆碎屑岩型铀(银、相)矿床成矿物理化学条件及物质来源研究[J].高校地质学报.2(2):187-196.
    [300]张克尧.2003.福建省金矿控矿地质条件研究[J].福建地质.22(1):21-32.
    [301]张生辉,石建基,狄永军,余心起.2005.闽中裂谷块状硫化物型铅锌矿床的地质特征及找矿意义[J].现代地质.19(3):375-384.
    [302]张家元.1992.福建省双旗山金矿床地质特征及成因研究[J].福建地质.11(1):17-32.
    [303]张达,吴淦国,狄永军,余心起,彭润民,黄火剑.2009.闽中梅仙峰岩铅锌矿床地球化学特征及其古构造环境[J].地质力学学报.15(1):20-35.
    [304]张达,吴淦国,彭润民,吴建设,狄永军,张祥信,汪群峰.2005.闽中地区马面山群东岩组变质岩形成的古构造环境研究[J].地学前缘.12(1):310-320.
    [305]张达,吴淦国,刘乃忠,狄永军,吕良冀.2010.福建漳平北坑场钼多金属矿床辉钼矿Re-Os同位素年龄及其地质意义.地质学报.84(10):1428-1437.
    [306]张达,吴淦国,余心起,狄永军,等.2006.闽中裂谷带铅锌多金属成矿规律研究报告.
    [307]张芳荣,舒良树,王德滋,于津海,沈渭洲.2009.华南东段加里东期花岗岩类形成构造背景探讨.地学前缘,19(1):250-262.
    [308]张汉成,王京彬,付水兴,艾霞.2006.杨金沟白钨矿床围岩蚀变及组分迁移规律研究[J].地质与勘探.42(5):1-10.
    [309]张家菁,梅玉萍,等.2008b.赣北香炉山白钨矿床的同位素年代学研究及其地质意义[J].地质学报.82(7):927-932.
    [310]张家菁,陈郑辉,王登红,陈振宇,刘善宝,王成辉.2008a.福建行洛坑大型钨矿地质特征成矿时代及其找矿意义[J].大地构造与成矿学.32(1):92-97.
    [311]张旗,钱青,王二七,赵太平,郝杰,郭光军.2001.燕山中晚期的“中国东部高原”:埃达克岩的启示[J].地质科学.36:248-255.
    [312]张理刚.1985.稳定同位素在地质科学中的应用—金属活化热液成矿作用及找矿[M].西安:陕西科学技术出版杜.
    [313]张玉学,何其光.1983.阳储岭斑岩钨钼矿床白钨矿特征及形成条件的研究[J].矿物学报.5(1):40-44.
    [314]张玉学,刘义茂.1993.行洛坑钨矿地质地球化学特征及成因研究[J].地球化学.(2):85-94.
    [315]张祥信.2006.闽中地区新元古代马面山群的形成及构造变形演化研究.中国地质大学(北京):博士论文
    [316]张文博.2007.吉林杨金沟白钨矿床地质特征及成因探讨[J].矿产与地质.21(2):122-125.
    [317]张文兰,华仁民,王汝成,陈培荣,李惠民.2006.赣南大吉山花岗岩成岩与钨矿成矿年龄的研究[J].地质学报.80(7):956-962.
    [318]张文兰,华仁民,王汝成,等.2009.赣南漂塘钨矿花岗岩成岩年龄与成矿年龄的精确测定[J].地质学报.83(5):659-670.
    [319]赵葵东,蒋少涌.2004.金属矿床的同位素直接定年方法[J].地学前缘.11(2):425-433.
    [320]赵一鸣,林文蔚,毕承思,等.2012.中国矽卡岩矿床[M].北京:地质出版社.1-410.
    [321]赵振华,包志伟,张伯友,等.1998.湖南中生代玄武岩类地球化学特征[J].中国科学.28(增刊):7-14.
    [322]周兵,顾连兴.1999.论梅仙块状硫化物矿床的特征及成矿地质环境[J].矿床地质.18(2):99-109.
    [323]周新民,李武显.2000.中国东南部晚中生代火成岩成因:岩石围消减和玄武岩底侵相结合的模式[J].自然科学进展.10(3):
    [324]周新华,杨进辉,张连昌.2002.胶东超大型金矿的形成与中生代华北大陆岩石圈深部过程[J].中国科学(D辑:地球科学).11-20.
    [325]周耀华,王发宁,虞长富,李代宗.1986.南岭钨矿地质与成矿预测.
    [326]朱金初,黄革非,张佩华,等.2003.湖南骑田岭岩体菜岭超单元花岗岩侵位年龄和物质来源研究[J].地质论评.49(3):245-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700