用户名: 密码: 验证码:
厚朴良种选择及其RAPD种源鉴别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厚朴主要来源厚朴Magnolia officinalis及其变种凹叶厚朴M.officinalis var biloba。历史上按产地分为川朴(产于湖北和四川,来源于厚朴)和温朴(产于浙江和福建,来源于凹叶厚朴)[1]。真实性是品种质量评价的重要标准之一,其鉴定技术也是解决新品种权益保护、种子(苗)经济纠纷问题的技术基础。选择优良品种,建立厚朴优良性状综合评价体系,收集保存优良种质资源,完善丰产栽培技术是当前大力发展中药材厚朴前提工作。
     本文对福建省不同种源地厚朴调查及形态指标研究的基础上,筛选出综合评价高的优良种源区及有效成分含量高、性状优良的优树,并对全国不同种源区厚朴进行RAPD分子标记及遗传多样性等进行分析研究。主要研究结果如下:
     1、厚朴酚类提取按正交设计L9(34)进行试验研究,表明乙醇浓度是厚朴酚类提取测定的关键因素,其次是超声处理时间。其提取最优方法为:乙醇浓度为90%,浸泡时间为50min,浸泡温度为60℃,超声时间为20min。
     2、调查显示厚朴在福建省基本上呈零星分布状态,主要分布于福建省西部和北部。对24个县市的147株初选厚朴优树进行聚类分析,不同地理种源的厚朴酚含量差异较大,147株厚朴初选优树中酚含量最低为0.0907 mg.g-1,最高5.4759 mg.g-1。以采样地的基本气候因子对厚朴酚类含量影响分析表明,年均温和无霜期对厚朴酚类物质含量影响最大。
     3、季节的变化对植物生长次生代谢物质的含量具有影响,枝皮中厚朴酚与和厚朴酚含量在1月份达到最高,后降低再升高,到9月份又下降的趋势。在厚朴叶中和厚朴酚含量始终高于厚朴酚含量,且嫩叶期趋势更明显;总的酚含量由嫩叶到老叶呈增加趋势,直到落叶前含量达到最高。
     4、不同器官部位厚朴酚类物质含量存在一定的差异,但同一器官中厚朴酚含量与和厚朴酚含量相差不大。不同器官中酚类物质含量大小顺序依次是:根皮>干皮>枝皮>嫩芽>种子>果实>枝芯>叶。
     5、厚朴随着树龄的增长、厚朴枝皮和干皮中厚朴酚与和厚朴酚含量表现为升高-下降-升高的趋势。厚朴在中幼林时随着树龄增大,酚含量增多,大致在25年左右达到最大,以后呈下降趋势,百年老树有效成含量又有增高的现象。厚朴叶中酚类含量随树龄增大呈下降趋势,幼龄树叶中酚类含量较高。
     6、同一群体内,胸径大小相近的厚朴植株酚类含量个体间存在着较大的变异,个体间各部位酚类含量差异显著。厚朴优良种源选择时,树高、冠幅、树皮厚、枝条数之间都呈极显著或显著的正相关;通直度、圆满度、健康度相关性不大;枝皮中酚含量与各树体性状之间都呈极显著或显著的正相关。
     7、按特征根大于或等于1原则提取四个主成分,对24个种源各主成分与综合评分,24个种源中综合排名较前的为柘荣、尤溪、连城、福州。其次是武平、永泰、寿宁、清流、沙县、永安、浦城、农大、屏南、明溪、宁化、漳平,最少是泰宁、南平、顺昌、建阳、大田、建瓯、福安、光泽。
     8、在优树选择时各性状间相关性分析,胸径与冠幅、树高、酚含量及树高与冠幅、枝下高、枝条数,冠幅与枝下高之间有极显著正相关,通直度与树皮厚显著的关系,其它指标相关性不大。
     9、按主成分分析法中累计贡献率大于或等于85%原则提取了六个主成分,对54株优树各主成分与综合评分,优树中得分较高为11号、6号、131号、146号、16号家系,其次为123号、33号、49号、114号、2号家系综合排名较前。聚类分析结果分为2类种源,第一类是2、14、99、107、113、8、141、114、37、75、44、117、135、109、16、33、49、123、6、11、131、146,第二类13、102、111、43、116、145、50、70、93、136、76、90、132、147、38、115、119、45、101、20、110、142、125、21、46、120、138、129、97、94、29、112。
     10、根据6个引物对厚朴资源扩增出的96条可重现RAPD谱带获得的数据矩阵,构建了89份厚朴资源的DNA指纹图谱。结果表明,S60与S69、S60与S91、S60与S1412、S60与S330、S60与S1422、S69与S91、S69与S1412、S69与S1422、S91与S1412、S1412与S1422、S1412与S330这11个组合中的每个组合形成的扩增数据矩阵都可以成为一张指纹图谱,比较容易地把89份资源相互区分鉴别开来。
     11、全国89个样本的来源分析,第一类为福建建瓯,遗传结构具有特殊性。第二类包括四川江邮、湖南道县,福建明溪种源和安徽歙县,福建建阳部分种源个体。第三类中的第一亚类主要来源有湖北恩施、浙江景宁、广西资源、广西全州、江西庐山、安徽毫州、安徽合肥、四川雅安、陕西长安和安徽歙县、四川江邮、湖南永州部分个体。第二亚类为湖南张家界、重庆江津区、福建顺昌、福建浦城、福建南平、福建柘荣、福建永泰、福州森林公园、福建连城、福建光泽、福建泰宁、福建寿宁和湖南道县、福建建阳的部分个体。
Chinese medicinal materials Magnolia officinalis mainly originated from Magnolia officinalis and M.officinalis var biloba. In history, according to origination of Magnolia officinalis (produced in Hubei and Sichuan, and M.officinalis var biloba (produced in Zhejiang and Fujian).Authenticity is one of the important criterions for quality evaluation of varieties, Identification techniques is also the base of solving the problem about rights and interests protection of new varieties of seeds (seedlings) as well as its economic disputes. Selecting fine varieties, establishing evaluation system with good and comprehensive traits for Magnolia officinalis, collecting elite germplasm resources, improving high-yield cultivation technique is the prerequisite to develop chinese medicinal materials.
     In this paper plus tree with high comprehensive evaluation from high-quality provenance area and high effective ingredient plus good traits were selected on the base of studying investigation and morphological index from different provenances of Fujian Province Magnolia officinalis. In addition different provenance of the country Magnolia officinalis for RAPD molecular markers and genetic diversity were analyzed.The major results were as follows:
     1. Magnolia phenol extraction was experimentally studied through orthogonal design L9(34). The result showed that ethanol concentration is a key factor of extraction, followed by ultrasonic time. The optimal method for extraction was: ethanol concentration 90%, water-curing treatment time 50min, water-curing treatment temperature 60℃, ultrasonic time for 20min.
     2. The investigation showed that the distribution of Magnolia officinalis was generally in dispersed state, mainly in the west and north of Fujian Province. 147 plus trees primarily selected in Magnolia officinalis from 24 town and citieswere depleted analysis. The result indicated that the content of Magnolia phenol varied greatly with different provenances, with the minimum at 0.0907 mg.g-1 but the maximum at 5.4759 mg.g-1.The impact of basic climatic factors existed in sampling land on the content of Magnolia phenol was analyzed. The result showed that annual temperature and frostless season were the greatest impact factors.
     3. Seasonal changes have an impact on the content of secondary metabolites during the period of plant growth. The content of phenol in shoot cortex of Magnolia was highest in January. Afterward with the passage of time, the content would decrease at first then increased but in downward trend on September. In the Magnolia leaves honokiol content is always higher than that magnolol content,the trend of which is more obvious in tender leaves.Finally the total phenol content distribution from tender leaves to old leaves was in Increasing trend until it reached the maximum before the deciduous period.
     4.There are some differences of Magnolia content among the different parts of Magnolia but the differences would be minimal among the same organs. Polyphenol content in different organs ranked in the order of root bark ,dry hide ,branch bark, tender bud , seed, fruit, stem wood and needle.
     5. With the increase of Magnolia trees age, magnolol and honokiol content trend in both branch bark and stem bark were shown as increasing - decreasing– increasing. while in both middle-aged and young growth plantations, the phenol content would increased with their ages increasing. The value reached the maximum approximately at their ages of 25 but afterward it would be shown as downtrend. However, in hundred years of aged trees, the active component content would show increasing trend in the last stage. The phenol content of Magnolia leaves decreased with age increasing, which reached higher level in their young growth tree leaves.
     6. The variation of phenol contents between Magnolia individuals in the same population with the diameter of the similar size were quite large and the difference of phenol contents in various parts between Magnolia individuals were significantly.When excellent magnolia provenance was selected, there exited very significant or significant positive correlation with tree height, crown, bark thick, and branches rather than straight degrees, round degree and health degree. Meanwhile, the positive correlation between phenol content of branch bark and traits of trees was very significant or significant.
     7. Four main components were extracted, according to the principle in which characteristic root is equal to or greater than 1. Then the principal components were comprehensive evaluated from 24 different provenance. The evaluation result by ranking order was as follow: top front group was Zherong,Youxi, Licheng, Fuzhou, which is followed by the Wuping,Yongtai, Shouning,Qingliu.Shaxian,Yongan,Pucheng, campus of Fujian Agricultural and Forestry University,Pingnan, Mingxi,Ninghua, Zhangping, and at least was Taining,Nanping,Shunchang,Jianyang,Datian, Jianou, Fuan, Guangze.
     8. Correlation between various traits in plus tree selection was analyzed. The results were shown as follow: there exited very significant positive correlation between DBH and crown width, tree height and phenol content, very significant positive correlation between tree height and crown width, clear bole height, and branches, very significant positive correlation between crown width and clear bole height, significant positive correlation between stem straightness and bark thickness, rather than other indexes.
     9. Six principal components extracted by principal component analysis of cumulative contribution rate of greater than or equal to 85% were comprehensively scored from 54 plus tree. The result was shown as follow: the higher scores of plus tree family was the number 11,6,131,146,16,followed by 123,33,49,114, 2. Cluster analysis results were divided into two categories Provenance, the first category was the number 2,14,99,107,113,8,141,114,37,75,44,117,135,109,16,33,49,123, 6,11,131,146, the second category was the number 13,102,111,43,116,145,50,70,93,136,76,90,132,147,38,115,119,45,101,20,110,142,125,21,46,120, 138,129,97,94,29,112.
     10. DNA fingerprinting of 89 copies of Magnolia resources was constructed based on the data matrix obtained out of 96 reproducible RAPD bands of Magnolia resources amplified by six primers. The results indicated that 11 combinations were respectively S60 and S69, S60 and S91, S60 and S1412, S60 and S330, S60 and S1422, S69 and S91, S69 and S1412, S69 and S1422, S91 and S1412, S1412 and S1422, S1412 and S330.In each combination , data matrix formed by amplification can be relatively easy for multiple authentication to distinguish from the 89 resources.
     11.Source of 89 samples from the whole nation was analyzed. The analysis result can be concluded to three categories. The first category was Jiangyou,Fujian in which genetic structure possessed particularity while the second category included Jiangyou Sichuan,Daoxian Hunan,Mingxi Fujian, Shexian Anhui and part of Provenance individual of Jianyang Fujian. In addition, the third category can be divided into two sub-categories.In the first sub-category, main source region included Enshi Hubei, Jingning Zhejiang, Ziyuan Guangxi, Quanzhou Guangxi, Lushan Jiangxi, Haozhou Anhui, Hefei Anhui, Yaan Sichuan, Changan Shaanxi, Shexian Anhui,Jiangyou Sichuan and part of the Provenance individual of Yongzhou Hunan and the the second sub-category included Zhangjiajie Hunan, Jiangjin district of Chongqing, Shunchang Fujian, Pucheng Fujian, Nanping Fujian, Zherong Fujian, Yongtai Fujian, Forest Park of Fuzhou, Liancheng Fujian, Guangze Fujian,Taining Fujian, Shouning Fujian,Daoxian Hunan and part of the Provenance individualof Fujian Jianyang.
引文
[1]郭宝林,吴勐,斯金平,等.厚朴道地性的遗传学证据[J].药学实践杂志,2000,18(5):314~315.
    [2]中国中药材公司.中国常用中药材[M].北京:科学出版社,1995,889.
    [3]安徽植物志协作组.安徽植物志(第1卷)[M],合肥:安徽科技出版社,1985.
    [4]刘塔斯.厚朴[M].北京:中国中医药出版社,2001:1~3.
    [5]郑万均.中国树木志[M],第1卷.北京:中国林业出版杜,1983,448.
    [6]傅大立,赵天榜,陈志秀,等.关于木兰属厚朴组叶位的初步研究[J].武汉植物学研究,2000,18(6): 466~470.
    [7]刘塔斯.厚朴[M].北京:中国中医药出版社,2001:7~9.
    [8]童再康.药用植物厚朴的遗传改良研究[D] .南京林业大学,2006.
    [9]陈有民,等.园林树木学[M].北京:中国林业出版社,2004.9:364~365.
    [10]刘仁东.多用途树种厚朴的培育[J].林业技术,2006.4:21~22.
    [11]仁卓丽环,陈龙清,主编.园林树木学[M].北京:中国农业出版社, 2004.
    [12]徐国钧,等.中国药材学(上册)[M].北京:中国医药科技出版社,1996.
    [13]徐良,等.中药栽培学[M].北京:科学出版社,2006.9:292~302.
    [14]冯玉元.观赏良药话厚朴[J].云南林业,2008,29(3).
    [15]郭承则,马培珍,郭大祝.观赏兼药用的珍贵花木厚朴[J].中国花卉盆景,2004.10
    [16]杨萍,杜娟,黄治华,等.厚朴丰产栽培技术[J].陕西林业,2007.05
    [17]国家药典委员会.中国药典第一部[ M].2005,176.
    [18]次秀丽,王宝恩,郭昌燕,等.厚朴对正常和内毒素休克大鼠胃肠电活动影响的实验研究[J].中国中医药科技,1999,6(3):154.
    [19]郑虎占,董泽宏,等.中药现代研究与应用(第四卷)[M].北京:学苑出版社,1998:3280.
    [20]陈笈,王伯初.厚朴的药理研究进展[J].重庆大学学报(自然科学版),2005,28(9):136~139.
    [21] Lin Shyr~Yi, Liu Jean~ Dean,Chang Hui~Chiu, et al Magnolol suppresses proliferation of cultured human colon and liver cancer cells by inhibitingDNA synthesis and activating apoptosis[J]. Journal of Cellular Biochemistry, 2001,84(3): 532.
    [22] Xianhe Bai, Francesca Cerimele, Masuko Ushio~ Fukai, et al Honokiol, a Small Molecular Weight Natural Product, Inhibits Angiogenesis in Vitro and Tumor Growth in Vivo[J]. J.Biol Chem,2003,278(37):35501.
    [23]殷帅文,何旭梅,郎锋祥,等.厚朴化学成分和药理作用研究概况[J].贵州农业科学,2007,35(6):133~135.
    [24]汤利萍,姚宝清,等.张仲景应用厚朴经验探讨[J].山东中医药杂志2007,11(26):11.
    [25]王承南,夏传格.厚朴药理作用及综合利用研究进展[J].经济林研究,2003,21(3):80~81.
    [26]邓世明,程永现,周俊,等.长缘厚朴中的新苯醒及新木脂素类化合物[J].云南植物研究,2001,23(1):121~125.
    [27]杨云,张晶,陈玉婷.天然药物化学成分提取分离手册[M].北京:中国中医药出版社,2003,540~542.
    [28]李玲玲.厚朴挥发油化学成分研究[J].中草药,2001,32(8):686~687.
    [29]叶华,张文清,邱燕.厚朴花挥发油的GC—MS联用分析[J].福建中医药,2006,37(6):53~54.
    [30]王洪燕,周先礼,黄帅,等.凹叶厚朴中生物碱成分的研究[J].华西药学杂志,2007,22(1):30~33.
    [31] Pyo MK,Yun~Choi HS,Hong YJ.Antiplatelet activ ities of aporphine alkaloids isolated from leaves of Magnoliaobovata[J].Planta Med,2003,69(3):267~269.
    [32]龙飞.厚朴资源综合利用研究—厚朴叶药用价值的初步研究[A].成都中医药大学2003级博士论文[C].2006,1.
    [33]金东日.厚朴苗材的HPLC化学成分分析和指纹图谱研究[D].延边大学,2006.
    [34]魏友霞,姚鸿萍,于佳.大黄厚朴复方提取工艺的研究[J].中成药,2007,29(5):766~767.
    [35]周俊伟.正交试验法优选厚朴酚提取工艺[J].陕西中医学院学报,2006.11,29(6):59~60.
    [36]刘晓鹏,姜宁,向山东,周大寨,等.快速提取及测定紫油厚朴中厚朴酚及和厚朴酚的研究[J].时珍国医国药,2007,18(3):580~582.
    [37]刘晓鹏,姜宁,周大寨,等.超声法提取厚朴中厚朴酚及和厚朴酚的研究[J].中药材,2007,30(2):237~239.
    [38]姜宁,刘晓鹏,田心鹏,等.微波辅助提取厚朴叶中厚朴酚及和厚朴酚的研究[J].林业实用技术,2007,9:8~10.
    [39]张忠义,王桂芳,雷正杰.超临界CO2萃取厚朴的主要成分[J].中国医院药学杂志,2001,21(7):31~34.
    [40]邓义德,梁晓原.乙醇对超临界CO2萃取云厚朴总酚影响的研究[J].云南中医学院学报,2008.8,31(4):31~34.
    [41]曾志,赵富春,蒙绍金.厚朴水蒸气蒸馏和超临界提取物化学成分的比较研究[J].林产化学与工业, 2006. 9, 26(3): 81~84.
    [42]叶卉,冉晓辉,俞凯.厚朴提取物工艺研究[J].医药导报,2008.8,27(8):974~975.
    [43]胡劲波,龚思源,孙成科,等.和厚朴酚的电化学行为及反应机理研究[J].分析化学,2000,28(5):539~543.
    [44] WANG X,WANG Y Q,GENG Y L,et al.Isolation and purification of honokiol and magnolol from cortex magnoliae officinalis by high~speed counter~current chromato graph[J].J Chromatogr A,2004,1036:171~175.
    [45]白小红,魏雁声,刘长松.胶束增稳荧光法同时测定厚朴酚及和厚朴酚同分异构体[J].分析化学,1999,27(4):388~391.
    [46]黎红梅,胡芳,胡育筑.FL同时测定中药厚朴中厚朴酚与和厚朴酚含量[J].五邑大学学报,2007.11,21(4):35~39.
    [47]李弘,黄念桃,王蓉.薄层扫描法考察不同产地厚朴叶中厚朴酚及和厚朴酚的含量[J].时珍国医国药,2004, 15 (3):140~141.
    [48]王大力,王清珊,金东日.半微柱高效液相色谱~电化学法检测和厚朴酚与厚朴酚[J].药物分析杂志,2007, 27 (11):1820~1823.
    [49]郑勇奇.常规林木育种研究现状与发展趋势[J].世界林业研究,2001,14(3):10~17.
    [50]李斌,顾万春,卢宝明.白皮松天然群体种实性状表型多样性研究[J].生物多样性,2002,10(2):181~188.
    [51]李文英.蒙古栎天然群体遗传多样性研究.北京林业大学博士论文,2003.
    [52]程诗明,顾万春.苦楝表型性状梯度变异的研究[J],林业科学,2006,42(5):29~35.
    [53]顾万春,李斌,游应天等.生态梯度轴(EGA)区划林木育种区的研究[J].生态学报,1997,17(2):159~169.
    [54]周世良,张方,王中仁等.杭州石荠苎和石香薷的遗传多样性研究[J].遗传学报,1998,25(2):173~180.
    [55]王宁等.东峡林区中国沙棘表型性状分析与类型划分[J].青海农林科技.1994,(1):27~31.
    [56]梅立新,杨卫昌.陕西省核桃分类的研究[J].西北农业大学学报.1995,23(4):63~65.
    [57]唐光旭.在油茶优良类型选择的研究.中国林学会经济林学会第二次代表大会论文选,1991:84~87.
    [58]杨红兵.湖北恩施产地厚朴的品质研究[D].湖北中医学院博士学位论文,2007.
    [59]冯佩杰,童志平,廖豪.不同树龄厚朴干、枝皮中的酚的分离机含量测定[J].天然产物研究与开发,2007,19:453~455.
    [60]胡蕖,杨少林,任朝辉.不同取样时期对杜仲、黄柏、厚朴三种皮类药材质量影响的初步研究[J].贵州林业科技,2005.2,33(1):14~17.
    [61]赵中振,胡梅,唐晓军.不同树龄三种厚朴中厚朴酚与和厚朴酚含量的研究,2005.2,33(1):15~17.
    [62] Wang Y(王洋),Dai SJ(戴绍军),Yan XF(阎秀峰).Effectsof light intensity on secondary metabolite camptothecin produc~tion in leaves ofCamptothecaacuminate seedlings.Acta EcolSin(生态学报),2004,24:1118~1122.
    [63]周玉亮.分子标记技术及其在植物遗传育种中的应用[J].生物技术通讯,2005 ,16(3):350~352.
    [64]辛景树,郭景伦,等.几种常用分子标记技术在种子纯度和品种真实性鉴定方面的应用[J].种子,2005,24(1).
    [65]郑道君,梁远发,刘国民,等.木犀科苦丁茶种质资源的RAPD分析[J].中国农业科学,2008,41(12):4164~4172.
    [66]沈永宝,施季森,等利用ISSR~DNA标记鉴定主要银杏栽培品种[J].林业科学,2005,41(1):202~204.
    [67]程水源,王燕,李俊凯,等.内源激素含量与银杏叶中类黄酮含量的关系[J].林业科学,2004,40(6):45~49.
    [68] Pei.D,Sun,Y.,Zhu,Z,etal. The SCAR markers between Gobiocypris rarus and zebrafish [J] . Unpublished,2004,17:541.
    [69]苏文华,等.植物药材次生代谢产物的积累与环境的关系[J].中草药,2005 ,36(9):1415~1419.
    [70]王晓丽,马祥庆.杉木及其近缘种的分子标记和遗传分析[J].江西农业大学学报,2005,27(2):243~249.
    [71]宋爱云,陈辉.RAPD分子标记在鉴定香樟优选株和普通株中的应用[J].应用与环境生物学报,2003,9(3):263~265.
    [72] Hagidimitriou M,A Katsiotis,G Menexes,C Pontikis,and M Loukas. Genetic Diversity of Major Greek Olive UsingMoulecular(AFLP and RAPDs) Markers and Morphol~oical Traits[J].Scientia Horticulturae,2005,130(2):211~217
    [73] M.T. Ozkaya,E. Cakir,etal.Morphological and molecular characterization of Derik Halhaliolive (Olea europaea L.) accessions grown in Derik–Mardin province of Turkey [J].Scientia Horti culturae,2006,(108):205~209.
    [74]陈兆贵,黄雁婷,陈健仪.勒杜鹃种质资源的ISSR分子鉴定技术研究[J].江苏农业科学,2009,(2):57~59.
    [75]唐丽.湖南主要南天竹种质资源遗传多样性的ISSR分析[J].北方园艺,2009(1):166~170.
    [76]王会,梁月荣,刘桂芹.早生优质茶树品种资源筛选及RAPD分子标记分析[J].江苏农业科学,2009(3):177~179.
    [77]孙亚东,梁燕,吴江敏,等.番茄种质资源的遗传多样性和聚类分析[J].西北农业学报,2009,18(5):297~301.
    [78]何予卿,张宇,孙梅,等.利用ISSR分子标记研究栽培稻和野生稻亲缘关系,农业生物技术学报,2001,9(2):123~127.
    [79]祁建民,周东新,吴为人.应用RAPD指纹探讨黄麻属种间遗传多样性及其亲缘关系,遗传学报, 2003,30(10): 926~ 932.
    [80]张传福,景蕊莲,张改生.单核苷酸多态性在植物研究中的应用,植物遗传资源学报, 2004,5(3):304~308.
    [81]李长有.DNA指纹技术的研究进展及应用[J].吉林师范大学学报(自然科学版),( 2004,2):56~58.
    [82]陈亮,杨亚军,虞富莲.应用RAPD标记进行茶树优异种质遗传多态性、亲缘关系分析与分子鉴别[J].分子植物育种,2004,2(3):385~390
    [83]郑道君,梁远发,刘国民,等.木犀科苦丁茶种质资源的RAPD分析[J].中国农业科学, 2008,41(12):4164~4172.
    [84] Bell,C.J.and J.R.Ecker.Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics, 1994, 19:137~144.
    [85]梁一池.树木育种原理与方法(2)[M].厦门大学出版社,1998:348~363.
    [86]马育华.植物育种的数量遗传学基础[M].江苏:江苏科技出版社,1982:438~469.
    [87]王学仁.地质数据的多变量统计分析[M].北京:北京科学出版社,1982.
    [88]王学仁,等.应用回归分析[M].重庆:重庆大学出版社,1991:136~138.
    [89]陈存及,邱尔发,梁一池,等.毛竹不同种源光合特性研究[J].林业科学,2001,37(6):15~19.
    [90]刘晓鹏,姜宁.超声辅助提取厚朴叶中厚朴酚及和厚朴酚的研究[J].时珍国医国药,2008,19(2):278~281.
    [91]姜宁,刘晓鹏.微波辅助提取厚朴中厚朴酚及和厚朴酚的研究[J].中华中医药杂志,2008,11,23(11):1012~1014.
    [92]荣俊冬.高双酯碱三尖杉优树选择及苗期子代测定研究[D].福建农林大学硕士学位论文,2006.6.
    [93]马华明.凹叶厚朴人工林林木生长规律和生态系统生产力的研究[D].福建农林大学硕士学位论文,2002.
    [94]张宇,赵玉梅.黄芪地下与地上部分有效成分的比较[J].中草药,1997, 2 8(11):651~653.
    [95]徐娟华,女贞子和小蜡果实中有效成分的动态分析与测定[J].中草药,1998,29(3):167~169.
    [96]曾燕如,童再康,朱玉球,等.树龄与厚朴质量关系的研究[J].药用植物栽培,1999,22(8):379~381.
    [97]斯金平,等.人工栽培厚朴酚类含量的研究[J].浙江林业科技,1994,145:21.
    [98]斯金平.人工栽培凹叶厚朴中厚朴酚与和厚朴酚含量的研究[J].浙江林业科学,1994.10,14(5):21~22.
    [99]朱建明.中药材厚朴(Magnolia officinalis Rehd et Wils)及其伪品、混淆品的多重任意扩增子图谱(MAAP)技术鉴定[D].中山大学硕士学位论文,2001.
    [100]李平,何文妮,孙博航,等.厚朴超临界提取物的化学成分研究[J].中国现代中药,2008.2,10(2):26~27.
    [101]刘晓鹏,姜宁.超声辅助提取厚朴叶中厚朴酚及和厚朴酚的研究[J].时珍国医国药,2008,19(2):278~280.
    [102]王苏斌,郑海涛,邵谦谦.SPSS统计分析[M].北京:机械工业出版社,2003.410~421.
    [103]庄宇,杨新娟,孙万佛.环境经济效率的R型因子分析[J].环境科学与技术,2006,3,29(3):66~68.
    [104]董庆吉,陈建平,唐宇.R型因子分析在矿床成矿预测中的应用-以山东黄埠岭金矿为例[J].地质与勘探,2008,7,44(4):64~68.
    [105]王慧梅.红松种源地遗传变异和优良种源选择研究[D].东北林业大学硕士学位论文,2000,6.
    [106]王凌晖.何首乌野生种质资源地理变异与种源初步选择[D].南京林业大学博士学位论文,2005,4.
    [107]孙海燕.华山松高结实无性系选择研究[D].西南林学院硕士学位论文,2007.6.
    [108]郭宝林,斯金平,等.厚朴DNA分子标记的研究——正品的RAPD研究[J].药学学报,2001,36( 5):386~389.
    [109]刘本英,王丽鸳,李友勇,等. ISSR标记鉴别云南茶树种质资源的研究[J].茶叶科学,2009,29(5):355~364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700