用户名: 密码: 验证码:
北武夷蔡家坪铅锌矿床地质地球化学特征及矿床成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北武夷蔡家坪矿床是近年来新发现的一个中型铅锌矿床。矿床赋矿围岩为侏罗系水北组、漳平组砂岩,铅锌矿体多产于断裂旁侧破碎带及流纹斑岩与砂岩接触带。结合野外调查、镜下观察及电子探针分析,初步将矿区成矿过程划分为沉积成矿期、岩浆热液期与表生期,岩浆热液期包括中高温黄铁矿—闪锌矿阶段、中低温石英—硫化物阶段及碳酸盐阶段。中高温黄铁矿—闪锌矿阶段以中粗粒半自形—自形黄铁矿与富铁闪锌矿组合为特征,具绿帘石化蚀变,反映了较高的形成温度;中低温石英—硫化物阶段属主成矿阶段,主要矿石矿物组合为黄铁矿+闪锌矿+黄铜矿+方铅矿,蚀变类型主要为硅化、绿泥石化及绢云母化。
     硫化物微量元素分析显示岩浆热液作用主导矿区成矿。硫同位素分析表明矿区的硫主要是岩浆来源,有深源岩浆的参与。铅同位素分析显示成矿物质同时来源于流纹斑岩与赋矿砂岩,且成矿金属元素具有壳幔混源特征。
     岩石地球化学分析表明,赋矿砂岩物源区构造背景为大陆边缘,成岩物质来源可能与武夷变质基底有关;流纹斑岩属高钾钙碱性S型花岗岩,形成于早白垩世伸展构造背景,源于武夷变质基底的重熔。
     据绿泥石温度计、Cd元素地质温度计、硫同位素温度计计算的成矿温度在292.3℃~ 490.6℃,成矿温度属中高温范畴,与微量元素分析结果一致。
     F4破矿断裂带内长英质脉体钾长石40Ar /39Ar年龄暗示成矿时代早于120±4 Ma。结合前人研究成果推测蔡家坪铅锌矿床成矿时代为138~120 Ma,与华南地区伸展成矿阶段对应。
     综合分析结果,认为蔡家坪铅锌矿床形成于早白垩世华南伸展成矿阶段,属中温岩浆热液型矿床,岩浆热液作用主导成矿。结合野外调查结果、前人研究成果及同位素示踪分析,认为赋矿砂岩层系矿源层,存在层控作用;武夷变质基底对矿区成岩成矿贡献巨大。
The Caijiaping lead-zinc deposit, located in north Wuyi area, Jiangxi Province, is a newfound medium-sized deposit. Sandstones of the Jurassic Shuibei Formation(J1s) and Zhangping Formation(J2z) are the wall rocks of orebodies. The lead-zinc orebodies usually occur in the crush belts beside the fractures, and often exist in boundary surfaces of rhyolite porphyries and sandstones. On the basis of field work, by means of observation of microscope and analysis of electron probe, this paper researches main sulfide minerals of the deposit at great length. Ore-forming process is preliminarily divided into sedimentary mineralization period, magmatic hydrothermal period and hypergene period. Magmatic hydrothermal period consists of medium-high temperature pyrite-sphalerite stage, medium-low temperature quartz-polymetallic sulfide stage and carbonate stage. Medium-high temperature pyrite-sphalerite stage is characterized by medium and large-grained hypautomorphic-automorphic pyrite+ christophite, which can reflect higher formation temperature. The alteration of this stage is epidotization. Medium-low temperature quartz-polymetallic sulfide stage, which is major metallogenetic stage, has a major ore mineral association consisting of pyrite+sphalerite+chalcopyrite+galena. The major alteration of this stage is silification, chloritization and sericitization. The data of electron probe indicates that following the mineralization, sulfur was more and more deficient.
     According to the trace element geochemistry of galena and sphalerite, mineralization mainly resulted from magmatic hydrothermal process superimposed on layer-controlling action and sedimentation- metamorphism, what indicates that the mineralization of this deposit is polygenous. The bedding and incision orebodies we found in the field imply that the origin and the type of the lead-zinc orebodies are not single. Sulfur isotopic analysis indicates that the sulfur of the Caijiaping deposit is mainly magmatic sulfur in origin, possibly mixed with mantle-derived magma, and the sulfur isotope was approximately on balance when metallogenic materials were precipitated. Lead isotopic analysis reveals that ore-forming materials are derived from rhyolite porphyries and sandstones, and the metallogenic elements are crust-mantle mixed type.
     Geochemical analysis indicates that the tectonic setting of provenance of sandstones is continental margin, and diagenetic provenance is related with Wuyi metamorphosed basement. Rhyolite porphyries are high potassium calc-alkaline S-type granite, which come from remelting of Wuyi metamorphosed basement.
     The geologic thermometers of chlorite, cadmium and sulfur isotope show that the temperature of mineralization is 292.3℃~490.6℃, which is medium-high temperature and is consistent with the result of the trace element analysis.
     Additionally, it is found that the fault F4 cuts orebodies in the field, and the potash feldspar selected from felsic vein within F4 yields a 40Ar /39Ar age of 120±4 Ma, implying the mineralization of the Caijiaping deposit should be occurred before 120±4 Ma. Combining with the former research results of predecessors, the authors speculate the age of mineralization was 138~120 Ma, corresponding with extensional mineralization stage of the South China area.
     According to the researches above, the Caijiaping lead-zinc deposit, was formed in Lower Cretaceous during extensional mineralization stage of the South China area. It is a medium temperature hydrothermal deposit, which mainly resulted from magmatic hydrothermal process. According to the basis of field work, the former research results of predecessors and isotope analysis, we think the sandstones are source bed, and layer-controlling action also controlled the formation of the deposit. Wuyi metamorphosed basement contributed a great deal to the diagenetic and metallogenic process.
引文
Barth M G, McDonough W F, Rndnick R L. Tracking the budget of Nb and Ta in the continental crust. ChemicalGeology, 2000, 165: 197~213
    Barton P B, Toulmin P. Phase relations involving sphalerite in the Fe-Zn-S system. Econ.Geol., 1966, 61: 815~849
    Bethke P M, Barton P B. Distribution of some minor elements between coexisting sulfide minerals. Econ.Geol., 1971, 66: 140~163
    Bhatia M R. Plate tectonics and geochemical composition of sandstones. Journal of Geology, 1983, 91: 611~627
    Bhatia M R, Crook K A W. Trace element characteristics of greywackes and tectonic setting discrimination sedimentary basin. Contributions to Mineralogy and Petrology, 1986, 92(2): 181~193
    Both R A. Minor element geochemistry of sulphide minerals in the Broken Hill lode (NSW) in relation to the origin of ore. Miner. Deposita, 1973, 8: 349~369
    Cathelineau M, Nieva D A. Chlorite solid solution geothermo-meter: The Los Azufres (Mexico) geothermal system. Contuib Mineral Petrol, 1985, 91: 235~244
    Cathelineau M, Nieva D A. Cationsite occupancy in chlorites and illites as a function of temperature. ClayMiner, 1988, 23: 471~485
    Czamanske G K, Hall W E. The Ag-Bi-Pb-Sb-S-Se-Te mineralogy of the Darwin lead-silver-zinc deposit, southern California. Economic Geology, 1975, 70(6): 1092~1110
    Czamanske G K, Rye R O. Experimentally Determined Sulfur Isotope Fractionations between Sphalerite and Galena in the Temperature Range 600 degrees to 275 degrees C. Economic Geology, 1974, 69(1): 17~25
    Eldridge C S, Compston W, Williams I S, et al. Isotope evidence for the involvement of recycled sediments in diamond formation. Nature, 1991, 353: 649~653
    Gao S, LuoT C, Zhang B R et al. Chemical composition of the continental crust as revealed by study in East China. Geochemica et Cosmochimica Acta, 1998, 62 (11): 1959~1975
    Hofmann A W, Jochum K P, Seufert M et al. Nb and Pb in Oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters, 1986, 79: 33~45
    Jonasson I R, Sangster D F. Zn: Cd ratios for sphalerites separated from some Canadian sulphide ore samples. Paper Geol. Surv. Canada, 1978, 78-1B: 195~201
    Kamona A F, Lévêque J, Friedrich G, et al. Lead isotopes of the carbonate-hosted Kabwe, Tsumeb, and Kipushi Pb-Zn-Cu sul-phide deposits in relation to Pan African orogenesis in the Damaran-Lufilian Fold Belt of Central Africa. Mineralium Deposita, 1999, 34: 273~283
    Li X H, Li Z X, Li W X, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos, 2007, 96: 186~204
    Liegeios J P, Navez J, Hertogen Jetal. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids: The use of sliding normalization. Lithos, 1998, 45: 1~28
    Ohmoto H. Stable isotope geochemistry of ore deposits. Rev Minerology, 1983, 16: 491~560 Ohmoto H, Rye R O. Isotope of sulfur and carbon. In: Barnes HL (ed.). Geochemistry of
    Hydrothermal Ore Deposits (2nd ed.). New York: John Wiley and Sons, 1979, 509~567
    Pearce J A. Sources and settings of granitic rocks. Episodes, 1996, 19(4): 120~125
    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol, 1984, 25: 956~983
    Pettijohn F J, Potter P E, Siever R. Sand and sandstone. Berlin: Springer-Verlag, 1972. 1~62 Roedder E, Dwornik E J. Sphalerite Color Banding: Lack of correlation with Iron Content, Pine Point, Northwest Torritories, Canada. Amer. Mineral., 1968, 53: 1523~1529
    Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 1988, 67: 119~139
    Solomon M, Eastoe C J, Walshe J L. Mineral deposits and sulfur isotope abundances in the Mount Read Volcanics between Que River and Mount Darwin, Tasmania. Econ. Geol., 1988, 83: 1307~1328
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes∥Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society of London, Special Publication, 1989, 42: 313~345
    Taylor S R, Mclennan S H. The continential crust: Its composition and evolution. Oxford: Black- well, 1985. 117~140
    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 2006, 232(1/2): 12~32
    Zartman R E, Doe B R. Plumbotectonics: The model. Tectonophysics, 1981, 75: 135~162
    Zhou X M, Sun T, Shen W Z, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 2006, 29: 26~33
    陈刚.中生代鄂尔多斯盆地陆源碎屑成分及其构造属性.沉积学报,1999,17(3):409~413
    陈光远,孙岱生,殷辉安,等.成因矿物学与找矿矿物学.重庆:重庆出版社,1987
    成都地质学院.矿床学(下册).北京:地质出版社,1978
    地矿部地矿司南岭铅锌矿专题组.南岭地区铅锌矿床成矿规律.长沙:湖南科学技术出版社,1985
    《地球科学大辞典》编辑委员会.地球科学大辞典(基础科学卷).北京:地质出版社,2006
    和政军,牛宝贵,任纪舜.陕南山阳地区刘岭群砂岩岩石地球化学特征及其构造背景分析.地质科学,2005,40(4):594~607
    和政军,李锦轶,莫申国,等.漠河前陆盆地砂岩岩石地球化学的构造背景和物源区分析.中国科学:D辑,2003,33(12):1219~1226
    和钟铧,杨德明,王天武.冈底斯带桑巴区早白垩世后碰撞花岗岩类的确定及构造意义.岩石矿物学杂志,2006,25(3):185~193
    华嵘辉,吴德来,余祖寿.江西上饶黄柏坑铅锌(铜银)矿床地质特征及找矿标志.福建地质,2008,27(4):361~368
    黄玉春,邬介人,于浦生.北祁连块状硫化物矿床中矿石和主要矿石矿物地球化学特征.矿床地质,1994,13(1):61~74
    江西省地质矿产局.江西省区域地质志.北京:地质出版社,1984:1~921
    金章东,朱金初,李福春.德兴斑岩铜矿成矿过程的氧、锶、钕同位素证据.矿床地质,2002,21(4):341~349
    赖天即.广西老厂铅锌矿床主要矿物的标型特征.桂林冶金地质学院院报,1994,14(4): 401~407
    黎彤.化学元素的地球丰度.地球化学,1976,(3):167~174
    李晓峰,Yasushi Watanabe,屈文俊.江西永平铜矿花岗质岩石的岩石结构、地球化学特征及其成矿意义.岩石学报,2007,23(10):2353~2365
    梁婷,王登红,胡长安,等.新疆彩霞山铅锌矿微量和稀土元素地球化学特征初步研究.地质与勘探,2008,44(5):1~9
    刘迅.北武夷山及其外围地区控矿构造与成矿预测.北京:地震出版社,1994
    刘英俊,曹励明,李兆麟,等.元素地球化学.北京:科学出版社,1984
    陆慧娟,华仁民,毛光周,等.赣东北地区岩浆岩同位素年代学研究及地质演化.地质论评,2007,53(2):207~216
    路永严.江西上饶蔡家坪矿区围岩蚀变特征:[学士学位论文].北京:中国地质大学(北京),2007,14~22
    罗平,魏英文,王永庆.北武夷长寿源银铅(锌)矿床地质特征.资源调查与环境,2005,26(1):33~42
    罗平,毛大华,徐庆胜,等.赣东北地区铜多金属成矿规律及找矿远景分析.赣东北地质大队,2006
    罗平,魏英文,李伯春.江西铅山下湖铅(锌、银)矿床地质特征及成因初探.福建地质,2004,23(3):111~118
    罗国辉,高应进,杨毅,等.蔡家坪矿区铅锌矿地质普查报告.赣东北地质大队,2010:1~40
    毛建仁,叶海敏,赵希林,等.武夷山成矿带构造-岩浆-成矿作用与演化.矿床地质,2010,29(S1):18~19
    毛建仁,赵希林,叶海敏,等.武夷成矿带构造-岩浆-成矿作用与演化.上海地质,2010,31(S1): 140~144
    毛景文,陈懋弘,袁顺达,等.华南地区钦杭成矿带地质特征和矿床时空分布规律.地质学报,2011,85(5):636~658
    毛景文,谢桂青,李晓峰,等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘,2004,11(1):45~55
    梅建明.浙江遂昌治岭头金矿床黄铁矿的化学成分标型研究.现代地质,2000,14(1):51~55
    梅勇文.武夷造山带及其成矿作用.江西地质,1998,12(2):109~115
    孟祥金,董光裕,刘建光,等.江西冷水坑斑岩型铅锌银矿床.北京:地质出版社,2007
    孟祥金,侯增谦,董光裕,等.江西冷水坑斑岩型铅锌银矿床地质特征、热液蚀变与成矿时限.地质学报,2009,83(12):1951~1967
    邵磊,杜斐,Stateggea K.从砂岩成分探讨吐哈盆地构造演化.地质论评,2001,47(1):19~26
    单强,张兵,罗勇,等.新疆尼勒克县松湖铁矿床黄铁矿的特征和微量元素地球化学.岩石学报,2009,25(6):1456~1464
    盛继福,李岩,范书义.大兴安岭中段铜多金属矿床矿物微量元素研究.矿床地质,1999,18(2):153~160
    宋学信.凡口矿床闪锌矿和方铅矿的微量元素及其比值——一个对比性研究.岩矿测试,1982,1(3):37~44
    谭靖,刘嵘.低温绿泥石成分温度计Fe/(Fe+Mg)校正的必要性问题.矿物学报,2007,27(2):173~178
    万天丰.中国大地构造学纲要.北京:地质出版社,2004
    王德滋,周新民,舒良树,等.中国东南部晚中生代花岗质火山—侵入杂岩成因与地壳演化. 科学出版社,2002
    王登红,陈郑辉,陈毓川,等.我国重要矿产地成岩成矿年代学研究新数据.地质学报,2010,84(7):1030~1040
    吴新华,楼法生,黄志忠,等.北武夷地区前寒武系变质岩地球化学特征.火山地质与矿产,2001,22(4):278~283
    夏学惠.东升庙多金属硫铁矿床闪锌矿特征及形成条件.岩石矿物学杂志,1992,11(4):375~383
    谢代强,李康东,徐庆胜,等.北武夷地区金属矿产找矿方向及靶区优选.东华理工学院学报,2006,(S1):24~27
    谢桂青.中国东南部晚中生代以来的基性岩脉(体)的地质地球化学特征及其地球动力学意义初探—以江西省为例:[博士学位论文].贵阳:中国科学院地球化学研究所,2003
    徐国风,邵洁涟.方铅矿的元素混入物研究及标型特征.地质地球化学,1979,(2):37~42
    徐国风,邵洁涟.黄铁矿的标型特征及其实际意义.地质论评,1980,26(6):541~546
    徐国风.矿相学教程.武汉:武汉地质学院出版社,1986:133~146
    杨水源,蒋少涌,姜耀辉,等.江西相山流纹英安岩和流纹英安斑岩锆石U-Pb年代学和Hf
    同位素组成及其地质意义.中国科学:地球科学,2010,40(8):953~969
    叶庆同.赣东北铅锌矿床成矿系列和成矿机理.北京:北京科学技术出版社,1987
    余心起,吴淦国,张达,等.北武夷地区逆冲推覆构造的特征及其控矿作用.地质通报,2008,27(10):1667~1677
    张家菁,吴木森,陈郑辉,等.江西省上饶县金竹坪钼多金属矿床成矿年代学研究.岩矿测试,2009,28(3):228~232
    张雷,刘招君,和钟铧,等.孙吴-嘉荫盆地白垩系淘淇河组-太平林场组砂岩主量元素的地球化学特征.沉积与特提斯地质,2008,28(2):100~106
    张乾.利用方铅矿、闪锌矿微量元素图解法区分铅锌矿床的成因类型.地质地球化学,1987(9):64~66
    赵振华.微量元素地球化学原理.北京:科学出版社,1997
    周兵,顾连兴,张文兰,等.福建尤溪梅仙矿床闪锌矿中黄铜矿交生体的交代成因.地质论评,1999,45(1):15~19
    周家喜,黄智龙,周国富,等.黔西北赫章天桥铅锌矿床成矿物质来源:S、Pb同位素和REE制约.地质论评,2010,56(4):513~524
    朱炳泉.地球科学中同位素体系理论与应用.北京:科学出版社,1998: 216~235
    朱赖民,袁海华.四川底苏、大梁子铅锌矿床中方铅矿和黄铁矿地球化学标型特征.四川地质学报,1995,15(3):204~210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700