用户名: 密码: 验证码:
神经甾体孕酮对大鼠吗啡精神依赖调节的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿片类药物成瘾是药物成瘾中最重要的一种,已经成为世界范围内严重的公共卫生和社会问题。目前,有关阿片类药物成瘾机理的研究是神经生物领域的热点课题之一。相关的研究已经从神经解剖、神经生化、受体调控、受体后信号转导、基因转录及表达调控等各个水平进行了大量的研究并取得了一定的进展,但对该类药物成瘾的确切机理仍未阐明。一般认为,机体反复与阿片类物质接触,会使中枢神经系统(central nervous system, CNS)某些神经元发生代偿适应性变化,如代谢活性、受体活性、基因表达及对环境暗示的反应性等一系列的改变,最终导致耐受、敏化、渴求、强迫用药等一系列复杂的行为。阿片类药物依赖不仅涉及阿片受体本身,还有多种神经递质及受体系统参与阿片药理作用的调节,如多巴胺(dopamine, DA)受体系统、N-甲基-D-天冬氨酸(NMDA)受体系统、5-羟色胺(5-HT)受体系统、去甲肾上腺素(NE)受体系统、乙酰胆碱(Ach)受体系统,促肾上腺皮质激素释放因子(CRF)受体系统等。随着分子生物学研究的不断深入,对阿片类物质依赖的形成机制也在不断的深入认识。阿片类药物成瘾包括对阿片类物质耐受、身体依赖性、戒断综合征和自身给药行为等特征性过程。目前,大多数学者认为,阿片依赖是一种细胞适应性反应,特别是中枢神经系统发生了细胞及分子水平上的适应,包括神经化学物质、神经电生理以及突触形态亚结构方面的变化,也包括细胞机能适应和形态适应,从而导致细胞的生理生化过程及组织结构的代偿性改变,最终达到病理状态的平衡。阿片类药物依赖时机体一系列适应性变化的发生是一个非常复杂的生物学过程,其可发生在神经组织、细胞和分子三个不同水平,受体后细胞和分子水平的适应性变化更为重要。
     神经甾体是近年来发现的由中枢神经系统合成或来自外周由中枢神经系统代谢衍生而成的甾类物质的总称,包括孕烯醇酮(pregnenolone, PREG)、孕烯醇酮硫酸酯(pregnenolone sulfate, PREGS)、别孕烯醇酮(allopregnanolone, AP)、脱氢表雄酮(dehydroepiandrosterone, DHEA)、脱氢表雄酮硫酸酯(dehydroepiandrosterone sulfate, DHEAS)、孕酮(progesterone,PROG)、睾酮(testosterone, T)和脱氧皮质酮(deoxycorticosterone, DOC)等,现已经被列为继氨基酸和乙酰胆碱、儿茶酚胺和5-羟色胺、肽类之后的第四代神经递质。神经甾体可通过影响脑内多种神经递质受体的功能而产生广泛的生物学效应。有研究表明,多种神经甾体可以抑制慢性吗啡处理引起的依赖、耐受的形成;减轻纳络酮诱发的吗啡戒断症状;抑制或诱发吗啡条件性位置偏爱的形成;某些神经甾体还可以使大鼠产生辨别效应,剂量依赖性的增加伏隔核多巴胺的释放,并加强吗啡升高伏隔核细胞外多巴胺水平的作用,提示神经甾体可能影响吗啡躯体依赖和精神依赖的形成过程。本实验室前期研究发现,吗啡慢性处理可使大鼠在行为上产生躯体依赖、出现戒断反应、诱发条件性位置偏爱形成和复发等,在神经生化上表现为大鼠全脑内、伏隔核、下丘脑、杏仁核和垂体内某些甾体水平发生不同程度的变化;进一步深入研究发现,作为神经甾体之一的孕酮可以有效地抑制大鼠吗啡条件性位置偏爱效应的获得,被吗啡激活而诱发奖赏效应的中脑多巴胺系统的改变参与了孕酮对大鼠吗啡条件性位置偏爱效应的逆转。上述研究结果表明,对脑内神经甾体系统的调节可能是吗啡依赖形成的神经生物学机制之一。
     阿片类药物依赖时机体可发生在神经组织、细胞和分子三个不同水平均可以发生适应性变化。本课题组前期研究发现,吗啡慢性处理导致精神依赖时,大鼠全脑内、伏隔核、下丘脑、杏仁核和垂体内某些神经甾体的水平均可发生不同程度的变化;并进一步研究证实,给与外源性神经甾体孕酮可以有效的抑制吗啡精神依赖大鼠CPP(conditioned place preference)效应的获得,同时使中枢内单胺类神经递质水平显著降低。故本实验在课题组前期工作的基础上,采用了放射免疫技术,探讨了外源性神经甾体孕酮对吗啡条件性位置偏爱大鼠下丘脑、额叶皮质、伏隔核、海马和中脑中内阿片肽水平的影响;并应用免疫组化技术研究了孕酮在逆转大鼠吗啡位置偏爱时,相关脑区中的内阿片受体和多巴胺受体表达调控的规律;最后应用免疫印迹技术观察了孕酮逆转大鼠吗啡位置偏爱时中枢相关核团内p-CREB(phosphorylated cAMP response element binding protein)水平的变化,为研究吗啡成瘾与神经甾体的关系提供了实验基础。
     本研究采用的实验方法包括:
     1吗啡精神依赖动物模型的建立
     采用条件性位置偏爱模型,模拟吗啡精神依赖的形成过程。40只雄性SD大鼠,随机分为空白对照组(C)、吗啡组(Mor)、孕酮组(PROG)和孕酮加吗啡组(PROG+Mor) 4组,每组10只。以偏爱箱的白室为伴药侧,训练时用隔板封闭黑白两室的通道,大鼠每天训练两次,上午(8:00)注射后放入白室,下午(14:00)注射后放入黑室,两次间隔6h。C组和PROG组大鼠上午分别皮下注射10%的2-羟丙基-β-环糊精和孕酮15 mg·kg~(-1),10 min后给予腹腔注射5mg·kg~(-1)生理盐水;下午均注射等量的2-羟丙基-β-环糊精和生理盐水。Mor组和PROG+Mor组大鼠上午腹腔注射吗啡5mg·kg~(-1),给予吗啡的前10 min分别给予皮下注射10%的2-羟丙基-β-环糊精和PROG,剂量均为15 mg·kg~(-1),下午均注射等量的2-羟丙基-β-环糊精和生理盐水。大鼠每次在箱内停留45 min,连续训练10 d。最后一次训练后24 h进行CPP测试,测试时将隔板倒置,使大鼠可以在黑白箱中自由出入,记录在不给药状态下10 min内大鼠的活动情况,并软件分析大鼠在白室的累积停留时间。将动物断头处死,收集躯干血,分离下丘脑、额叶皮质、伏隔核、海马和中脑等脑区,-20℃保存备用。
     2大鼠脑组织中内阿片肽水平的测定
     把分离出的脑区置于玻璃匀浆管内,分别加入1mol·L~(-1) HCl 1 ml,在冰浴中充分匀浆后转入到玻璃试管中,室温放置100min,加入1 mol·L~(-1) NaOH 1 ml,以4000 rpm的速度低温离心20 min,取上清。采用放射免疫法测定内阿片肽的含量:每管加标准品100μl或待测样品100μl,稀释的抗血清100μl,缓冲液加至200μl,4℃环境下孵育24 h后再加入标记物100μl,沉淀物用计数器记数,计算并绘制竞争抑制曲线,最后得出单位重量样品中的内阿片肽含量。
     3大鼠脑组织中阿片受体水平的测定
     将SD大鼠腹腔注射戊巴比妥麻醉(2%,w/v, 0.3ml/100g体重),开胸,以30℃的生理盐水(50-100ml/250-350g)经左心室灌流,速度应快,然后以4%多聚甲醛200ml灌流固定,前10min速度较快,后调慢滴速,总时间大于30min。开颅,取出整个大脑,去除小脑,置4%多聚甲醛60ml于4℃后固定4h。转移至30%蔗糖溶液100ml中,4℃脱水,定时振摇,直至大脑沉底。将脱水平衡的大脑取出,石蜡包埋,进行连续冠状切片,隔二取一,每个大鼠的每个脑区做6套切片。
     μ受体ABC法免疫细胞化学染色步骤如下:取出标本,用PBS漂洗一次,使标本湿润。过氧化氢室温孵育5min,以消除内源性过氧化氢酶的活性;蒸馏水漂洗2遍,PBS液浸泡3分钟;正常羊血清封闭非特异性抗原,室温孵育20分钟;倾去血清,滴加一抗工作液(1:1000稀释)室温湿盒中放置1小时后置4℃冰箱过夜;PBS液漂洗3遍,每次3分钟;滴加生物素标记的二抗工作液,室温湿盒中放置75分钟;PBS液漂洗3遍,每次3分钟;滴加辣根酶标记的链霉卵白素工作液,室温湿盒中放置30分钟;PBS液漂洗3遍,每次3分钟;DAB显色,显微镜下控制显色时间;适时终止反应,自来水冲洗后蒸馏水冲洗1遍,苏木精复染10分钟,自来水冲洗;1%盐酸酒精分色;1%氨水中和;常规梯度酒精脱水,二甲苯透明,中性树胶封片。
     4大鼠脑组织中多巴胺受体水平的测定
     除一抗的效价为1:250外,其余同阿片受体水平的测定。
     5大鼠脑组织中p-CREB水平的测定
     将分离的脑区分别用0.5 ml冰冷的细胞裂解液A ( HEPES 10 mmol·L~(-1), MgCl2 1.5 mmol·L~(-1), KCl 10 mmol·L~(-1), PMSF 1 mmol·L~(-1), NaF 2 mmol·L~(-1), NaPPi 2 mmol·L~(-1)),冰浴下匀浆10s×3次,冰浴上孵育30min,期间不断将细胞弹起使细胞膜裂解,4℃离心4000×g×20 min,弃上清。用50μl细胞裂解液B (HEPES 100 mmol·L~(-1), MgCl2 1.5 mmol·L~(-1), EDTA 1 mmol·L~(-1), NaCl 0.8mmol·L~(-1), NaF 2 mmol·L~(-1), NaPPi 2 mmol·L~(-1), PMSF 1 mmol·L~(-1) ),冰浴30 min,反复吹打,使细胞核裂解,4℃离心14000×g×30 min,取上清液保存于-20℃备用。
     采用紫外分光光度法测定样品中蛋白浓度。将样品与等体积的上样缓冲液(pH6.8 Tris·Cl 0.0625mmol·L~(-1),溴酚蓝0.2g·L~(-1),SDS 20g·L~(-1) ,甘油400g·L~(-1))混合,于100℃煮沸5min,冷却至室温。样品经120g·L~(-1)SDS-PAGE电泳分离(稳压,15V/cm),湿法转移至硝酸纤维素(NC)膜(稳流,2mA/cm2),50g·L~(-1)脱脂奶粉封闭,依次与一抗Ser133-p-CREB抗体、HRP-羊抗兔二抗(1:2000)反应,发光剂显色,X线胶片进一步显影。
     主要实验结果及结论如下:
     1孕酮对大鼠吗啡位置偏爱效应的影响
     5mg·kg~(-1)吗啡连续训练10d后,吗啡处理组大鼠产生了显著的CPP,表现为在伴药侧的停留时间显著长于空白对照组(P<0.01);单独使用孕酮(15mg·kg~(-1))进行条件性训练10d后,孕酮处理组大鼠不产生CPP,表现为在伴药侧的停留时间与空白对照组比较无显著性差异(P>0.05)。在吗啡处理的同时给与大鼠15mg·kg~(-1)孕酮,进行条件性训练10d后,孕酮使大鼠的吗啡CPP效应消失,表现为在伴药侧的停留时间显著短于吗啡处理组(P<0.01)。
     结果表明,15mg·kg~(-1)孕酮处理本身不产生条件性位置偏爱效应,但与吗啡同用时,可以抑制大鼠吗啡CPP效应的获得。
     2孕酮抑制大鼠吗啡位置偏爱效应的内阿片肽机制
     与空白对照组相比,5mg·kg~(-1)吗啡训练10d诱导CPP形成时,Mor组大鼠下丘脑、海马和额叶皮质中的β-EP水平显著降低(P<0.05,P<0.01和P<0.05 ),下丘脑、伏隔核和额叶皮质中的L-EK水平显著降低(P<0.05,P<0.05和P<0.01 ),下丘脑和额叶皮质中的DynA水平显著升高(P<0.05和P<0.05)。与空白对照组比较,单独给予15mg·kg~(-1)孕酮训练10d,上述三项指标在各个脑区中未有显著性变化(P>0.05)。与吗啡组比较,在给予吗啡的前10min给予15mg·kg~(-1)孕酮进行条件性训练10d后,大鼠下丘脑中β-EP水平的显著升高(P<0.01 ),下丘脑、伏隔核和额叶皮质中的L-EK水平显著升高(P<0.05,P<0.01和P<0.05 ),下丘脑和额叶皮质中的DynA水平显著降低(P<0.01和P<0.05)。
     结果提示长期给与外源性吗啡影响了内源性阿片类物质的合成和表达;给予外源性神经甾体孕酮可以有效抑制大鼠吗啡位置偏爱效应,除中脑DA系统外,孕酮对中枢内阿片递质系统的影响可能是孕酮对吗啡精神依赖的逆转机制之一。
     3孕酮抑制大鼠吗啡位置偏爱效应的阿片受体机制
     与空白对照组相比,5mg·kg~(-1)吗啡训练10d诱导CPP形成时,Mor组大鼠在下丘脑、纹状体、海马和额叶皮质中μ受体的数量显著下降, (P<0.05),下丘脑、纹状体、海马和额叶皮质中分别下降27%、44%、29%和38%,表明吗啡精神依赖时可引起不同脑区μ受体不同程度的下调。与空白盐水对照组比较,单独给予15mg·kg~(-1)孕酮训练10d,μ受体的数量在各个脑区中无显著性变化(P>0.05)。与吗啡组比较,在给予吗啡的前10min给予15mg·kg~(-1)孕酮进行条件性训练10d后,下丘脑、额叶皮质和纹状体中μ受体的数量分别升高29%、40%和49%(P<0.05),但在海马中未有显著性变化(P>0.05)。
     本实验中所选择的神经核团均是与神经内分泌轴尤其是阿片类药物奖赏效应密切相关的核团。结果表明,外源性慢性给予吗啡影响了内源性阿片肽受体的合成和表达,外源性神经甾体孕酮抑制大鼠吗啡位置偏爱效应时,中枢神经系统中的内阿片受体的变化可以有效改善吗啡精神依赖脑内神经递质的合成和表达,从而实现对吗啡精神依赖的逆转。
     4孕酮抑制大鼠吗啡位置偏爱效应的中枢多巴胺受体机制
     与空白对照组相比,5mg·kg~(-1)吗啡训练10d诱导CPP形成时,Mor组大鼠在伏隔核、纹状体和中脑腹侧被盖区中D2受体的数量显著下降, (P<0.05),伏隔核、纹状体和中脑腹侧被盖区中分别下降31%、40%和37%,表明吗啡精神依赖时可引起相关脑区D2受体不同程度的下调。与空白盐水对照组比较,单独给予15mg·kg~(-1)孕酮训练10d,D2受体的数量在各个脑区中未有显著性变化(P>0.05)。与吗啡组比较,在给予吗啡的前10min给予15mg·kg~(-1)孕酮进行条件性训练10d后,纹状体和伏隔核中D2受体的数量分别升高29%和33%(P<0.05),但在中脑腹侧被盖区无显著性变化(P>0.05)。
     本实验中所选择的神经核团均是与吗啡精神依赖的神经解剖基础-奖赏回路密切相关的核团。结果表明,慢性吗啡处理影响了多巴胺受体在伏隔核、纹状体和中脑腹侧被盖区中的合成和表达,外源性神经甾体孕酮抑制大鼠吗啡位置偏爱效应时,中枢神经系统相关脑区中的多巴胺受体也发生了相应的变化,主要作用表现为逆转吗啡引起的D2受体水平的下调。
     5孕酮对吗啡位置偏爱大鼠不同脑区中p-CREB水平的影响
     与空白对照组相比,5mg·kg~(-1)吗啡训练10d诱导CPP形成时,Mor组大鼠在海马和纹状体中p-CREB的表达显著增加(P<0.01和P<0.01),海马和纹状体中分别增加33%和51%;但在伏隔核中p-CREB的表达显著降低(P<0.01),表明吗啡精神依赖时引起不同脑区p-CREB水平的变化具有脑区特异性。与空白对照组比较,单独给予15mg·kg~(-1)孕酮训练10d,p-CREB的表达在各个脑区中未有显著性变化(P>0.05)。与吗啡组比较,在给予吗啡的前10min给予15mg·kg~(-1)孕酮进行条件性训练10d后,纹状体中p-CREB的表达下降29% (P<0.01),在海马中无显著性变化(P>0.05),但伏隔核中的p-CREB的表达上升(P<0.05)。
     结果提示,外源性慢性给予吗啡影响了中枢相关脑区内p-CREB水平的表达,外源性神经甾体孕酮在抑制大鼠吗啡位置偏爱效应的同时中枢神经系统中的p-CREB的变化参与了对吗啡精神依赖的逆转过程。
     综上所述,本研究发现外源性神经甾体孕酮可以从内阿片和多巴胺两个系统的递质、受体和受体后三个水平参与对吗啡大鼠精神依赖的调节过程。下丘脑和额叶皮质中内源性阿片肽水平的变化在孕酮逆转吗啡精神依赖的形成中发挥着十分重要的作用,孕酮通过对吗啡CPP大鼠该脑区中内源性阿片肽水平的调节,从而有效的抑制大鼠吗啡CPP的形成。在孕酮逆转吗啡导致大鼠精神依赖的过程中,中枢神经系统的阿片受体和多巴胺受体均发生了适应性改变,主要表现在μ受体和D2受体在相关脑区中的表达上调。μ受体改变所涉及到的脑区较广泛,主要是和大鼠神经内分泌轴相关的下丘脑、纹状体和额叶皮质均发生显著性变化。D2受体发生显著性改变的脑区主要是与奖赏回路有关的纹状体和伏隔核两个部位。孕酮在抑制吗啡CPP形成的过程中,可以使纹状体中p-CREB水平下降,同时伴随伏隔核中p-CREB水平的升高。提示不同脑区由于在吗啡依赖形成过程中的功能不同,CREB的表达改变也不完全相同,即各脑区或核团对吗啡诱导CREB表达的改变呈现多样性。所以,孕酮作为外源性神经甾体可以通过对吗啡精神依赖大鼠相关脑区中内源性阿片肽系统的递质和受体水平、多巴胺受体水平以及核转录因子p-CREB水平均可产生不同程度的影响,从而导致行为学上表现出实现对吗啡大鼠CPP的有效逆转。这就为进一步研究神经甾体参与吗啡成瘾的机理提供的新的理论依据,为临床开发戒毒药物奠定了基础。
Long-term opiate treatment is known to induce a state of dependence, a phenomenon associated with the abstinence syndrome following cessation of opiate administration. Despite numerous studies, the neuronal mechanism of the opiate addiction has not been fully elucidated as yet.
     Neurosteroids is a new group of neurotransmitters with wide physical and pharmalogical functions. The term neurosteroids applie to those steroids that are synthesized within the central and peripheral nervous system, either de novo from cholesterol or from steroid hormone precursors. Neurosteroids including dehydroepiandresterone (DHEA), dihydroepiandresterone sulfate (DHEAS), pregnenolone (PREG), pregnenolone sulfate (PREGS), allopregnanolone (AP), deoxycorticosterone (DOC), testosterone (T), and progesterone (PROG) were named as the forth generation of neurotransmitter. It is demonstrated that neurosteroids can widely influence the function of traditional neurotransmitter receptors. Neuroactive steroids may modulate neuronal function through their concurrent influence on neuronal excitability and gene expression. This intracellular cross-talk between genomic and non-genomic steroid effects provides the molecular basis for such compounds in neuropsychopharmacology, both with regard to putative clinical effects and side effects. Neurosteroids, particularly PROG and AP can act as positive modulators at the GABAA receptor. In vivo, effects of these neurosteroids are similar to those produced by other positive modulator of GABAA receptors such as benzodiazepines and barbiturates. Many of these neurosteroids showed anticonvulsant, Myorelaxant, anesthetic and anxiolytic effects when they were administered to animals. Neurosteroid sulfate esters, such as PREGS and DHEAS, have an excitatory cellular action, since they antagonize the action of GABAA and potentiate the activation of NMDA receptor. Moreover, they can improve memory and learning, increase dopamine release in the rat nucleus accumbens, and enhance the dopaminergic response to morphine.
     Endogenous opioids is the term used to describe a family of peptides, which include endorphines, enkephalins, dynorphins, and endomorphine,that act like opiates in biological systems. The discovery of these endogenous substances has spearheaded the recent interest in the biological functions of numerous peptide hormonse and neurotransmitters. Indeed, over the last two decades, at least 50 peptides found in the skin, brain, and the gut have been added to the list of neurotransmitter candidates. However, the endogenous opioids have attracted more attention than some of the other bioactive peptides. As a general rule, like morphine, endogenous opioids, which are inhibitory substances, reduce neuronal firing rates and neurotransmitters release. Endogenous opioids may inhibit nerve cells by depressing presynaptic neurotransmitter release, by altering the ability of other neurotransmitters to produce postsynaptic ion conductance, or by directly interfering with the postsynaptic nerve impulse.
     Based on the previous results of our lab, this study was carried out to further test the effect neurosteroids on morphine-induced psychological dependence from the levels of neurotransmitters, receptors and postreceptors respectively in related brain areas such as nucleus accumbens(NA), frontal cortex (Fc), hippocampus (Hc), hypothalamus (Ht), striatum (Str) in rats. We first investigate the effect of PROG administration on the morphine-induced rewarding effect. Then, a simplified radioimmunoassay method has been established to detect the Endogenous opioids transmitters in rat Ht, NAc, Hc, Fc, and Str. By using the method of immunohistochemistry and western- blotting, we will further investigated the machenism of how PROG reverse the effects of morphine induced psychological dependence from receptors and nuclear factors. Therefore, this study will take a basis for the further study of the relationship between morphine addiction and neurosteroids.
     Following methods were employed in this study:
     1 The establishment of morphine psychological dependence rat models
     The rat model of conditioned place preference (CPP) was used to mimic morphine psychological dependence. 40 male SD rats were designated to 4 groups randomly with 10 in each, including blank control group, morphine addiction group, progesterone group and progesterone plus morphine group. The white room was used as the drug-pairing room. In the morning, the groups of black control and progesterone had hypodermic injection of cyclodextrin and progesterone of 15mg·kg~(-1), 10 min later, had intraperitoneal injection of Saline 5mg·kg~(-1). The morphine and progesterone plus mrophine groups had hypodermic injection of cyclodextrin and progesterone of 15mg·kg~(-1), 10 min later, had intraperitoneal injection of morphine of 5mg·kg~(-1). All the rats were put into the white room for a 45-min training. And in the afternoon, all rats had hypodermic injection of cyclodextrin and intraperitoneal injection of Saline of the same dose, and were put into the black room for the same time training. After trained for 10 days, CPP test was scored during a 10-min session 24 h after the last training. Then all the rats were rapidly sacrificed by decapitation. The brain regions including NA, Fc, Hc, ST and Ht were separated and frozen until being taken other procedures.
     2. Determination of the endogenoud opoiod peptides in rat brain
     The procedure of CPP was all the same in this study. Then the rats were rapidly sacrificed by decapitation. The brain regions including VTA, NAc, Ht, and Str were separated and frozen until the further studying.
     Neuropeptide radioimmunoassay established by the Department of Neorobiology of the Second Militery Medical University of Chinese PLA was applied to measure brain endogenoud opioid peptide levels. Sequential saturation sample addition was adopted. The radioactivity count per minute (cpm) of the whole reaction was 7000 per minute. The activated carbon was separated, centrifuged, and the cpm of the sedent was measured. The standard curve was made accroding to the study. Then, according to the curve, the content of brain endogenoud opioid peptide in each tube was figured out, and it was then translated into the content of endogenoud opioid peptide per miligrame of brain.
     3. Determination of the mu opoiod receptor in rat brain
     The procedure of CPP was as the same as before. Then the rats were rapidly sacrificed by decapitation. The brain regions including VTA, NAc, Ht, and Str were separated and frozen until the further studying.
     Paraffin sections were used for immunohistochemical staining according to the protocol recently described by the researchers. Briefly, after treatment with 3% H2O2 and 10% normal rabbit serum for 10 and 30 minutes at 37℃, respectively, the deparaffinized and rehydrated sections were incubated with polyclonal rabbit-anti-mu opoiod receptor (1:1000) over night. Biotinylated goat anti-rabbit IgG secondary antibody and ABC complex solution were applied to the sections for 2 hours and 30 minutes at room temperature. The horseradish peroxidase reaction was detected with diaminobenzidine-H2O2 at room temperature for 5-10 minutes. Among each step, 0.01 M PBS (pH 7.4) was used to wash the sections three times with five minutes each time by swaying. Finally, sections were mounted, dehydrated, cleared, and sealed. Slides were observed under a Zeiss Axioskop2 Plus microscope linked to a digital camera from Diagnostics Instruments. Images were captured using the Spot software (Diagnostics) and analyzed with the Image Pro Plus 5.0 image analysis software, resulting in quantification of the protein levels as the mean of integrated optical density (IOD).
     4. Determination of the dopamine 2 receptor in rat brain
     Beside the deparaffinized and rehydrated sections were incubated with polyclonal rabbit-anti-D2R (1:250) over night, the other procedures were the same as section 3.
     5. Determination of the p-CREB levels in rat brain
     CPP test was used to investigate the morphine rewarding effect. The neuclear lysates were extracted and screened by using Western blot to observe the changes of p-CREB levels in NA, Fc, Hc, Ht, Str and VTA in rat brain. All frozen specimens were grinded in liquid nitrogen and homogenized in lysis buffer on ice. The lystate was centrifuged and the supernatant was prepared. Total protein concentration of the supernatant was measured by BCA Ptotein Assay Bit. 50μg of each protein sample was separated by SDS-PAGE and transferred to nitrocellulose membrane. After blocking in skimmed milk for 1 hour, the membranes were incubated with antibody over night. The membrane were then developed with peroxidase-conjugated secondary antibody. The immunoreactive proteins were visulized by enhanced chemiluminescence system. The immunoblots were quantitated using analystic software.
     The principal results and conclusions were as follows:
     1 Effects of progesterone administration on morphine-induced conditioned place preference(CPP) and its relationship to endogenous opioids in the related rat brain regions
     Compared with NS control group, 5 mg·kg~(-1) morphine successfully induced the formation of CPP(P<0.01). 15 mg·kg~(-1) progesterone was not able to induce CPP effect itself, but abolished the morphine CPP effect.
     Compared with NS control group, the levels ofβ-EP following morphine administration were decreased in hypothalamus, hippocampus and frontal cortex(P<0.05、P<0.01 and P<0.05). Compared with morphine group, the levels ofβ-EP were increased by co-administration with 15 mg·kg~(-1) dose of progesterone in hypothalamus (P<0.01). Compared with NS control group, the levels of L-EK following morphine administration were decreased in hypothalamus, nucleus accumbens and frontal cortex(P<0.05, P<0.05 and P<0.01). Compared with morphine group, the levels of L-EK were increased by co-administration with 15mg·kg~(-1) dose of progesterone in hypothalamus, nucleus accumbens and frontal cortex (P<0.05,P<0.01 and P<0.05). Compared with NS control group, the levels of DynA following morphine administration were increased in hypothalamus and frontal cortex (P<0.05 and P<0.05). Compared with morphine group, the levels of DynA were decreased by co-administration with 15mg·kg~(-1) dose of progesterone in hypothalamus and frontal cortex (P<0.01 and P<0.05).
     2 Effects of progesterone administration on morphine-induced conditioned place preference and its relation toμ-receptors in rat brain regions
     Compared with NS control group, 5 mg·kg~(-1) morphine successfully induced the formation of CPP(P<0.01). 15 mg·kg~(-1) progesterone was not able to induce CPP effect itself, but abolished the morphine CPP effect.
     Compared with NS control group, the levels of mu opioid receptor following morphine administration were decreased in hypothalamus, hippocampus , striatum and frontal cortex(P<0.05、P<0.01、P<0.01 and P<0.01). Compared with morphine group, the levels of mu opioid receptor were increased by co-administration with 15 mg·kg~(-1) dose of progesterone in hypothalamus, striatum and frontal cortex (P<0.05、P<0.01 and P<0.01).
     3 Effects of progesterone administration on morphine-induced conditioned place preference and its relation to D2-receptors in rat brain regions
     Compared with NS control group, 5 mg·kg~(-1) morphine successfully induced the formation of CPP(P<0.01). 15 mg·kg~(-1) progesterone was not able to induce CPP effect itself, but abolished the morphine CPP effect.
     Compared with NS control group, the levels of D2 receptor following morphine administration were decreased in nucleus accumbens ,striatum and ventral tegmental area (P<0.01、P<0.01 and P<0.01). Compared with morphine group, the levels of D2 receptor were increased by co-administration with 15 mg·kg~(-1) dose of progesterone in nucleus accumbens and striatum (P<0.05 and P<0.01).
     4 Effects of progesterone administration on morphine-induced conditioned place preference and its relation to p-CREB in rat brain regions
     Compared with NS control group, 5 mg·kg~(-1) morphine successfully induced the formation of CPP(P<0.01). 15 mg·kg~(-1) progesterone was not able to induce CPP effect itself, but abolished the morphine CPP effect(P<0.01).
     Compared with NS control group, the levels of p-CREB following morphine administration were increased in hippocampus and striatum(P<0.01 and P<0.01)but decreased in nucleus accumbens (P<0.01). Compared with morphine group, the levels of p-CREB were decreased by co-administration with 15 mg·kg~(-1) dose of progesterone in striatum (P<0.01) but increased in nucleus accumbens (P<0.05).
     In conclusion, our study indicated that chronic morphine treatment could induce the development of morphine psycological dependence and progesterone as an ectogenic neurosteroid could reverse morphine-induced rewarding effects. Durig the procedure of progesterone abolishing morpnine- induced dependence, the levels ofβ-EP, L-EK and DynA were increased or decreased in rat brain. Opioid receptors and dopamine receptors were involved in the regulation of morphine dependence by progesterone. We also found that with the changing in neurotransmitters and receptors, the levels of p-CREB were diversified in rat brain rewarding circuit. Thus, our data provide a new insight for the research of the neurobiochemical mechanism of the relationship between morphine dependence and neurosteroid.
引文
1 Rupprecht R, Holsboer F. Neuroactive steroids: mechanism of action and neuropsychopharmacological perspective,Trends Neurosci. 1999 (22):410-416
    2 Paul SM, Purdy RH. Neuroactive steriods, FASEB J,1992(6):2311-2322
    3 王玉秀, 童昭岗, 胡海青. 内源性阿片肽系统免疫调节功能的研究进展. 中国临床康复, 2003, 7(10):1558-1559
    4 Houshyar H, Woods JH. Paradoxical effects of chronic morphine treatment on the temperature and pituitary-adrenal responses to acute stress: a chronic stress paradigm. Neuroendocrinol, 2001, 13(10):862-874
    5 Fries E, Hesse J, Hellhammer J, et al. A new view on hypocortisolism. Psychoneuroendocrinology, 2005, 30(10):1010-1016
    6 McNally GP, Akil H. Selective down-regulation of hippocampal glucocorticoid receptors during opiate withdrawal. Neuroscience, 2002,112(3):605-617
    7 Yan CZ, Hou YN. Effects of morphine dependence and withdrawal on levels of neurosteroids in rat brain. Acta Pharmacol Sin, 2004, 25(10):1285-1291
    8 吴红海, 王娜, 侯艳宁. 吗啡依赖对大鼠伏隔核神经甾体和氨基酸递质的影响. 中国药理学通报, 2005, 21(4):493-496
    9 王娜, 吴红海, 侯艳宁. 吗啡依赖大鼠纹状体内神经甾体水平的变化. 中国药物依赖性杂志, 2005, 14(6):416-420
    10 王娜, 吴红海, 侯艳宁. 吗啡依赖对大鼠不同脑区内神经甾体水平的影响. 药学学报, 2005, 40(11):1037-1040
    11 王娜, 吴红海, 侯艳宁. 孕酮对大鼠吗啡位置偏爱效应及中枢单胺递质水平的影响. 中国药理学通报, 2006, 22(8):980-983
    12 Wang B, Luo F, Zhang WT, et al. Stress or drug priming inducesreinstatement of extinguished conditioned place preference. Neuroport, 2000, 11:2781-2784
    13 Budziszewska B, Feil LJ, Lason W. Neurosteroids and naloxone- precipitated withdrawal syndrome in morphine-dependent mice. Eur Neuropsychopharmacol, 1996, 6: 135-140.
    14 Sinnott RS. Mark GP, Finn DA. Reinforcing effects of the neurosteroids allopregnanolone in rats. Pharmacol Biochem Behav, 2002, 72: 923-929.
    15 Gudehithlu KP, Tejwani GA, Bhargava HN. Beta-endorphin and methionine-enkephalin levels in discrete brain regions, spinal cord, pituitary gland and plasma of morphine tolerant-dependent and abstinent rats. Brain Res, 1991, 553(2):284-290
    16 Huda A, Meng F, Devine DP, et al. Molecular and neuroanatomical properties of the endogenous opiate system: implication for treatment of opiate addition. Seminars in neuroscience, 1997, 9:70-83
    17 Matthes HWD, Maldonado R, Simonin F. Loss of morphine-induce analgesia, reward effect and withdrawal aymptoms in mice lacking the mu opioid receptor gene. Nature, 1996, 383:819-823
    18 Gudehithlu KP, Tejwani GA, Bhargava HN. Beta-endorphin and methionine-enkephalin levels in discrete brain regions, spinal cord, pituitary gland and plasma of morphine tolerant-dependent and abstinent rats. Brain Res, 1991, 553(2):284-290
    19 Chen J, Chopp M, Li Y. Neuroprotective effects of progesterone after transient middle cerebral artery occlusion in rats. J Neurol Sci, 1999, 171(1):24-30
    20 Roof RL, Duvdevani R, Stein DG. Gender influence outcome of brain injury: progesterone plays a protective role. Brain Res, 1993, 607(1-2):333-336
    21 Morali G, Letechipia VG, Lopez LE, et al. Post-ischemic administration of progesterone in rats exerts neuroprotective effects on the hippocampus. Neurosci Lett, 2005, 382(3):286-290
     22 Gonzalez SL, Labombarda F, Deniselle MC, et al. Progesterone neuroprotection in spinal cord trauma involves up-regulation of brain-derived neurotrophic factor in motoneurons. J Steroid Biochem Mol Biol, 2005, 94(1-3):143-149
    23 Akamoto H, Ukena K, Takemori H, et al. Expression and localization of 25-Dx, a membrane-associated putative progesterone-binding protein, in the developing Purkinje cell. Neuroscience, 2004, 126(2):325-334
    1 Huda A, Meng F, Devine DP, et al. Molecular and neuroanatomical properties of the endogenous opiate system: implications for treatment of opiate addition. Seminars in neuroscience, 1997, 9:70-83
    2 Koob GF. Drug of abuse: anatomy, pharmacology and function of rewardpathways. TiPS, 1992, 13:177-184
    3 Nestler EJ. Molecular mechanisms underlying opiate addition: implications for medications development. Seminars in Neurosci, 1997,9:84-93
    4 Tempel A, Gardner EL, Zukin RS. Neurochemical and functional correlates of naltrecone-induced opiate receptor up-regulation. J Pharmacol EXP Ther, 1985,232(2):439-444
    5 Cai-zhen YAN, Yan-ning HOU. Effects of morphine denpendence and withdrawal on levels of neurosteroids in rat brain. Acta Pharmacol Sin, 2004, 25(10):1285-1291
    6 王娜, 吴红海, 侯艳宁. 吗啡依赖对大鼠不同脑区内神经甾体水平的影响. 药学学报, 2005, 40(11):1037-1040
    7 侯艳宁,王娜, 吴红海. 孕酮对大鼠吗啡位置偏爱效应及中枢单胺递质水平的影响. 中国药理学通报, 2006, 22(8):980-983
    8 于动震, 吴红海, 侯艳宁.孕酮对吗啡位置偏爱大鼠下丘脑中内阿片水平的影响. 中国药理学通报, 2007, 23 (10):1309-1312
    9 Reddy DS, Kulkani SK. Chronic neurosteroid treatment prevents the development of morphine tolerance and attenuates abstinence behavior in mice. Eur J Pharmacol, 1997, 337: 19-25.
    10 Budziszewska B, Feil LJ, Lason W. Neurosteroids and naloxone- precipitated withdrawal syndrome in morphine-dependent mice Eur Neuropsychopharmacol, 1996, 6: 135-140.
    11 Kieffer BL, Gaveriaux-Ruff C. Exploring the opioid system by gene knockout. Prog Neurobiol, 2002, 66:285-306
    12 Parnot C, Miserey-Lenkei S, bardin S, et al. Lessons from constitutively active mutants of Gprotein-coupled receptors. Trends Endocrinol Metab, 2002, 13(8):336-343
    13 Kieffer BL. Opiods: first lessons from knockout mice. TIPS, 1999, 20:19-26
    14 Fuchs PN, Roza C, Sora I, et al. Characterization of mechenical withdrawal responses and effects of opioid agonists in normal and opiod receptor knockout mice. Brain Res, 1999, 821:480-486
    15 Dhawan BN, Cesselin F, Raghubir, et al. Classification of opioid receptors. Pharmacol Rev, 1996,48:567-592
    16 秦伯益. 阿片类药物的依赖. 许绍芬编. 神经生物学. 上海: 上海医科大学出版社. 1999, 488-495
    17 Martin WT. The effects of morphine and nalorphine linked drugs in the nondependent and morphine-dependent chromic spinal dog. Pharmacol Exp Ther, 1976, 198(1): 65-82
    18 Zadina JE, Hackler L, Ge J, et al. A potent and selective endogenous agonist for the mu-opiate receptor. Nature, 1997, 386(6624):499-501
    19 韩济生, 万有. “内吗啡肽”的发现是阿片肽研究的一次突破. 生理科学进展, 1997, 28(3): 237
    20 Dun NJ, Dun SL, Hwang LL. Nociceptin-like immunoreactivity in autonomic nuclei nuclei of the rat spinal cord. Neurosci Lett, 1997, 234(23):95-98
    21 Tempel A, Habas J, Paredes W, et al. Morphine-induced down regulation of μ -receptors in neonatal rat brain[J]. Brain Res, 1988, 469(1-2):129-133
    22 Costa EM, Hoffman BB, Loew GH. Assessment of delta-opioid receptor activation by a series of peptides in cultured cells. Int J Pept Protein Res, 1992, 39(3):245-249
    23 Nijssen PC, Sexton T, Childers SR. Opioid-inhibited adenylyl cyclase in rat brain members: lack of correlation with high-affinity opioid receptor binding sites. J Neurochem, 1992,59(6):2251-2262
    24 Werz MA, Macdonald RL: Opioid peptides selective for mu- and delta- opiate receptors reduce calcium-dependent action potential duration by increasing potassium conductance. Neurosci Lett, 1983,42:173
    25 Scuroeder JE, Fischbach PS, Zheng D, et al. Activation of mu opioid receptor inhibits transient high- and low- threshold Ca2+ currents, but spares a sustained current. Neuron,1991, 6:13
    26 Self DW, Stein L. Pertussis toxin attenuates intracranial morphine self-administration. Pharmacol Biochem Behav, 1993, 46: 689-697
    27 Corrigall WA, Linseman MA. Conditioned place reference produced by intra-hippocampal morphine. Pharmacol Biochem Behav, 1988, 30: 787-796
    1 邹刚,主编. 基础神经药理学(第 2 版). 北京:科学出版社,1995,167-252.
    2 谌红献,郝伟. 阿片类药物成瘾机制的研究进展. 中国临床心理学杂志,1999, 7(4): 253-256.
    3 王学铭. 精神与精神病的生物化学. 北京:人民卫生出版社,2002,265
    4 AguilarMA, Mari-Sanmilan M I, Morant Deusa JJ, et al. Different inhibition of conditioned avoidance response by clozaime and DA D1 and D2 antagonists in male mice. Behav Neuosci, 2000, 114(2):389-400
    5 Georges F, Stinus L, Bloch B, et al. Chronic morphine exposure and spontaneous withdrawal are associated with modifications of dopamine receptor and neuropeptide gene expression in the rat atriatum. Eur J Neurosci, 1999, 11(20):481-490
    6 See RE, Kruzich PJ, Grimm JW. Dopamine, but not Glutamate, receptor blockade in the basolateral amygdala attenuates conditioned reward in a ratmodel of relapse to cocaine seeking behavior . Psychophamlacology; 2001, 154(3): 301-310
    7 Suzuki T,Maeda J, Funada M, et al. The D3-receptor agonist 7-OH-DPAT attenuates morphine-induced hyperlocomotion in mice. Neurosci Lett, 1995, 187:45-48
    8 韩济生. 神经科学原理. 第二版, 北京: 北京医科大学出版社, 1999. 1144-1149
    9 Koob GF, Le Moal M. Drug addiction, dysregulation of reward, and allostasis. Neurochophamlacology, 2001, 24(2): 97-129
    10 Melichar JK, Daglish MR, Nutt DJ. Addition and withdrawal-current views. Curr Opin Pharmacol, 2001, 1(1): 84-90
    11 David V, Cazala P. Anatomical and pharmacological Specmcity of the rewarding effect elicited by microinjection of morphine into the mucleus accumbens of mice. Psychophamlacology; 2000, 150(1): 24-34
    12 于动震, 吴红海, 侯艳宁.孕酮对吗啡位置偏爱大鼠下丘脑中内阿片水平的影响. 中国药理学通报, 2007, 23 (10):1309-1312
    13 侯艳宁,王娜, 吴红海. 孕酮对大鼠吗啡位置偏爱效应及中枢单胺递质水平的影响. 中国药理学通报, 2006, 22(8):980-983
    14 Aguilar MA, Mari-Samillan MI, Morant Deusa JJ, et al.Different inhibition of conditioned avoidnce response by clozaine and DA D1 and D2 antagonists in male rats. Behav Neurosci, 2000, 114(2):398-400
    15 魏晓莉, 苏瑞斌, 李锦. 阿片精神依赖和复发的神经生物学研究进展. 国外医学药学分册, 2004, 31(6): 341-345.
    16 Helmuth L. Addiction. Beyond and pleasure principle. Science, 2001, 294: 983-984.
    17 Berke JD, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neuron, 2000, 25(3): 515-532.
    18 Bardo MT. Neuropharmacological mechanisms of drug reward: beyond dopamine in the Nucleus accumbens. Crit Rev Neurobiol, 1988, 12: 37-67
    19 Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathway. Trends Pharmacol Sci, 1992, 13:177-184
    20 Pennartz CM, Groenewegen HJ, Lopes da Sliva FG. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: anintegr –ation of behavioral, electrophysioligical and anatomical data. Prog Neurobiol, 1994, 42:719-761
    21 Koob GF. Drug of abuse: anatomy, pharmacology and function of reward pathways. TIPS, 1992, 13:177-184
    1 梁建辉, 潘励山, 郑继旺. cAMP 反应元件结合蛋白与吗啡依赖. 中国药物依赖性杂志, 2000, 9(3):161-165
    2 Montminy MR, Bilezikjian LM. Binding of a nuclear protein to the cyclic AMP response element of the somatostain gene. Nature, 1987, 328:175-178
    3 Torres G, Horowitz JM. Drugs of abuse and brain gene expression. Psychosomatic Med, 1999, 61:630-650
    4 Reddy DS, Kulkani SK. Chronic neurosteroid treatment prevents the development of morphine tolerance and attenuates abstinence behavior in mice. Eur J pharmacol,1997,337:19-25
    5 Budziszewska B, Feil LJ, Lason W. Neurosteroids and naloxone precipitated withdrawal syndrome in morphine-dependent mice. Eur Neuropsychopharmacol, 1996,6:135-140
    6 江平,侯艳宁.吗啡对原代培养大鼠皮质神经元神经甾体水平的影响. 中国药理学通报,2006,22(12):1489-1493
    7 侯艳宁, 王娜, 吴红海. 孕酮对大鼠吗啡位置偏爱效应及中枢单胺递质水平的影响. 中国药理学通报, 2006, 22(8): 980-983
    8 Zhao LX, Brinton RD. Vasopressin-induced ctoplasmic and nuclear calcium signaling in embryonic cortical astrocytes: dynamics of calcium and calcim-dependent kinase translocation. J Neurosci, 2003,23(10):4228-4239
    9 Packard MG, Knowlton BJ. Learning and memory function of the basal ganlia. Annu Rev Neurosci 2002; 25:563-593
    10 Chedler EH, Dong WK. The role of the basal ganglia in nociception and pain. Pain 1995; 60(1):3-38
    11 Sarah B, Joseba P, Virginia A, et al. CREB (cAMP response element binding protien) in the locus coeruleus: Biochemical, physiological, and behavioral evidence for a role in opiate dependence[J]. Neurosci, 1997,17(20): 7890-7901
     12 Gao C, Chen LW, Tao YM, et al. Effects of ohmefentanyl stereoisomers on phosphorylation cAMP-response element binding protein in cultured rat hippocampal neurons. Acta Pharmacol Sin, 2003, 24(12):1253-1259
    13 Hawes JJ, Narasimhaiah R, Picciotto MR. Galanin Attenuates cyclic AMP regulatary element-binding(CREB) phosphrylation induced by chronic morphine and naloxone challenge in Cath.a cells and primary striatal cultures. J Neurochem, 2006, 96:1160-1168
    1 Mensah-Nyagan AG, Do-Rego JL, Beaujean D, et al. Neurosteroids: expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol Rev, 1999, 51(1): 63-81.
    2 Kim HJ, Ha M, Park CH, et al. StAR and steroidogenic enzyme transcriptional regulation in the rat brain: effects of acute alcohol administration. Brain Res Mol Brain Res, 2003, 115(1): 39-49.
    3 Zwain I, Yen S. Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology, 1999, 140(8): 3842-3852.
    4 Stoffel-Wagner B. Neurosteroid biosynthesis in the human brain and its clinical implications. Ann N Y Acad Sci, 2003, 1007: 64-78.
    5 Rupprecht R, di Michele F, Hermann B, et al. Neuroactive steroids: molecular mechanisms of action and implications for neuropsychopharmacology. Brain Res Brain Res Rev, 2001, 37(1-3): 59-67.
    6 Rupprecht R, Reul J, Trapp T, et al. Progesterone receptor-mediated effects of neuroactive steroids. Neuron, 1993, 11(3): 523-530.
    7 韩济生. 神经科学原理. 第二版. 1999, 北京: 北京医科大学出版社.
    8 Maitra R, Reynolds J. Subunit dependent modulation of GABAA receptor function by neuroactive steroids. Brain Res, 1999, 819(1-2): 75-82.
    9 Akk G, Bracamontes J, Covey D, et al. Neuroactive steroids have multiple actions to potentiate GABAA receptors. J Physiol, 2004, 225(1): 59-74.
    10 Mihalek RM, Banerjee P, Korpi ER, et al. Attenuated sensitivity to neuroactive steroids in gamma-aminobutyrate type A receptor delta subunit knockout mice. Proc Natl Acad Sci USA, 1999, 96(22): 12905-12910.
    11 Grobin AC, Morrow AL. 3alpha-hydroxy-5alpha-pregnan-20-one exposure reduces GABAA receptor alpha4 subunit mRNA levels. Eur J Pharmacol, 2000, 409(2): R1-2.
    12 Thomet U, Baur R, Bazet R, et al. A novel positive allosteric modulator of the GABAA receptor: the action of (+)-ROD188. Br J Pharmacol, 2000, 131(4): 843-850.
    13 Fancsik A, Linn DM, Tasker JG. Neurosteroid modulation of GABA IPSCs is phosphorylation dependent. J Neurosci, 2000, 20(9): 3067-3075.
    14 Mukai H, Uchino S. Effects of neurosteroids on Ca2+ signaling mediated by recombinant N-methyl-D-aspartate receptor expressed in chinese hamster ovary cells. Neurosci Lett, 2000, 282(1-2): 93-96.
    15 Abdrachmanova G, Chodounska H, Vyklicky L. Effects of steroids on NMDA receptors and excitatory synaptic transmission in neonatal mononeurons in rat spinal cord slices. Eur J Neurosci, 2001, 14(3): 495-502.
    16 Puia G, Belelli D. Neurosteroids on our minds. Meeting Report. TIPS, 2001, 22(6): 266-267.
    17 Hayashi T, Maurice T, Su TP. Ca(2+) signaling via sigma(1)-receptors: novel regulatory mechanism affecting intracecellular Ca(2+) concentration. J Pharmacol Exp Ther, 2000, 293(3): 788-798.
    18 Urani A, Roman F, Phan V, et al. The antidependent-like effect induced by sigma(1)-receptor agonists and neuroactive steroids in mice submitted to the forced swimming test. J Pharmacol Exp Ther, 2001, 298(3): 1269-1279.
    19 Ueda H, Yoshida A, Tokuyama S, et al. Neurosteroids simulate G protein-coupled sigma receptors in mouse brain synaptic membrance. Neurosci-Res. Neurosci Res, 2001, 41(1): 33-40.
    20 Uzunova V, Sheline Y, Davis J, et al. Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depresion who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci U S A, 1998, 95(6): 3239-3244.
    21 Strous RD, Maayan R, Lapidus R, et al. Dehydroepiandrosterone augmentation in the management of negative depressive, and anxiety symptoms in schizophrenia. Arch Gen Psychiatry, 2003, 60(2): 133-141.
    22 Strohle A, Romeo E, di Michele F, et al. GABA(A) receptor-modulating neuroactive steroid composition in patients with panic disorder before and during paroxetine treatment. Am J Psychiatry, 2002, 159(1): 145-147.
    23 Weill-Engerer S, David JP, Sazdovitch V, et al. Neurosteroid quantification in human brain regions: comparison between Alzheimer's andnondemented patients. J Clin Endocrinol Metab, 2002, 87(11): 5138-5143.
    24 Higashi T, Takido N, Shimada K. Studies on neurosteroids XVII. Analysis of stress-induced changes in neurosteroid levels in rat brains using liquid chromatography-electron capture atmospheric pressure chemical ionization-mass spectrometry. Steroids, 2005, 70(1): 1-11.
    25 Yan CZ, Hou YN. Effects of morphine dependence and withdrawal on levels of neurosteroids in rat brain. Acta Pharmacol Sin, 2004, 25(10): 1285-1291.
    26 Barrett-Connor E, Von-Muhlen D, Laughlin G, et al. Endogenous levels of dehydroepiandrosterone sulfate, but not other sex hormones, are associated with depressed mood in older women: the Rancho Bernardo study. J Am Geriatr Soc, 1999, 47(6): 685-691.
    27 Guidotti A, Costa E. Can the antidysphoric and anxiolytic profiles of selective serotonin reuptake inhibitors be related to their ability to increase brain 3a,-5a-tetrahydroprogesterone(allopregnanolone). Biol Psychiatry., 1998, 44(9): 865-873.
    28 Khisti RT, Chopde CT, Jain SP. Antidepressant-like effect of the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one in mice forced swim test. Pharmacol Biochem Behav, 2000, 67(1): 137-143.
    29 Torres JM, Ortega E. DHEA, PREG and their sulphate derivatives on plasma and brain after CRH and ACTH administration. Neurochem Res, 2003, 28(8): 1187-1191.
    30 Barbaccia M, Concas A, Serra M, et al. Stress and neurosteroids in adult and aged rats. Experimental Gerontology, 1998, 33: 697-712.
    31 Calogero A, Palumbo M, Bosboom A, et al. The neuroactive steroid allopregnanolone suppresses hypothalamic-gonadotropin-releasing hormone release through a mechanism mediated by the γ-aminobutyric acid A receptor. J Endocrinol, 1998, 158(1): 121-125.
    32 Patchev VK, Hassan AH, Holsboer DF, et al. The neurosteroid tetrahydroprogesterone attenuates the endocrine response to stress and exerts glucocorticoid-like effects on vasopressin gene transcription in therat hypothalamus. Neuropsychopharmacology, 1996, 15(6): 533-540.
    33 Akwa Y, Purdy RH, Koob GF, et al. The amygdala mediates the anxiolytic-like effect of the neurosteroid allopregnanolone in rat. Behav Brain Res, 1999, 106(1-2): 119-125.
    34 Reddy DS, Kulkarni SK. Development of neurosteroid-based novel psychotropic drugs. Prog Med Chem, 2000, 37: 135-175.
    35 Marx CE, VanDoren MJ, Duncan GE, et al. Olanzapine and clozapine increase the GABAergic neuroactive steroid allopregnanolone in rodents. Neuropsychopharmacology, 2003, 28(1): 1-13.
    36 Lewis D. GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res Brain Res Rev, 2000, 31(2-3): 270-276.
    37 Ghoumari A. Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum. J Neurochem, 2003, 86(4): 848-859.
    38 Ibanez C, Shields SA, El-Etr M, et al. Steroids and the reversal of ageassociated changes in myelination and remyelination. Prog Neurobiol, 2003, 71(1): 49-56.
    39 Monteleone P, Fabrazzo M, Serra M, et al. Long-term treatment with clozapine does not affect circulation levels of 3α,5α-THP and THDOC in schizophrenic patients. Journal of Clinical Psychopharmacology, (in press).
    40 Brown RC, Han Z, Cascio C, et al. Oxidative stess-mediated DHEA formation in Alzheimer's disease pathology. Neurobiol Aging, 2003, 24(1): 57-65.
    41 Flood JF, Morley JE, Roberts E. Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc Natl Acad Sci U S A, 1992, 89(5): 1567-1571.
    42 Vallee M, Mayo W, Le Moal M. Role of pregnenolone, dehydroepiandrosterone and their sulfate esters on learning and memory in congnitive aging. Brain Research Reviews, 2001, 37: 301-312.
    43 Akwa Y, Ladurelle N, Covey DF, et al. The synthetic enantiomer of pregnenolone sulfate is very active on memory in rats and mice, even more so than its physiological neurosteroid counterpart: distinct mechanisms?. Proc Natl Acad Sci U S A, 2001, 98(24): 14033-14037.
    44 Wolkowitz O, Kramer J, Reus V, et al. DHEA treatment of Alzheimer's disease: A randomized, double-blind, placebo-controlled study. Neurology, 2003, 60(7): 1071-1076.
    45 Rouge-Pont F, Mayo W, Marinelli M, et al. The neurosteroid allopregnanolone increases dopamine release and dopaminergic response to morphine in the rat nucleus accumbens. Eur J Neurosci, 2002, 16(1): 169-173.
    46 Beauchamp MH, Ormerod BK, Jhamandas K, et al. Neurosteroids and reward: allopregnanolone produces a conditioned place aversion in rats. Pharmacol Biochem Behav, 2000, 67(1): 29-35.
    47 Barrot M, Vallee M, Gingras MA, et al. The neurosteroid pregnenolone sulphate increases dopamine release and the dopaminergic response to morphine in the rat nucleus accumbens. Eur J Neurosci, 1999, 11(10): 3757-3760.
    48 侯艳宁, 王娜, 吴红海. 孕酮对大鼠吗啡位置偏爱效应及中枢单胺递质水平的影响. 中国药理学通报, 2006, 22(8): 980-983.
    49 王娜, 吴红海, 任进民. 孕酮对大鼠吗啡奖赏效应及下丘脑和纹状体内单胺递质水平的影响. 中国药物依赖性杂志, 2006, 15(2): 16-19.
    50 于动震,吴红海,侯艳宁.孕酮对吗啡条件性位置偏爱大鼠下丘脑中内阿片肽水平的影响.中国药理学通报,2007, 2007, 23(10):1309-1312
    51 于动震,吴红海,侯艳宁.孕酮对吗啡条件性位置偏爱大鼠相关脑区中内啡肽水平的影响.华北国防医药, 2008, 20(2):5-7
    52 于动震,吴红海,侯艳宁.孕酮对吗啡精神依赖大鼠相关脑区中强啡肽 A水平的影响.中国药物依赖性杂志, 2008,17(2):67-70
    53 Eddy DS, Kulkarni SK. Chronic neurosteroid treatment prevents the development of morphine tolerance and attenuates abstinence behavior in mice. Eur J Pharmacol, 1997, 337(1): 19-25.
    54 Budziszewska B, Jaworska-Feil L, Lason W. Neurosteroids and the naloxone-precipitated withdrawal syndrome in morphine-dependent mice. Eur Neuropsychopharmacol, 1996, 6(2): 135-140.
    55 吴红海, 王娜, 侯艳宁. 吗啡依赖对大鼠伏隔核神经甾体和氨基酸递质的影响. 中国药理学通报, 2005, 21(4): 493-496.
    56 王娜, 吴红海, 侯艳宁. 吗啡依赖对大鼠不同脑区内神经甾体水平的影响.药学学报, 2005, 40(11): 1037-1040.
    57 闫彩珍, 侯艳宁, 李瑞利, et al. 吗啡依赖大鼠脑组织神经甾体合成酶基因表达的变化.中华麻醉学杂志, 2005, 25(6): 437-440.
    58 王群. 雌孕激素在癫痫发病中的作用及其机制研究. 生理科学进展, 2000, 31(3): 222-231
    59 Galli R, Luisi M, Pizzanelli C, et al. Circulating levels of allopregnanolone , an anticonvulsant metabollite of progesterone, in women with partial epilepsy in the postcritical phase. Epilepsia, 2001, 42(2): 216-219.
    60 Frye CA, Bayon LE. Prenatal stress reduces the effectiveness of the neurosteroid 3 alpha,5 alpha-THP to block kainic-acid-induced seizures. Dev Psychobiol, 1999, 34(3): 227-234.
    61 Frank C, Sagratella S. Neuroprotective effects of allpregnanolone on hippocampal irreversible neurotoxicity in vitro. Prog Neuropsychopharmacol Biol Psychiatry, 2000, 24(7): 1117-1126.
    62 Reddy DS, Kulkarni SK. The role of GABA-A and mitochondrial diazepam-binding inhibitor receptors on the effect of neurosteroids on food intake in mice. Psychopharmacology-(berl). 1998 Jun; 137(4):391-400
    63 Monteleone P, Luisi M, Chlurcio B, et al. Plasma levels of neuroactive steroids are increased in untreated women with anorexia nervosa or bulimia nervosa. Psychosom-Med. 2001 Jan-Feb; 63(1):62-68
    1 Schumacher M, Guennoun R, Mercier G, et al. Progesterone synthesis and myelin formation in peripheral nerves. Brain Res Rev, 2001, 37(1-3):343-359
    2 Gutai JP, Meyer WJ, Kowarski AA, et al. Twenty-four hour integrated concentrations of progesterone, 17-hydroxyprogesterone and cortisol in normal male subjects. Clin Endocrinol Metab, 1977, 44(1):116-120
    3 Baulieu EE, Robel P, Schumacher M. Development and regeneration of the nervous system: a role for neurostroids. Dev Neurosci, 1996, 18(1-2):6-21
    4 Morfin R, Young J, Corpechot C, et al. Neurosteroids: pregnenolone in human sciatic nerves. Proc Natl Acad Sci, 1992, 89(15):6790-6793
    5 Akwa Y, Schumacher M, Jung Testas I, et al. Neurosteroids in rat sciaticnerves and Schwann cells. CR Acad Sci, 1993, 316(4):410-414
    6 Robert F, Guennoun R, Desarnaud F, et al. Synthesis of progesterone in Schwann cells: regulation by neurons. Eur J Neurosci, 2001,13(5):916-924
    7 Guennoun R, Schumacher M, Robert F, et al. Neurosteroids: expression of functionsl 3beta-hydroxysteroid dehydrogenase by rat sensory neurons and Schwann cells. Eur J Neurosci, 1997, 9(11):2236-2247
    8 Jung Testas I, Schumacher M, Robel P, et al. Demonstration of progesterone receptors in rat Schwann cells. J Steroid Biochem Mol Biol, 1996, 58(1):77-82
    9 Jung Testas I, Do Thi A, Koenig HI, et al. Progesterone as a neurosteroid: synthesis and actions in rat glial cells. J Steroid Biochem Mol Biol, 1999,69(1):97-102
    10 Kastner P, Krust A, Turcotte B, et al. Two distinct estrogen-regulated promoters transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J, 1990, 9(5):1603-1607
    11 Weiland NG, Grchinik M. Specific subunit mRNA of the GABAA receptor are regulated by progesterone in subfields of the hippocampus. Mol Brain Res, 1995,32(2):271-278
    12 Lockhart EM, Wamer DS, Pearstein RD, et al. Allopregnanolone attenuates N-methyl-D-aspartate-induced excitotoxicity and apoptosis in the human NT2 cell line in culture. Neurosci Lettt, 2002, 328(1):33-36
    13 Ogata T, Nakamura Y, Tsuji K, et al. Steroid hormones protect spinal cord neurons from glutamate toxicity. Neuroscience, 1993,55(3):445-449
    14 Ciriza I, Azcoitia I, Garcia-Segura LM. Reduced progesterone metabolites protect rat hippocampal neurones from kainic acid excitotoxicity in vivo. J Neuroendocrinol, 2004, 16(1):58-63
    15 He J, Hoffman SW, Stein DG. Allopregnanolone, a progesterone metabolite, enhances behavioral recovery and decreases neuronal loss after traumatic brain injury. Restor Neurol Neurosci, 2004, 22(1):19-31
    16 Chen J, Chop M, Li Y. Neuroprotective effects of progesterone after transient middle cerebral aetery occlusion in rat. J Neurol Sci, 1999,171(1):24-30
    17 Roof RL, Duvdevani R, Stein DG. Gender influences outcome of brain injury: progesterone plays s protective role. Brain Res, 1993, 607(1-2):333-336
    18 Asbury ET, Fritts ME, Horton JE, et al. Progesterone facilitates the acquisition of avoidance learning and protests against subcotical neuronal death following prefrontal cortex ablation in the rat. Behav Brain Res, 1998, 97(1-2):99-106
    19 Morali G, Letechipia-Vallejo G, Lopez-Loeza E, et al. Post-ischemic administration of progesterone in rats exerts neuroprotective effects on the hippocampus. Neurosci Lett, 2005, 382(3):268-290
    20 Thoman AJ, Nockels RP, Pan HQ, et al. Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine, 1999, 24(20): 2134-2138
    21 Gonzalez SL, Labombarda F, Deniselle MC, et al. Progesterone neuropro tection in spinal cord trauma involves up-regulation of brain-derived neurotrophic factor in motoneurons. J Steroid Biochem Mol Biol, 2005, 94(1-3):143-149
    22 Koenig HL, Schumacher M, Ferzaz B, et al. Progesterone synthesis ang myelin formation by Schwann cells. Science, 1995, 268(5216):1500-1503
    23 Sakamoto H, Ukena L, Takemori H, et al. Expression and localization of 25-Dx, a membrane-associated putative progesterone-binding protein, in the developing Purkinje cell. Neuroscience, 2004,126(2):325-334
    24 Meffre D, Delespierre B, Gouezou M, et al. The membrane-associated progesterone-binding protein 25-Dx is expressed in brain region involved in water homeostasis and is up-regulated after traumatic brain injury, J Neurochem, 2005, 93(5):1314-1326
    25 Roof RL, Hoffman SW, Stein DG. Progesterone protects against lipid peroxidation following traumatic brain injury in rats. Mol Chem Neuropathol, 1997, 31(1):1-11
    26 Mcneill AM, Zhang C, Stanczyk FZ, et al. Estrogen increases endothelialnitric oxide synthase via estrogen receptors in rat cerebral blood vessels: effects preserved after concurrent treatment with medroxyprogesterone acetate or progesterone. Stroke, 2002, 33(6):1685-1691
    27 Vakkala M, Paakko P, Soini Y. eNOS expression is associated with the estrogen and progesterone receptor atatus in invasive breast carcinoma. Int J Oncol, 2000, 17(4):667-671
    28 Coughlan T, Gibson C, Murphy S. Modulatory effects of progesteron on inducible nitric oxide synthase expression in vivo and in vitro. J Neurochem, 2005, 93(4):932-942
    29 Gonzalez Deniselle MC, Garay L, Lopez-Costa JJ, et al. Progesterone treatment reduced NADPH-diaphorase/nitric oxide synthase in Wobbler mouse motoneuron disease. Brain Res, 2004, 1014(1-2):71-91
    30 Cervantes M, Gonzalez-Vidal MD, Ruelas R, et al. Neuroprotective effects of progesterone on damage elicited by acute global cerebral ischemia in neurons of the caudate mucleus. Arch Med Res, 2002,33(1):6-14
    31 Ciriza I, Azcoitia I, Garcia-Segura LM. Reduced progesterone metabolites protect rat hippocampal meurones from kainic acid excitotoxicity in vivo. J neuroendocrinal, 2004, 16(1):58-63
    32 Reddy DS, Apanites LA. Anesthetic effects of progesterone are undiminished in progesterone receptor knockout mice. Brain Res, 2005,1033(1):96-101
    33 Jung-Testas I, Schumacher M, Robel P, et al. The neurosteroid progesterone increases the expression of myelin proteins in rat oligodendrocytes in promary culture. Cell Mol Neurobiol, 1996, 16(3):439-443
    34 Ghoumari AM, Baulieu EE, Schumacher M. Progesterone increases oligodendroglisl cell proliferation in rat cerebellar slice cultures. Neuroscience, 2005, 135(1):47-58
    35 Reyna-Neyra A, Camacho-Arroyo I, Ferrera P, et al. Estradiol and progesterone modify microtubule associated protein 2 content in the rat hippocampus. Brain Res Bull, 2002, 58(6):607-612
    36 Yao XL, Liu J, Lee E, et al. Progesterone differentially regulates pro- and anti- apoptotic gene expression in cerebral cortex following tranmatic brain injury in rats. J Neurotrauma, 2005, 22(6):656-668
    37 Gibson CL, Constantin D, Prior MJ, et al. Progesterone suppresses the inflammatory response and nitric oxide synthase-2 expression following cerebral ischemia. Exp Neurol, 2005, 193(2):522-530
    38 Houshyar H, Woods JH. Paradoxical effects of chronic morphine treatment on the temperature and pituitary-adrenal responses to acute stress: a chronic stress paradigm. Neuroendocrinol, 2001, 13(10):862-874
    39 Fries E, Hesse J, Hellhammer J, et al. A new view on hypocortisolism. Psychoneuroendocrinology, 2005, 30(10):1010-1016
    40 McNally GP, Akil H. Selective down-regulation of hippocampal glucocorticoid receptors during opiate withdrawal. Neuroscience, 2002,112(3):605-617
    41 Yan CZ, Hou YN. Effects of morphine dependence and withdrawal on levels of neurosteroids in rat brain. Acta Pharmacol Sin, 2004, 25(10):1285-1291
    42 吴红海, 王娜, 侯艳宁. 吗啡依赖对大鼠伏隔核神经甾体和氨基酸递质的影响. 中国药理学通报, 2005, 21(4):493-496
    43 王娜, 吴红海, 侯艳宁. 吗啡依赖大鼠纹状体内神经甾体水平的变化. 中国药物依赖性杂志, 2005, 14(6):416-420
    44 王娜, 吴红海, 侯艳宁. 吗啡依赖对大鼠不同脑区内神经甾体水平的影响. 药学学报, 2005, 40(11):1037-1040
    45 侯艳宁, 王娜, 吴红海. 孕酮对大鼠吗啡位置偏爱效应及中枢单胺递质水平的影响. 中国药理学通报, 2006, 22(8): 980-983.
    46 王娜, 吴红海, 任进民. 孕酮对大鼠吗啡奖赏效应及下丘脑和纹状体内单胺递质水平的影响. 中国药物依赖性杂志, 2006, 15(2): 16-19.
    47 于动震,吴红海,侯艳宁.孕酮对吗啡条件性位置偏爱大鼠下丘脑中内阿片肽水平的影响.中国药理学通报,2007, 2007, 23(10):1309-1312
    48 于动震,吴红海,侯艳宁.孕酮对吗啡条件性位置偏爱大鼠相关脑区中内啡肽水平的影响.华北国防医药, 2008, 20(2):5-7
    49 于动震,吴红海,侯艳宁.孕酮对吗啡精神依赖大鼠相关脑区中强啡肽 A水平的影响.中国药物依赖性杂志, 2008,17(2):67-70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700