用户名: 密码: 验证码:
生物多样性评价动态指标体系与替代性评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云南是中国生物多样性最丰富的省份,是濒危和特有物种的分布中心、模式标本的产地中心、东亚植物区系的分化中心和全球25个生物多样性热点地区之一,被列为具有国际意义的生物多样性关键地区。面对云南省极为丰富、复杂、脆弱的生物多样性,目前在生物多样性评价这一基础性工作中,一方面缺乏科学严谨、行之有效、易于操作、成本合理的方法体系,无法解决“针对性”和“普适性”这对评价指标体系普遍存在的矛盾,把现状评价、影响评价、快速评价、长期监测、综合科考等不同形式生物多样性评价工作统一起来,实现结果的时序、空间可比性和信息共享;另一方面缺乏对生物多样性分布本底信息的汇总以及对其分布规律性的总结,评价中无法充分利用既有信息,把有限资源用于真正需要深入开展评价工作的区域和领域。为此,本文通过“两库(评价指标库和生物多样性空间信息库)”、“一系统(动态指标体系应用系统)”、“两替代(生物类替代和生境类替代评价方法)”三块相对独立的研究内容,为生物多样性评价指标体系的构建和快速评价提供了一套系统解决方案。
     为揭示云南省生物多样性基本格局,本文首先从宏观生态学角度对其水平分布、经纬度和海拔梯度规律进行了分析。研究发现云南省景观多样性主要沿大的地形地势从西北向东南倾斜展布,形成三梯层、四层次的景观格局;生态系统、动植物物种多样性的热点区域则呈“C.”格局:即生物多样性富集区主要沿云南省边境线呈“C字形”分布,“.”代表滇中另有一个多样性高值孤岛(哀牢山和无量山)。海拔梯度方面,植物多样性沿山体存在三种变化格局:①多数地区呈先增后减的近似正态分布,并且当基带存在干热河谷时,低海拔还会出现多样性的跃升现象;②南部热带地区则呈左偏的单峰分布(略上升即快速下降);③低海拔干热河谷区,生物多样性随海拔变化无显著规律。纬度梯度方面:①存在明显的物种构成变化,从南到北有90%以上的物种成分发生变化,南北共有种极少;②在云南西部,植物多样性峰值出现的海拔高度由山体所处纬度决定,纬度越低多样性峰值出现海拔也越低,两者呈线性关系。经度梯度方面:①物种构成变化的剧烈程度不及纬度,约有1/4的物种构成发生变化;②北回归线附近,越往西部植物组成的相似性越大,东部在组成上与中西部差异较大。相关成果第一次全面地揭示了云南省生物多样性分布的空间规律,为未来生物多样性评价工作提供了本底信息和参考。
     本文提出有创新意义的“动态指标体系”概念,通过以下四个步骤实现了为任何区域、任何类型评价,自动生成评价指标体系的功能:①对现有生物多样性指数进行收集、整理、分类、编目,参照本文提出的“花冠概念模型”构建了由755个指标构成的“生物多样性评价指标库”;②对现有生物多样性空间分布数据、基础地理数据、区划进行整合,构建了云南省“生物多样性空间信息库”;③基于ArcEngine + VB.NET开发环境编写应用软件,实现了按照特定检索条件(如评价项目特点、评价区生物多样性本底状况)对指标库中指标进行筛选的功能,可生成用于评价指标体系的子指标集;④由系统参照层次分析法等方法,自动进行指标权重的赋予以及各层级结构权重的赋与,完成评价指标体系的构建。在用户计算得到各评价指标数值后,参照指标评价标准和一套综合评价模型,即可逐项、逐级计算得出生物多样性评价的总评分。
     为实现生物多样性的快速评价,本文又分别从生物之间关系和生物与环境之间关系两方面入手,探索了可能被用于生物多样性替代评价的理论和方法。首先,针对生物间关系,本文建立了从“种-面积关系”到“种-种关系(即不同生物类群之间物种数的相关关系)”的联系,从理论上证明了区域“植物、鸟类、兽类、爬行类、两栖类”的物种数之间存在相关性,并推导出一系列任意两生物群类之间物种丰度相关关系函数,供替代性评价使用。实证研究中发现,该相关关系具有严重尺度依赖性,为此本文又提出以观鸟为基础,在大尺度上使用兽类、鸟类和植物物种数之间的经验比例“1:5:50”,中尺度上套用类群间物种丰度相关函数关系式,小尺度上检索“鸟?比”等值线图(?代表非鸟类的任意生物类群)三个解决方案,以实现对区域鸟类之外类群物种丰度的大致评估。还提出了一系列提高该方法评价精度的潜在途径,以及完善该方法体系的发展方向。此外,针对生物与生境的关系,本文分析了云南省生物多样性与环境变量、植被景观、土壤景观、土地利用景观、路网、生物入侵之间的关系,并使用梯度分析方法总结了对物种多样性最具影响力和指示意义的生境类替代评价指标,使用回归分析方法建立了各类群物种多样性与主要环境因子和景观指数的多元线性回归方程,为基于生境指标开展生物多样性替代性评价提供了具体方法。
     本研究属于生物多样性评价领域的集成创新研究,可为云南省的生物多样性保护、研究和决策,我国环境影响评价制度中生物多样性影响评价的完善,以及其他区域性生物多样性评价活动等提供科学依据和参考。
Yunnan has the richest biodiversity in China. It’s a distribution center of endemic and relic species, a producing area of type specimen, and an epicenter for species differentiation of the East Asian Flora & Fauna. It was also known as one of world’s 25 biodiversity hotspots, and a key biological area of international importance. To assess Yunnan’s highly diverse, complex and fragile biodiversity, there were still knowledge gaps and deficiencies of precise, effective, feasible and systematic solutions. Biodiversity assessment indicators system is an indispensable tool for measuring biodiversity. To be pertinent or universal is constantly a dilemma for biodiversity assessment indicators systems that have fixed number of indicators. It was simply impossible to apply such systems to different types of biodiversity assessment actions, such as status assessment, long term monitoring, impact assessment, rapid assessment, inventory while achieving a spatio-temporal comparability. What’s more, the existing data can not be easily accessed for a normal biodiversity assessor. Without guidance of baseline data, our limited resources can never be invested in the most needed places. In order to change the situation, this paper summarized the distribution pattern of Yunnan’s biodiversity along different environmental gradients. Then, the paper developed an integrated platform for biodiversity assessment that includes two databases (the biodiversity indicators database and the biodiversity spatial information database), one application software (the dynamic biodiversity assessment indicators system), and two surrogate methodologies (cross-taxon surrogates and habitat-based surrogates).
     Firstly, in order to reveal the spatial distribution pattern of Yunnan’s biodiversity, Beta diversity along the longitude, latitude and altitudinal gradients were analyzed. Results showed that landscape diversity spreaded according to the dominating landforms inclining from the highest corner of Northwest Yunnan to the lowest corner of Southeast Yunnan and formed three stairs and four terraces. Distribution of ecosystem and species diversity formed a“C.”pattern. The“C”belt here refers to the biodiversity enriched border area of Yunnan. In addition, the dot“.”refers to a biodiversity island in mid-Yunnan (Wuliang and Ailao Mountains). For the altitudinal gradients, there exists three types of distribution curves for vascular plants: 1) Majority of the mountains’vertical species biodiversity pattern showed“normal distribution”curves. When semi-savanna vegetation occurred in the basal belt, a“biodiversity jumping”phenomenon can be observed. 2) It showed a left-skewed normal distribution in some southern tropical areas (biodiversity level increased a little bit and decrease rapidly since then). 3) For the dry-hot valley areas, there were no significant vertical patterns. For the latitude gradients: 1) There was a significant replacement of species from north to south. About 90% of the species were changed on the gradient. 2) The vertical location of area with highest biodiversity was determined by latitude and a linear equation can be set up between them. For the longitude gradients: 1) The replacement of species was not so significant since only 1/4 of species were changed from east to west. 2) Along the Tropic of Cancer, the more west a place is, the more similar the species composition would be. These findings showed, for the first time, a holographic scene of Yunan’s biodiversity and they may serve as background knowledge for future biodiversity assessments.
     Secondly, the paper proposed a revolutionary concept—dynamic indicators system (DIS). Following four steps, a specified DIS can be automatically generated for any place and any type of assessment: 1) Through collection, classification and inventory of existing biodiversity indicators, a biodiversity indicator database was set up. In the database, 775 individual indicators were collected by far which were organized according to the“Corolla”concept model. 2) Through integration of biodiversity spatial information, fundamental geography spatial data, biodiversity related plannings etc., a biodiversity spatial information database was also set up. 3)“Dynamic Indicators System for Biodiversity Assessment”software was programmed in the“ArcEngine + VB.NET”software development environment which can search indicators in the first database based on information from the latter or specific requests of an assessment project. 4) By utilizing the Analytic Hierarchy Process(AHP) or other methodologies, the weights of each indicator and each layer of the indicators system can be allocated automatically by the software. In this way could an adaptive indicators system be set up for a specific assessment project. After each indicator in the biodiversity assessment DIS was caculated by assessors, its score should be allocated according to the Assessment Standards System. Then, the overall score may be calculated stepwisely by an Integrated Assessment Model that weights each hierarchy.
     Thirdly, in order to realize the rapid assessment of biodiversity in baseline-data-missing situation, the paper explored the potential biodiversity surrogacy methodologies from two aspects: the relations within life-forms as well as the relation between life-forms and habitat factors. For the former aspect,“species-species relation (cross-taxon relation of species number)”was drawn from the well-known“species-area relation (SAR)”. And the correlations of species diversity among“higher plants, birds, mammals, reptiles and amphibians”were theoretically proved. A series of functions between any two taxonomic groups were derived from classic SAR functions for the practise of biodiversity assessment. Due to the scale-dependence of the correlations found in case studies, a set of bird-watching based surrogate methodologies were further developed: On the large scale, a experiential ratio of“1:5:50”exists among mammal, bird and plant species, which means bird species number is normally five times that of mammals, and plants ten times of birds. On the medium scale, species number of any taxonomic group can be estimated by an easy-to-sample indicator taxon (e.g. bird) based on correlation functions developed in the paper. On the small scale, any taxonomic group can be estimated by checking the isoline maps between bird and the corresponding groups. Potential ways to improve the precision of this methodology were also proposed. For the relation between life-forms and habitats, the paper explored spatial correlationships between biodiversity and environmental factors, vegetation landscape, soil landscape, landuse landscape, transportation networks as well as invasive species. By using ordination methods, the most effective habitat-based surrogates were prioritized. By using regression methods, the multiple regression equations between species biodiversity and major environmental factors as well as landscape indicators were developed, which provided a useful tool for rapid biodiversity assessment.
     The research is an application innovation for biodiversity assessments and it may provide scientific basis and reference for biodiversity researches, biodiversity conservation actions, the improvement of biodiversity impact assessment under China’s current environmental impact assessment system and other regional biodiversity assessment activities.
引文
[1] Heywood V H. Global Biodiversity Assessment. Cambridge: Cambridge University Press, 1995.
    [2] Lawton J H, Bignell D E, Bolton B, et al. Biodiversity inventories, indicator taxa and effects of habitat modification on tropical forest. Nature, 1998, 391:72-76.
    [3] Purvis A, Hector A. Getting the measure of biodiversity. Nature, 2000, 405(6783): 212-219.
    [4] Wallace J F, Caccetta P A, Kiiveri H T. Recent developments in analysis of spatial and temporal data for landscape qualities and monitoring. Austral Ecology, 2004, 29:100-107.
    [5] Dasmann R F. A Different Kind of Country (ISBN: 0-02-072810-7). New York: MacMillan Company, 1968.
    [6] Edward O W (editor), Frances M P (associate editor). Biodiversity (ISBN 0-309-03783-2, ISBN 0-309-03739-5). Washington D.C.: National Academy Press, 1988.
    [7]中华人民共和国环境保护部.中国履行《生物多样性公约》第四次国家报告.北京:环境科学出版社, 2009.
    [8]王四海,杨宇明,王娟,李昊民.战略环境影响评价中生物多样性影响评价特点.长江流域资源与环境, 2009, 18(5):477-481.
    [9] Hellawell J M. Development of a rational for monitoring. In: Goldsmith F B (ed.), Monitoring for Conservation and Ecology. London: Chapman, 1991:1-14.
    [10] Alan G. Environmental impact assessment: cutting edge for the twenty-first century. UK: Cambridge University Press, 1995.
    [11]丁疆华,舒强.环境影响评价类型的发展.环境与开发, 2000, 20(2):34-36.
    [12] Lyon D. Sustainability Indicators–A scientific assessment. London: Islandpress, 2006:27-32.
    [13] UNDSD. Report of the Consultative Group to Identify Themes and Core Indicators of Sustainable Development. New York: UN report, 2000.
    [14] Bagri A J, McNeely F, Vorhies. Biodiversity and Impact Assessment. Gland, Switzerland: IUCN report, 1998.
    [15] Le Maitre D C, Euston Brown D I, Gelderblom C M. Are the Potential Impacts on Biodiversity Adequately Addressed in Southern African Environmental Impact Assessments? Christchurch, New Zealand: Paper presented at a workshop on Biodiversity and Impact Assessment, 1998.
    [16] Clare Brooke. Biodiversity and Impact Assessment. Manchester, England: Prepared for the conference on Impact Assessment in a Developing World, 1998:1-15.
    [17] Helen B. Biodiversity issue in road environmental impact assessment. Manchester, England: Conference on Impact Assessment in a Developing World, 1998:1-15.
    [18] Vinod B M. Integrating biodiversity into SEA case studies in India. Report for the Netherlands Commission for Environmental Impact Assessment, 2005:1-13.
    [19] Portuguese Presidency of the EU Council and European Commission. Incorporating biodiversity into corporate responsibility schemes. EU Presidency Conference on European Business & Biodiversity, 2007.
    [20] Greening Regional Development Programmes Network. Handbook on SEA for Cohesion Policy (2007-2013). GRDPN, 2006:1-48.
    [21] UNEP. Report of the Sixth Meeting of the Conference of the Parties to the Convention on Biological Diversity (UNEP/CBD/COP/6/20 Decision VI/26). UNEP, 2002.
    [22] CBD. Global biodiversity outlook. Secretariat of the Convention on Biological Diversity, 2001.
    [23] Potting J, Bakkes J. The GEO-3 Scenarios 2002-2032 Quantification and Analysis of Environmental Impacts (ISBN: 9280723847). Rijksinstituut voor Volksgezondheid en Milieu RIVM, 2004.
    [24] Mooney H, Cropper A, Reid W. Confronting the human dilemma: How can ecosystems provide sustainable services to benefit society? Nature, 2005:434-561.
    [25] Larigauderie A, Prieur-Richard A H. In: Matouch, Sauberer N (ed.).Vienna, Austria: International Conference on "Predicting biodiversity in European landscapes: mapping, patterns, indicators, monitoring", 2003:99-103.
    [26] K?rner Ch, Spehn E M (ed.). Mountain biodiversity A global assessment. New York: Parthenon, 2002.
    [27] K?rner Ch. Mountain biodiversity, its causes and function. Ambio Special Report, 2004, 13:11-17.
    [28] K?rner Ch, Ohsawa M, et al. Mountain Systems. In: Ecosystems and Human Well-being. Current State and Trends: Findings of the Condition and Trends Working Group. Millennium Ecosystem Assessment Vol. 1. Washington DC: Island Press, 2005: 681-716.
    [29] Sun H, Tribsch A, Tykarski P, Zbinden N. Creative use of mountain biodiversity databases: the Kazbegi Research Agenda of GMBA-DIVERSITAS. Mountain Research and Development, 2007(7):21-25.
    [30] EEA. Halting the loss of biodiversity by 2010: proposal for a first set of indicators to monitor progress in Europe (EEA Technical report No 11. ISBN 978-92-9167-931-7). European Environment Agency, 2007:1-182.
    [31] UK Biodiversity Indicators Working Group.UK Biodiversity Indicators for the 2010 target. UK Biodiversity Partnership Standing Committee Meeting (UKBPSC05-08), 2005:9-37.
    [32] Natural Scotland, Scottish Executive. Strategic Environment Assessment Tool Kit. 2006:130-132.
    [33]马克平.生物多样性的测度方法. I.a多样性的测度方法(上).生物多样性, 1994, 2(3):162 -168.
    [34]王华东,刘贤婌.开发建设项目对生物多样性的影响评价初步构想.重庆环境科学, 1996, 18(1):15-17.
    [35] Daniel J Z,郭辉军等.复杂的农业景观系统中植物物种多样性的评价方法——PLEC农业生物多样性指导小组(PLEC-BAG)对资料搜集与分析的指南.云南植物研究, 2000, 7:16-18.
    [36]张颖.中国森林生物多样性评价.北京:中国林业出版社, 2002.
    [37]张峥,刘爽等.湿地生物多样性评价研究——以天津古海岸与湿地自然保护区为例.中国生态农业学报, 2002, 10:76-78.
    [38]朱京海,刘伟玲,胡远满,王炜.辽宁沿海湿地生物多样性评价研究.气象与环境学报, 2008, 24(1):27-32.
    [39]郑允文,薛达元,张更生.我国自然保护区生态评价指标和评价标准.农村生态环境, 1994, 10(3):22-25.
    [40]史作民,程瑞英,陈方,流世荣.区域生态系统多样性评价方法.农村生态环境, 1996, 12(2):1-5.
    [41]曾志新,罗军等.生物多样性的评价指标和评价标准.湖南林业科技, 1999, 26(2):26-29.
    [42]张全国,廖万金.生态影响评价与生物多样性保护.生物学通报, 2003, 38(9):7-9.
    [43]陈薇,杨宇明,王娟等.环境影响评价中生物多样性的影响评价探析.资源开发与市场, 2007, 23(03):57-62.
    [44]喻庆国主编.生物多样性调查与评价.昆明:云南科技出版社,2007:1-497.
    [45]万本太,徐海根,丁晖等.生物多样性综合评价方法研究.生物多样性,2007,15(1):97-106.
    [46]丁晖,秦卫华等.生物多样性评价指标及其案例研究.北京:中国环境科学出版社,2009:6-12.
    [47]王娟,杨宇明等.规划环评生物多样性影响评价指标及其测评体系研究.美国大自然保护协会, 2007:3-4.
    [48]李昊民,王娟,田昆,王四海,杨宇明.金沙江虎跳峡-旭龙河段水电建设景观多样性影响评价.长江流域资源与环境, 2010, 19(9):1086-1091.
    [49] Grassle J, C Taillie. Ecological diversity in theory and practice. Fairland Meryland: International Cooperative Publishing House, 1979:32-38.
    [50] Moss RF, AY Cooperrider. Saving Nature’s Legacy: Restoring and Protecting Biodiversity. Washington D.C.: Island Press, 1994.
    [51] Ben D, Ulla P. An inventory of biodiversity indicators in Europe. European Environment Agency Technical Report (No 92), 2002:15-35.
    [52] Goran F, Mans N, Jessica J, et al. Strategic environmental assessment methodologies-applications within the energy sector. Environmental Impact Assessment Review, 2003, 23:91-123.
    [53] Maria R P. Elements of an SEA framework-improving the added-value of SEA. Environmental Impact Assessment Review, 2000(20):647-663.
    [54] Alan F. Establishing Baseline Indices for the Quality of the Biodiversity of Restored Habitats Using a Standardized Sampling Process. Restoration Ecology, 2006, 14(1):112-122.
    [55] Zhang W J, Schoenly K G. IRRI Biodiversity Software SeriesⅡ: COLLECT1 and COLLECT2: programs for calculating statistics of collectors’curves. IRR Technical Bulleting No2. Manila: International Rice Research Institute, 1999:15.
    [56] Zhang W J, Schoenly K G. IRRI Biodiversity Software SeriesⅣ: EXTSPP1 and EXTSPP2: programs for comparing and performance-testing eight extrapolation-based estimators of total taxonomic richness. IRR Technical Bulleting No.4. Manila: International Rice Research Institute, 1999:15.
    [57]赵海军.生物多样性评价软件Biodiversity Mapping的设计与实现.生物多样性, 2004, (12)5:541-545.
    [58] Nicholas G C. smogd: software for the measurement of genetic diversity. Molecular Ecology Resources, 2010, 10(3):556-557.
    [59] Canadian Environmental Assessment Agency. A Guide on Biodiversity and Environmental Assessment. Minister of Supply and Services Canada, 1996.
    [60] The World Bank Environment Department. Environmental Assessment Sourcebook. Update No. 20. WB, 1999.
    [61] Wynne G M, Avery L. Campbell S, et al. Biodiversity Challenge (2nd edition). Bedfordshire, UK: RSPB, 1997.
    [62] World Bank. Biodiversity and Environmental Assessment Toolkit.WB, 2000:1-65.
    [63] English Nature. Strategic Environmental Assessment and Biodiversity: Guidance for Practitioners. Prepared by South West Ecological Surveys, Levett-Therivel sustainability consultants and Oxford Brookes University, 2004:1-94.
    [64] Mikael G. Biodiveristy in Environmental Assessment– Tools for impact prediction. Report No.TRITA-LWR-LIC2025, 2005:1-25.
    [65] Ramsar. Guidelines for incorporating biodiversity-related issues into environmental impact assessment legislation and/or processes and in strategic environmental assessment. Handbook13: Ramsar handbooks for the wise use of wetlands 3rd edition, 2007:1-44.
    [66]云南省地方志编纂委员会.云南省志(第一卷地理志).昆明:云南人民出版社, 1998:1-515.
    [67]吴征镒,朱彦丕主编.云南植物.北京:科学出版社, 1987.
    [68]杨宇明,郝吉明,裴盛基.云南的生物多样性及其保护.见:钱易,郝吉明,主编.环境科学与工程研究.北京:清华大学出版社, 2001:336-347.
    [69]杨宇明,王娟,王建皓,裴盛基.云南生物多样性及其保护研究.北京:科学出版社,2008:1-296.
    [70]云南省环保厅.云南省生物多样性调查与评估研究报告. 2009:1-103.
    [71]王建皓,杨宇明.野生动物资源.见:陈永森,郭萌荫,主编.云南省志?地理志.昆明:云南人民出版社, 1996:456-468.
    [72]叶昌荣,米艳华,余腾琼,罗红芬.云南作物遗传资源多样性与农业可持续发展.云南省农业大学学报, 2002, 17(1):99-103.
    [73] Stevens G C. The Elevational Gradient in Altitudinal Range: an Extension of Rapoport’s Latitudinal Rules to Altitude. The American Naturalist, 1992, 140:893-911.
    [74] Hawkins B A. Energy, Water and Broad-Scale Geographic Geographic Patterns of Species Richness. Ecology, 2003, 84(12):3105-3117.
    [75] Qian H. Large-Scale Biogeographic Patterns of Vascular Plant Richness in North America: an Analysis at the Generic Level. Journal of Biogeography, 1998, 25:829-836.
    [76] Sanders N J. Elevational Gradients in Ant Species Richness: Area, Geometry and Rapoport’s Rule. Ecography, 2002, 25:25-32.
    [77]陈圣宾,欧阳志云,徐卫华,肖燚. Beta多样性研究进展.生物多样性2010, 18 (4): 323-335.
    [78] Yolanda F. Wiersma, D L. Urban Beta Diversity and Nature Reserve System Design in the Yukon, Canada. Conservation Biology, 2005, 19(4):1262-1272.
    [79]刘洋.纵向岭谷区土地气候时空变化及其生态效应.中国科学院西双版纳热带植物园博士论文, 2008:1-96.
    [80]朱华.云南种子植物区系地理成分分布格局及其意义.地球科学进展, 2008, 23(8):830-834.
    [81]王娟,杜凡,杨宇明,田昆,王应祥.中国云南澜沧江自然保护区科学考察研究.北京:科学出版社, 2010:1-572.
    [82] Holdgate M. From care to action: making a sustainable world. London: IUCN/Earthscan, 1996.
    [83] OECD. OECD Core Set of Indicators for Environmental Performance Reviews, Environmental Monograph No 83. Paris: OECD, 1993.
    [84] Turner R K,Lorenzoni I, Beaumont N, et al.Coastal management for sustainable development: analyzing environmental and socio-economic changes on the UK coast. The Geographical Journal, 1998, 164:269-281.
    [85] Noss R F. Assessing and monitoring forest biodiversity: a suggested framework and indicators. Forest Ecology and Management, 1999, 115:135-146.
    [86] Stork N E, Boyle T J B, Dale V, et al. Criteria and indicator for assessing the sustainability of forest management: conservation of biodiversity. Jakarta, Indonesia: CIFOR Working Paper no.17, 1997.
    [87] Larsson T. B. and Esteban JA (eds). Cost-effective indicators to assess biological diversity in the framework ofthe Convention on Biological Diversity. Swedish Environmental Protection Agency, 2000.
    [88] Reid W V, McNeely J A, Tunstall D B, et al. Biodiversity indicators for policy-makers. Washington D.C.: World Resources Institute, 1993.
    [89] Bosch P, S?derb?ck E. European environmental state indicators. Stockholm: European Environment Agency, Copenhagen and Swedish Environmental Protection Agency, 1997.
    [90] Shaw P.Wind P. Monitoring the condition and biodiversity status of European conservation sites. Paris: European Topic Centre on Nature Conservation, 1997.
    [91] United Nations Environment Programme.Recommendations for a core set of indicators of biological diversity. UNEP/CBD/SBSTTA, 1997.
    [92] Balmford A, Bennun L, Ten B B, et al. The Convention on Bioiogical Diversity’s 2010 Target. Science, 2005, 307:212-213.
    [93] Convention on Biological Diversity. Global biediversity outlook. Montreal: CBD Secretariat, 2001.
    [94] Landsberg J, Crowley G. Monitoring rangeland biodiversity: plants as indicators. Austral Ecology, 2004, 29:59-77.
    [95] Williams B L. Mareot B G. Use of biodiversity indicators for ana|yzing and managing forest landscapes. Transactions of the 56th north American wildlife and natural resources conference.199l, 56:613-627.
    [96] Ministry of Agriculture and Forestry, Finland. Criteria and indicators for sustainable forest management in Finland. Helsinki: Ministry of Agriculture and Forestry, 1997.
    [97]李金良,郑小贤,王昕.东北过伐林区林业局级森林生物多样性指标体系研究.北京林业大学学报, 2003, 25(1):48-52.
    [98]马克平,刘玉明.生物群落多样性的测度方法Ⅰα多样性的测度方法(下).生物多样性, 1994, 02(4):231-239.
    [99]马克平,刘灿然,刘玉明.生物群落多样性的测度方法Ⅱβ多样性的测度方法.生物多样性, 1995, 03 (1):38-43.
    [100] Patricia K, Kevin J G, et al. Measuring beta diversity for presence-absence data. Journal of Animal Ecology, 2003, 72:367-382.
    [101]张金屯.数量生态学.北京:科学出版社,2004:1-154.
    [102] Gaston K J, Spicer J I. Biodiversity: An Introduction. Oxford: Blackwell Scientific Publishers, 1998.
    [103] Ten B. Biodiversity indicators for the OECD Environmental Outlook and Strategy. RIVM Rapport 402001014, Global Report Series 25, 2000.
    [104] Karr J R., Fausch K D, Angermeier P L, et al. Assessment of biological integrity in running waters: a method and its rationale. Illinois: National Historical Survey and Special Publication, 1986.
    [105] Seholes R J, Biggs R. A biodiversity intactness index. Nature, 2005, 434:45-49.
    [106] David M O, Eric D A. The Global 200: priority ecoregions for global conservation. ANN. MISSOURI BOT. GARD, 2002, 89:199-224.
    [107]杨一光.云南省综合自然区划.北京:高等教育出版社, 1991:1-253.
    [108]云南省环保厅.云南省生态功能区划. 2009.
    [109]马仁锋,王筱春,张猛等.主体功能区划方法体系构建研究.地域研究与开发, 2010, 29(4): 10-15.
    [110]何晓瑞,周希琴.云南省爬行动物区系及地理区划.四川动物, 2002,21(3):161-169.
    [111]云南林业厅等.云南国家重点保护野生植物.昆明:云南科技出版社, 2004:1-389.
    [112]云南省林业厅.云南省陆生野生动物资源调查报告. 2001:1-564.
    [113]刘雨芳,尤民生.中国的生物多样性及其数据资源与信息系统研究现状.湘潭师范学院学报(自然科学版), 2002, 24(1):58-64.
    [114]龙春林,裴盛基.生物多样性的研究方法.中国科学院生物多样性委员会、林业部野生动物和森林植物保护司:生物多样性研究进展—首届全国生物多样性保护与持续利用研讨会论文集, 1995.
    [115] Sahotra S, Chris M. Operationalizing biodiversity for conservation planning. Journal of Bioscience, 2002, 27(4):299-308.
    [116]赵淑清,方精云,雷光春.全球200:确定大尺度生物多样性优先保护的一种方法.生物多样性, 2000, 8(4):435-440.
    [117] Leira M, Sabater S. Diatom assemblage distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Resources, 2005, 39(1):73-82.
    [118] Rachata M, Enrico B, Heather J L, et al. Neutral meta-community models predict fish diversity patterns in Mississippi–Missouri basin. Nature, 2008, 453(1038):220-222.
    [119] Zhang R Z, Lin Y L. The distribution direction of mammal in China and its neighborhood. Acta Zoollogica Sinica, 1985, 31(2):187-197.
    [120] Gaston K J. 2000. Global patterns in biodiversity. Nature, 405(6784):220-227.
    [121]张荣祖.中国动物地理.北京:科学出版社, 1999:1-502.
    [122]胡慧建,蒋志刚,王祖望.中国不同地理区域鸟兽物种丰度的相关性.生物多样性, 2001, 9(2):95-101.
    [123]冯永军,胡慧建,蒋志刚,王祖望.物种与科属的数量关系—以中国鸟类为例.动物学研究, 2006, 27(6):581- 587.
    [124]郑孜文,张春兰,胡慧建等.中国哺乳类物种与科属的数量关系.兽类学报, 2008,28(2):207-211.
    [125] The World Bank. Monitoring environmental progress, a report on work in progress. WB, 1995, 20-25.
    [126] Arrhenius O. Species and area. Journal of Ecology, 1921, 9:95-99.
    [127] Arrhenius O. On the relation between species and area: a reply. Ecology, 1923, 4: 90-91.
    [128] Arrhenius, O. Statistical investigations in the constitution of plant associations. Ecology, 1923, 4:68-73.
    [129] Gleason H A. On the relation between species and area. Ecology, 1922, 3:158-162.
    [130] Barbour M G, Burk J H, Pitts W D. Terrestrial plant ecology. Menlo Park CA: Benjamin/Cummings, 1980:158-160.
    [131] Archibald E E A. The specific character of plant communities—A quantitative approach. Journal of Ecology, 1949, 37:260-274.
    [132] Samuel M, Scheiner. Six types of species-area curves. Global Ecology & Biogeography, 2003, 12:441-447.
    [133] Conner E F, E D Mccoy. The Statistics and biology of the species—area relationship. American Naturalist, 1979, 113:791-833.
    [134] Preston F W. The canonical distribution of commonness and rarity. Ecology, 1962, 43:185-215.
    [135] MacArthur R H, E O Wilson. An equilibrium theory of insular zoogeography. Evolution, 1963, 17:373-387.
    [136] John H, Adam B. Smith D S. Biodiversity scales from plots to biomes with a universal species–area curve. Ecology Letters, 2009, 12:789-796.
    [137] Jaynes, E T. On the rationale of maximum entropy methods. Proc. Instit. Elec. Electron. Eng., 1982, 70:939-952.
    [138] Harte J, Zillio T, Conlisk E, et al. Maximum entropy and the state variable approach to macroecology. Ecology, 2008, 89, 2700-2711.
    [139]刘灿然,马克平,于顺利等.北京东灵山地区植物群落多样性研究——种-面积曲线的拟合与评价.植物生态学报, 1999, 23(6): 490-500.
    [140]唐龙,郝文芳,孙洪罡等.黄土高原四种乡土牧草群落种—面积曲线拟合及最小面积的确定.干旱地区农业研究, 2005, 23(4):83-88.
    [141]杨子松,黎云祥,刘伟等.岷江上游干旱河谷荒坡植物群落种-面积曲线拟合及最小面积确定.生态与农村环境学报, 2010, 26 (3) : 227-230.
    [142] He F, Legendre P. On species-area relations. American Naturalist, 1996, 148:719-737.
    [143] He F, Legendre P. Species diversity patterns derived from species-area models. Ecology, 2002, 83:1185-1198.
    [144] Gilbert F S. The equilibrium theory of island biogeography: fact or fiction? Journal of Biogeography, 1980, 7: 209-235.
    [145]邬建国.岛屿生物地理学理论:模型与应用.生态学杂志, 1989, 8 (6):34-39.
    [146] Brian J W, Leanne M M, Wayne P. Predicting Plant Extinction Based on Species-Area Curves inPrairie Fragments with High Beta Richness. Conservation Biology, 2005, 10:1835-1841.
    [147] Simberloff D, Abele L G. Refuge design and island biogeographic theory: effects of fragment. Am. Nat., 1982, 120:41-50.
    [148] Cox P A, Elmqvist T, Pierson ED, et al. Flying foxes as strong indicator in the south Pacific island ecosystems: a conservation hypothesis. Conservation Biology, 1991, 5:448-454.
    [149] Rossi J P, Halder IV. Towards indicators of butterfly biodiversity based on a multi-scale landscape description. Ecological Indicators, 2010, 10:452-458.
    [150]李晓文,张玲,方精云.指示种、伞护种与旗舰种:有关概念及其在保护生物学中的应用.生物多样性, 2002, 10(1):72-79.
    [151] Berlow E. Strong effects of weak interactions in ecological communities. Nature, 1999, 298:330-334.
    [152] Fredrik D, Michael J, Somers K E, et al. The potential for large carnivores to act as biodiversity surrogates in southern Africa. Biodiversity Conservation, 2008, 17:2939-2949.
    [153] Power M E, Tilman D, Estes J A, et al. Challenges in the quest for keystones. BioScience, 1996, 46:609-620.
    [154]许再富. 1994.榕树滇南热带雨林生态系统中的一类关键植物.生物多样性, 1994, 2(1):21-23.
    [155] Wilcox BA. In situ conservation of genetic resources: determinants of minimum area requirements. In: McNeely J A, Miller K R (ed.) National Parks: Conservation and Development. Washington D. C.: Smithsonian Institution Press, 1984, 639-657.
    [156]杨宇明,陆元昌,李立俊等.云南龙脑香林及其地理分布.西南林学院学报, 1997, 3:1-9.
    [157] Lawlaer JJ, Denis W, et al. Rare Species and the Use of Indicator Groups for Conservation Planning. Conservation Biology, 2003, 17(3):875-882.
    [158] Lawler. J J, D White. Selecting surrogate species for conservation planning. Animal Conservation, 2008, 11: 270-280.
    [159] Dobson A P, Rodriguez J P, Roberts W M, et al. Geographic distribution of endangered species in the United States. Science, 1997, 275:550-553.
    [160] UNEP-WCMC. Known Species of Mammals, Plants, and Breeding Birds (Web site available at http://www.unepwcmc.org.). Cambridge, England, 2004.
    [161]李倦生,周凤霞,张朝阳等.湖南省生物多样性现状调查与评价.环境科学研究, 2009, 22(12):1382-1388.
    [162] Wade A R, Jonathan M C. Predator-Dependent Species-Area Relationships. The American Naturalist,2007, 170(4):636-642.
    [163] Diamond J M, May R M. Island biogeography and the design of natural reserves, The Ornithological ecology: principles and applicaitons (2nd edition). Oxford: Blackwell, 1981.
    [164] Rosenweig M L. Species diversity in space and time. Chicago: University of Chicago Press, 1995:1-73.
    [165]肖笃宁,布仁仓,李秀珍.生态空间理论与景观异质性.生态学报,1997,17(5):453-461.
    [166] Diniz Filho J A F. A nice step towards the final frontier. Journal of Biogeography, 2005, 32(1): 1287-1288.
    [167] JoséLV, Pedro M, Julieta AR. Plant families as predictors of plant biodiversity in Mexico. Diversity Distribution, 2007, 13:871-876.
    [168] Harley S, Carlos E V. Taxon surrogates among Amazonian mammals: Can total species richness be predicted by singleorders? Ecological Indicators, 2009, 9:160-166.
    [169] Miriam P P, JoséAF, Luis MB, et al. Biodiversity surrogate groups and conservation priority areas: birds of the Brazilian Cerrado. Diversity Distribution, 2008, 14:78-86.
    [170] Olsgard F, Brattegard T, Holthe T. Polychaetes as surrogates for marine biodiversity: lower taxonomic resolution and indicator groups. Biodiversity Conservation, 2003, 12:1033-1049.
    [171] Biaggini M, Consorti R, Dapporto L, et al. The taxonomic level order as a possible tool for rapid assessment of Arthropod diversity in agricultural landscapes Agriculture. Ecosystems and Environment, 2007, 122:183-191.
    [172] Balmford A, Lyon AJE, Lang RM. Testing the higher taxon approach to conservation planning in a mega-diverse group: the macrofungi. Biological Conservation, 2000, 93:209-217.
    [173] Rahbek C, Gotelli N J, Colwell R K, et al. Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society (B), 2007,274:165-174.
    [174]蒋志刚,马克平,韩兴国.保护生物学.杭州:浙江科学技术出版社, 1997.
    [175] Harrison S, Cornell H. Toward a better understanding of the regional causes of local community richness. Ecology Letters, 2008, 11, 969-979.
    [176] Currie D J, Paquin V. Large-scale biogeographical patterns of species richness of trees. Nature, 1987, 329:326-327.
    [177]林鑫,王志恒,唐志尧等.中国陆栖哺乳动物物种丰富度的地理格局及其与环境因子的关系.生物多样性, 2009, 17(6):652-663.
    [178]唐志尧,王志恒,方精云.生物多样性分布格局的地史成因假说.生物多样性, 2009, 17 (6): 635-643.
    [179] Montoya D, Rodriguez M A, Zavala M A, et al. Contemporary richness of holarctic trees and the historical pattern of glacial retreat. Ecography, 2007, 30:173-182.
    [180] Colwell R K, Hurtt G C. Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 1994, 144, 570-595.
    [181] Colwell R K, Lees D C. The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology and Evolution, 2000, 15, 70-76.
    [182] Xu C Y, Singh V P. Evaluation and generalization of radiation-based methods for calculating evaporation. Hydrological Processes, 2000, 14:339-349.
    [183] R G Allen, Luis S P, Dirk R. Crop evapotranspiration guidelines for computing crop water requirement. Rome: FAO Irrig and Drain Paper, 1998.
    [184]张金屯.植被数学生态学方法.北京:中国科学技术出版社, 1995.
    [185] Jan L, Petr S. Multivariate Analysis of Ecological Data using CANOCO. New York: Published in the United States of America by Cambridge University Press, 2003.
    [186] Araujo MB, Humphries CJ, Densham PJ, et al. Would environmental diversity be a good surrogate for species diversity? Ecography, 2001, 24:103-110.
    [187] Faith D P, Walker P A. Environmental diversity: on the best possible use of surrogate data for assessing the relative biodiversity of sets of areas. Biodiversity and Conservation, 1996, 5:399-415.
    [188] Rolf H, Helene H W. Landscape Genetics. BioScience, 2008, 58(3):199-207.
    [189] Long C L. On Biodiversity of Xishuangbanna, China. In: Rambo AT, ed. Recent Research on Rural Resource Management in Southeast Asia. Honolulu: East-West Center Publishing Program, 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700