用户名: 密码: 验证码:
飞秒激光在透明介质中诱导光子学微结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子学是当今一个飞速发展的学科领域,它主要研究作为信息和能量载体的光子行为及其应用。使用光子作为信息载体,其信息容量比电子相比要大出3-4个量级,并且具有极快的响应能力和良好的空间相容性,因此开拓新的思路和技术对发展光子学具有十分重要的现实意义,并能促进材料科学、物理和信息等多个学科的发展。特别是近年来,利用飞秒激光在材料中写入功能化的光子学微结构得到越来越多的关注。飞秒激光由于具有超短的脉冲宽度和极高的脉冲峰值功率,使得其与材料的相互作用主要是非线性过程占主导,并且这种非线性过程有着阈值场强的限制,因而飞秒激光在材料中能够空间选择性的诱导各种微结构。
     本文就1kHz和250kHz两种不同脉冲频率的飞秒激光在多种透明介质中诱导光子学微结构等方面展开系统的研究,并取得具有创新性的成果。研究的内容包括发现玻璃中掺杂的Ce~(3+)会影响飞秒激光诱导的银纳米颗粒的沉积、飞秒激光在Ag~+掺杂的硅酸盐玻璃中诱导出具有荧光特性的银纳米颗粒、飞秒激光在玻璃和晶体等透明介质中诱导自组装周期孔洞结构以及飞秒激光在玻璃内部诱导出非线性光学晶体等几个领域。
     1.通过分析样品辐照前后及不同热处理温度的吸收光谱,发现在Ag~+-Ce~(3+)高浓度共掺杂的硅酸盐玻璃中,Ce~(3+)在飞秒激光辐照下会通过多光子电离等非线性效应释放一个自由电子,该自由电子能同玻璃基体桥氧键断裂释放的自由电子一同还原Ag~+转变为Ag_0,因此掺杂了Ce~(3+)的玻璃在辐照参数相同的条件下,银纳米颗粒生长的速度快于未掺杂Ce~(3+)的玻璃。在较高温度的热处理下,已经氧化的Ce~(4+)又会被还原成Ce~(3+),从而消耗银原子,影响银纳米颗粒的生长。研究表明,在硅酸盐玻璃中高浓度掺杂的Ce~(3+)会影响飞秒激光诱导的银纳米颗粒的沉积。
     2.利用飞秒激光诱导和热处理相结合,在Ag~+掺杂的硅酸盐玻璃内部,成功地诱导出了具有荧光特性的银纳米颗粒。通过吸收和荧光光谱的分析,这种荧光银纳米颗粒来源于局域形成的高浓度Ag_n~(m+)离子原子混合体。这种混合体所发射的荧光波长会随着激发波长的增加而出现红移现象,这一特征非常相似于半导体量子点的光致发光特性。这些荧光银纳米颗粒有很好的稳定性,在室温条件下放置6个月,没有出现明显的变化。
     3.研究了飞秒激光在玻璃和晶体等透明介质中诱导自组装周期孔洞微结构的物理现象,并对这个结构的形成提出了机理解释。实验结果显示这种孔洞的周期和尺寸能随着激光辐照参数的变化而变化,这种结构来源于克尔自聚焦和等离子体自散焦共同作用形成的多次重复聚焦效应,在每个聚焦点由微爆炸而形成孔洞。研究还表明,空气和介质的折射率失配引起的界面球差效应也会对这种孔洞微结构产生影响。
     4.首次在Ba_2 TiSi_2O_8系列玻璃内部空间选择性地诱导出了非线性光学晶体。研究表明,具有与非线性晶体相似组分的玻璃,如Ba_2TiSi_2O_8、Sr_2TiSi_2O_8和Ba_2TiGe_2O_8,在250kHz高重复频率飞秒激光辐照下都能诱导出非线性晶体,这些晶体展示了十分优异的光学倍频性质。这些晶体形成的主要原因是高重复频率的飞秒激光辐照进玻璃后由于多光子效应形成等离子体强烈地吸收激光能量,从而在焦点区域形成热积累效应,随着温度的不断升高,玻璃便会逐渐转化为晶体。此外,玻璃中还可以掺杂不同的稀土离子,利用入射激光诱导出的晶体发出的倍频光激发这些稀土离子可以得到特定波长的激发光,这项技术能应用于多色显示,三维存储等领域。
     飞秒激光在透明介质中诱导光子学微结构这一研究领域将超快光学、材料科学以及激光光谱学结合起来,是一个多学科交叉的新兴领域。特别是国际上对飞秒激光加工光子学微结构的研究时间还比较短,研究还不够深入,缺乏系统性。开展这方面的研究一方面可以推进更新的有源或无源光子学器件的发展,另一方面可以利用飞秒激光的特性发掘材料的新功能,发现更多在普通条件下无法观察到的新奇的物理现象,促进非线性光学以及相关研究的发展。
Photonics is now a rapidly developing discipline. It mainly studies a photon how to act as an information carrier for communication technology. The data storage capacity of photon as an information carrier is 3-4 larger than that of electron, and it has fast response and good spatial compatibility. Therefore, the development of photonics will significantly promote materials science, physics and other disciplines. Recently, much attention has been paid on the photonics microstructures induced by femtosecond laser. Due to its ultrashort pulse and ultrahigh peak power, nonlinear optical effects are dominant in the process of femtosecond laser interaction with dielectrics, and this process is strictly limited by the threshold intensity of incident laser. In this way, femtosecond laser may space-selectively induce various functional microstructures in materials.
     In this thesis, two different repetition (1 kHz and 250 kHz) femtosecond lasers are used to induce photonics microstructures in transparent dielectrics including glass and crystal. We focused on the following topics: the microstructures induced by femtosecond laser in Ag~+-doped silicate glass, self-assembly void microstructure induced by femtosecond laser in borosilicate glass and CaF_2 crystal, the space-selectively precipitation of nonlinear optical crystal induced by high repetition femtosecond laser in similar glass matrix.
     We investigated the effect of Ce~(3+) on the precipitation of Ag nanoparticles in silicate glass via a femtosecond laser irradiation and successive annealing. Absorption spectra show that Ce~(3+) may absorb part of the laser energy via multiphoton absorption and release free electrons, resulting in an increase of concertration of Ag atoms, which influence precipitation of the Ag nanoparticles. In addition, we found that the formed Ago may reduce Ce~(4+) to Ce~(3+) during the annealing process, which inhibits the growth of the Ag nanoparticles.
     A kind of fluorescent Ag nanoparticles may be space-selectively induced in glass via femtosecond laser irradiation and successive annealing. Extinction spectra and fluorescence spectra show that a fraction of the Ag atoms generated from multiphoton reduction, and aggregated to form nanoparticles under thermal treatment. Red luminescence from the irradiated region is observed under blue or green laser excitation, which is very similar in fluorescence characteristics of semiconductor quantum dots. Therefore, this red fluorescence may be attributed to interband transitions within Ag nanoparticles. These fluorescent Ag nanoparticles are very stable at room temperature.
     Multiple refocusing of a tightly focused femtosecond laser due to the dynamic transformation between Kerr self-focusing and self-defocusing from plasma produced a quasi-periodic void microstructure in borosilicate glass and CaF_2 crystal. It is found that the diameter or interval of the periodic void increase with the increasing pulse energy of the laser. The detailed course for producing periodic voids is discussed by analyzing the damaged track induced by the tightly focused femtosecond laser,
     Nonlinear optical crystals Ba_2TiSi_2O_8, Sr_2TiSi_2O_8 and Ba_2TiGe_2O_8 may be arbitrarily induced by 250 kHz femtosecond laser inside the stoichiometric glass matrices of BaO-TiO_2-SiO_2, BaO-TiO_2-SiO_2 and BaO-TiO_2-SiO_2 compositions. The induced crystals show excellent nonlinear optical nonlinearity. A heat accumulation effect is proposed as an important contribution to crystal growth in the irradiated regions. The mechanism of crystal formation as follows: The glass will transform to plasma state via multiphoton ionization due to the ultrahigh field intensity of femtosecond laser, the optically dense plasma will also absorb the laser energy effectively. So there exists a temperature gradient field in the heat-affected zone. When the glass temperature exceeds the crystallization temperature T_c, the glass will be a phase change into a crystal. Finally, crystallization due to the heat accumulation is brought in the laser-irradiated regions.
引文
[1] . Paul S. Peercy, The drive to miniaturization [J], Nature, 2000, Vol. 406, No. 6799, pp.1023-1026
    
    [2] . D. A. B. Miller, Physical reasons for optical interconnection [J], International Journal ofOptoelectronics, 1997, Vol. 11, No. 3, pp. 155-168
    
    [3] . T. H. Maiman, Stimulated optical radiation in ruby lasers [J], Nature, 1960, Vol. 187, No.4736, pp. 493-494
    
    [4] . J. F. Ready, Industrial Applications of Lasers [M], New York: Academic Press, 1978
    
    [5] . P. E. Dyer, Excimer laser polymer ablation: twenty years on [J], Applied Physics A,2003, Vol. 77, No. 2, pp. 167-173
    
    [6] . X. Liu, D. Du, G Mourou, Laser ablation and micromachining with ultrashort laserpulses [J], IEEE Journal of Quantum Electronics, 1997, Vol. 33, No. 10, pp. 1706-1716
    
    [7] . R. L. Fork, B. I. Greene, C. V. Shank, Generation of optical pulses shorter than 0.1 psecby colliding pulse mode locking [J], Applied Physics Letters, 1981, Vol. 38, No. 6, pp.671-672
    
    [8] . D. E. Spence, P. N. Kean and W. Sibbett, 60-fsec pulse generation from aself-mode-locked Ti: sapphire laser [J], Optics Letters, 1991, Vol. 16, No. 1, pp. 42-44
    
    [9] . C. P. Huang, H. C. Kapteyn, J. W. Mclntosh, M. M. Murnane, Generation oftransform-limited 32-fs pulses from a self-mode-locked Ti: sapphire laser [J], OpticsLetters, 1992, Vol. 17, No. 2, pp. 139-141
    
    [10] . C. P. Huang, M. T. Askai, S. Backus, M. M. Murnane, H. C. Kapteyn, H. Nathel,, 17-fspulses from a self-mode-locked Ti: sapphire laser [J], Optics Letters, 1992, Vol. 17, No.18, pp. 1289-1291
    
    [11]. B. Proctor, F. Wise, Generation of 13-fs pulses from a mode-locked Ti:Al_2O_3 laser withreduced third-order dispersion [J], Applied Physics Letters, 1993, Vol. 62, No. 5, pp.470-472
    
    [12] . M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane,Generation of 11-fs pulses from a self=mode-locked Ti: sapphire laser [J], Optics Letters,1993, Vol. 18, No. 12, pp. 977-979
    
    [13] . A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz, R. Szipocs, Sub-10-fsmirror-dispersion-controlled Ti: sapphire laser [J], Optics Letters, 1995, Vol. 20, No. 6,pp. 602-604
    
    [14] . I. D. Jung, F. X. Krtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U.Keller, V. Scheuer, M. Tilsch, T. Tschudi, Self-starting 6.5-fs pulses from a Tisapphirelaser [J], Optics Letters, 1991, Vol. 22, No. 13, pp. 1009-1011
    
    [15].陈钰清,王静环,激光原理[M],杭州:浙江大学出版社,1992
    [16] . R. W. Royd, Nonlinear Optics [M], Boston: Academic Press, 1992
    
    [17] . A. L. Gaeta, Catastrophic collapse of ultrashort pulses [J], Physical Review Letters, 2002, Vol. 84, No. 16, pp. 3582-3585
    [18] . S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, L. Berge, Self-guided propagation of ultrashort IR laser pulses in fused silica [J], Physical Review Letters, 2005, Vol. 87, No. 4, pp. 213902/1-4
    [19] . S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aakozbek, A. Becker, V. P. Kandidov, O. G.Kosareva, H. Schroeder, The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges [J], Canadian Journal of Physics, 2005, Vol. 83, No. 9, pp. 863-905
    [20] . T. Brabec, F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics [J], Reviews of Modern Physics, 2000, Vol. 72, No. 2, pp. 545-591
    [21] . M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G.Mourou, W. Kautek, F. Krausz, Femtosecond optical breakdown in dielectrics [J], Physical Review Letters, 1998, Vol. 80, No. 18, pp. 4076-4079
    [22] . A. Kaiser, B. Rethfeld, M. Vicanek, G.Simon, Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses [J], Physical Review B, 2000, Vol. 61, No. 17, pp. 11437-11450
    [23] . J. G.Fujimoto, J. M. Liu, E. P. Ippen, N. Bloembergen, Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperature [J], Physical Review Letters, 1984, Vol. 53, No. 19, pp. 1837-1840
    [24] . B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Femtosecond, picosecond and nanosecond laser ablation of solids [J], Applied Physics A, 1996, Vol. 63, No. 2, pp. 109-115
    [25]. C. Momma, S. Nolte, B. N. Chichkov, F. von Alvensleben, A. Tunnermann, Precise laser ablation with ultrashort pulses [J], Applied Surface Science, 1997, Vol. 109-110, pp. 15-19
    [26] . P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, G.Mourou, Machining of sub-micron holes using a femtosecond laser at 800nm [J], Optics Communication, 1995, Vol. 114, No. 1-2, pp. 106-110
    [27] . K. Venkatakrishnan, B. Tan, N. R. Sivakumar, Sub-micron ablation of metallic thin film by femtosecond pulse laser [J], Optics & Laser Technology, 2002, Vol. 34, No. 7, pp. 575-578
    [28] . J. Qiu, External electromagnetic field induced electronic structures and novel optical functions of rare-earth-ion-doped glasses, Journal of the Ceramic Society of Japan, 2001, Vol. 109, No. 2, pp. S25-S31
    [29] . L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Study of damage in fused silica induced by ultra-short IR laser pulses, Optics Communications, 2001, Vol. 191, No. 3-6, pp. 333-339
    [30] . C. B. Schaffer, A. Brodeur, J. F. Garcia, E. Mazur, Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy [J], Optics Letters, 2001, Vol. 26, No. 2, pp. 93-95
    [31] . C. B. Schaffer, A. Brodeur, E. Mazur, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses [J], Measurement Science and Technology, 2001, Vol. 12, No. 1, pp. 1784-1794
    [32] . C. B. Schaffer, J. F. Garcia, E. Mazur, Bulk heating of transparent materials using a high-repetition-rate femtosecond laser [J], Applied Physics A, 2003, Vol. 76, No. 3, pp. 351-354
    [33] . S. Martin, A. Hertwig, M. Lenzner, J. Kruger, W. Kautek, Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses [J], Applied Physics A, 2003, Vol. 77, No. 7, pp. 883-883
    [34] . H. Misawa, Japan Patent 08-220688,1996
    [35] . E. N. Glezer, E. Mazru, Ultrafast-laser driven micro-explosions in transparent materials [J], Applied Physics. Letters, 1997, Vol. 71, No. 7, pp. 882-884
    [36] . E. N. Glezer, M, Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, E. Mazur, Three-dimensional optical storage inside transparent materials [J], Optics Letters, 1996, Vol. 21, No. 24, pp. 2023-2025
    [37] . W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, K. Itoh, Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses [J], Optics Letters, 2000, Vol. 25, No. 22, pp. 1669-1671
    [38] . W. Watanabe, K. Itoh, Motion of bubble in solid by femtosecond laser pulses [J], Optics Express, 2002, Vol. 10, No. 14, pp. 603-608
    [39] . S. Kanehira, J. H. Si, J. R. Qiu, K. Fujita, K. Hirao, Periodic nanovoid structures via femtosecond laser irradiation [J], Nano Letters, 2005, Vol. 5, No. 8, pp. 1591-1595
    [40] . X. Hu, Y. Dai, L. Y. Yang, J. Song, C S. Zhu, J. R. Qiu, Self-formation of quasiperiodic void structure in CaF_2 induced by femtosecond laser irradiation [J], Journal of Applied Physics, 2007, Vol. 101, No. 2, pp.023112/1-3
    [41 ] . J. Song, X. S. Wang, J. Xu, H. Y. Sun, Z. Z. Xu, J. R. Qiu, Microstructures induced in the bulk of SrTiO_3 crystal by a femtosecond laser [J], Optics Express, 2007, Vol. 15, No. 5, pp. 2341-2347
    [42] . Y. Dai, X. Hu, J. Song, B. K. Yu, J. R. Qiu, Self-assembled quasi-periodic voids in glass induced by a tightly focused femtosecond laser [J], Chinese Physics Letters, 2007, Vol. 24, No. 7, pp. 1941-1944
    [43 ] . J. Qiu, K. Kojima, K. Miura, T. Mitsuyu, K. Hirao, Infrared femtosecond laser pulse
    
    ??induced permanent reduction of Eu~(3+) to Eu~(2+) in a fluorozirconate glass [J], OpticsLetters, 1999, Vol. 24, No. 11, pp.786-788
    
    [44] . J. R. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, K. Hirao, Permanent photoreduction of Sm~(3+)to Sm~(2+) inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser [J],Applied Physics Letters, 1999, Vol. 74, No. 1, pp. 10-12
    
    [45] . K. Miura, J. Qiu, S. Fujiwara, K. Sakaguchi, K. Hirao, Three-dimensional opticalmemory with rewriteable and ultrahigh density using the valence-state change ofsamarium ions [J], Applied Physics Letters, 2002, Vol. 80, No. 13, pp. 2263-2265
    
    [46] . J. R. Qiu, K. Miura, H. Inouye, Y. Kondo, T. Mitsuyu, K. Hirao, Femtosecondlaser-induced three-dimensional bright and long-lasting phosphorescence inside calciumaluminosilicate glasses doped with rare earth ions [J], Applied Physics Letters, 1998, Vol.73, No. 13, pp. 1763-1765
    
    [47] . J. R. Qiu, Y. Shimizugawa, Y. Iwabuchi, K. Hirao, Photostimulated luminescence ofCe~(3+)-doped alkali borate glasses [J], Applied Physics Letters, 1997, Vol. 71, No. 1, pp.43-45
    
    [48] . J. R. Qiu, Y. Shimizugawa, Y. Iwabuchi, K. Hirao, Photostimulated luminescence inEu~(2+)-doped fluoroaluminate glasses [J], Applied Physics Letters, 1997, Vol. 71, No. 6,pp.759-761
    
    [49] . J. R. Qiu, C. S. Zhu, T. Nakaya, J. H. Si, K. Kojima, F. Ogura, K. Hirao, Space-selectivevalence state manipulation of transition metal ions inside glasses by a femtosecond laser[J], Applied Physics Letters, 2001, Vol. 79, No. 22, pp. 3567-3569
    
    [50] . J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, K. Hirao,Space-selective precipitation of metal nanoparticles inside glasses [J], Applied PhysicsLetters, 2002, Vol. 81, No. 16, pp. 3040-3042
    
    [51]. J. R. Qiu, X. W. Jiang, C. S. Zhu, H. Inouye, J. H. Si, K. Hirao, Optical properties ofstructurally modified glasses doped with gold ions [J], Optics letters, Vol. 29, No. 4, pp.370-372
    
    [52] . J. R. Qiu, X. W. Jiang, C. S. Zhu, M. Shirai, J. Si, N. Jiang, K. Hirao, Manipulation ofgold nanoparticles inside transparent materials [J], Angewandte Chemie-InternationalEditon, 2004, Vol. 43, No. 17, pp. 2230-2234
    
    [53] . G S. He, P. P. Markowicz, T. C. Lin, P. N. Prasad, Observation of stimulated emissionby direct three-photon excitation [J], Nature, 2002, Vol. 415, No. 6872, 767-770
    
    [54] . H. P. You, M. Nogami, Three-photon-excited fluorescence of Al_2O_3-SiO_2 glasscontaining Eu~(3+) ions by femtosecond laser irradiation [J], Applied Physics Letters, 2004,Vol. 84, No. 12, pp. 2076-2078
    
    [55] . H. You, T. Hayakawa, M. Nogami, Upconversion luminescence of Al_2O_3-SiO_2: Ce~(3+)glass by femtosecond laser irradiation [J], Applied Physics Letters, 2004, Vol. 85, No. 16,??pp. 3432-3434
    
    [56] . L. Y. Yang, Y. J. Dong, D. P. Chen, C. Wang, N. Da, X. W. Jiang, C. H. Zhu, J. R. Qiu,Upconversion luminescence from ~2E state of Cr~(3+) in Al_2O_3 crystal by infraredfemtosecond laser irradiation [J], Optics Express, 2005, Vol. 13, No. 20, pp. 7893-7898
    
    [57] . L. Y. Yang, C. Wang, Y. J. Dong, N. Da, X. Hu, D. P. Chen, J. R. Qiu,Three-photon-excited upconversion luminescence of YVO4 single crystal by infraredfemtosecond laser irradiation [J], Optics Express, 2005, Vol. 13, No. 25, pp.10157-10162
    
    [58] . L. Y. Yang, Y. J. Dong, D. P. Chen, C. Wang, X. Hu, N. Da, G J. Zhao, J. Xu, X. W.Jiang, C. S. Zhu, J. R. Qiu, Three-photon-excited upconversion luminescence of Ce~(3+):YAP crystal by femtosecond laser irradiation [J], Optics Express, 2006, Vol. 14, No. 1,pp. 243-247
    
    [59] . G I. Petrov, V. Shcheslavskiy, V. V. Yakovlev, I. Ozerov, E. Chelnokov, W. Marine,Efficient third-harmonic generation in a thin nanocrystalline film of ZnO [J], AppliedPhysics Letters, 2003, Vol. 83, No. 19, pp. 3393-3395
    
    [60] . D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, C. M. Che, Efficientmultiphoton-absorption-induced luminescence in single-crystalline ZnO at roomtemperature [J], Optics Letters, 2005, Vol. 30, No. 24, pp. 3377-3379
    
    [61] . R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, H. C. Gerritsen, Resonanceenhancement of optical second harmonic generation in a ZnO nanowire [J], AppliedPhysics Letters, 2006, Vol. 88, No. 18, pp. 181501/1-3
    
    [62] . E. V. Chelnokov, N. Bityurin, I. Ozerov, W. Marine, Two-photon pumped random laserin nanocrystalline ZnO [J], Applied Physics Letters, 2006, Vol. 89, No. 17, pp.171119/1-3
    
    [63] . C. F. Zhang, Z. W. Dong, G J. You, S. X. Qian, H. Deng, Multiphoton route to ZnOnanowire lasers [J], Optics Letters, 2006, Vol. 31, No. 22, pp. 3345-3347
    
    [64] . H. Yang, S. J. Xu, Q. Li, J. Zhang, Resonantly enhanced femtosecond second-harmoncigeneration and nonlinear luminescence in GaN film grown on sapphire [J], AppliedPhysics Letters, 2006, Vol. 88, No. 16, pp. 161113/1-3
    
    [65] . J. He, W. Ji, J. Mi, Y. Zheng, J. Y. Ying, Three-photon absorption in water-soluble ZnSnanocrystals [J], Applied Physics Letters, 2006, Vol. 88, No. 18, pp. 181114/1-3
    
    [66] . M. Torizawa, Y. Kawata, Two-photon-induced quenching of photoluminescence inwide-gap semiconductor crystals [J], Applied Physics Letters, 2006, Vol. 88, No. 22, pp.221105/1-3
    
    [67] . A. M. Streltsov, N. F. Borrelli, Study of femtosecond-laser-written waveguides inglasses [J], Journal of the Optical Society of America B, 2002, Vol. 19, No. 10, pp.2496-2504
    
    [68] . A. M. Streltsov, N. F. Borrelli, Fabrication and analysis of a directional coupler writtenin glass by nanojoule femtosecond laser pulses [J], Optics Letters, 2001, Vol. 26, No. 1,pp. 42-43
    
    [69] . M. Wills, S. Nolte, B. N. Chichkov, A. Tunnermann, Optical properties of waveguidesfabricated in fused silica by femtosecond laser pulses [J], Applied Optics, 2002, Vol. 41,No. 21, pp. 4360-4364
    
    [70] . T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Wills, S. Nolte, A. Tunnermann,Discrete diffraction in two-dimensional arrays of coupled waveguides in silica [J],Optics Letters, 2004, Vol. 29, No. 5, pp. 468-470
    
    [71] . K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with afemtosecond laser [J], Optics Letters, 1996, Vol. 21, No. 21, pp. 1729-1731
    
    [72] . K. Miura, J. Q. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, Photowritten optical waveguidesin various glasses with ultrashort pulse laser [J], Applied Physics Letters, 1997, Vol. 71,No. 23, pp. 3329-3331
    
    [73] . S. Hiramstsu, T. Mikawa, O. Ibaragi, K. Miura, and K. Hirao, Laser-WrittenOptical-Path Redirected Waveguide Device for Optical Back-Plane Interconnects [J],IEEE Photonics Technology Letters, 2004, Vol. 16, No. 9, pp. 2075-2077
    
    [74] . S. Taccheo, G D. Valle, R. Osellame, G Cerullo, N. Chiodo, P. Laporta, O. Svelto, A.Killi, U. Morgner, M. Lederer, D. Kopf, Er:Yb-doped waveguide laser fabricated byfemtosecond laser pulses [J], Optics Letters, 2004, Vol. 29, No. 22, pp.2626-2628
    
    [75] . N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, GCerullo, A. Jha, S. Shen, Er:Yb-doped oxyfluoride silicate glass waveguide amplifierfabricated using femtosecond laser inscription [J], Applied Physics Letters, 2007, Vol.90, No. 13, pp. 131102/1-3
    
    [76] . Y. Fujimoto, M. Nakatsuka, Optical amplification in bismuth-doped silica glass [J],Applied Physics Letters, 2003, Vol. 82, No. 19, pp. 3325-3326
    
    [77] . M. Y. Peng, J. R. Qiu, D. P. Chen, X. G Meng, L. Y. Yang, X. W. Jiang, C. S. Zhu,Bismuth- and aluminum- codoped germanium oxide glasses for super-broadband opticalamplification [J], Optics Letters, 2004, Vol. 29, No. 17, pp. 1998-2000
    
    [78] . N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, GCerullo, G Brown, A. Jha, S. Shen, Femtosecond laser inscription of optical waveguidesin Bismuth ion doped glass [J], Optics Express, 2006, Vol. 14, No. 22, pp. 10452-10459
    
    [79] . A. G Okhrimachuk, A. V. Shestakov, I. Khrushchev, J. Mitchell, Depressed cladding,buried waveguide laser formed in a YAG: Nd~(3+) crystal by femtosecond laser writing [J],Optics Letters, 2005, Vol. 30, No. 17, pp. 2248-2250
    
    [80] . V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M.Pollnau, R. Osellame, G. Cerullo, P. Laporta, Femtosecond -irradiation-induced refractive-index changes and channel waveguiding in bulk Ti~(3+): Sapphire [J], Applied Physics Letters, 2004, Vol. 85, No. 7, pp. 1122-1124
    [81] . J. Burghoff, C. Grebing, S. Nolte, A. Tunnermann, Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate [J], Applied Physics Letters, 2006, Vol. 89, No. 8, pp. 081108/1-3
    [82] . E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics [J], Physical Review Letters, 1987, Vol. 58, No. 20, pp. 2059-2062
    [83] . S. John, Strong Localization of Photons in Certain Disordered Dielectric Superlattices [J], Physical Review Letters, 1987, Vol. 58, No. 23, pp. 2486-2489
    [84] . H. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, J. Nishii, Arbitrary-lattice photonic crystals created by multiphoton microfabrication [J], Optics Letters, 2001, Vol. 26, No. 6, pp. 325-327
    [85] . G.Zhou, M. Gu, Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO_3 crystal [J], Optics Letters, 2006, Vol. 31, No. 18, pp. 2783-2785
    [86] . G. Zhou, M. J. Ventura, M. R. Vanner, M. Gu, Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer materials [J], Optics Letters, 2004, Vol. 29, No. 19, pp. 2240-2242
    [87] . J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G.Domann, J. Schulz, C. Cronauer, L. Frohlich, M. Popall, Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics [J], Optics Letters, 2003, Vol. 28, No. 5, pp. 301-303
    [88] . M. Deubel, G.von Freymann, M. Wegener, S. Pereira, K. Busch, C. M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications [J], Nature Materials, 2004, Vol. 3, No. 7, pp. 444-447
    [89] . M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linder, G.von Freymann, Polarization Stop Bands in Chiral Polymeric Three-dimensional Photonic Crystals [J], Advanced Materials, Vol. 2006, No. 2, pp. 207-210
    [90] . S. Wong, M. Deubel, F. Perez-Willard, S. John, G.A. Ozin, M. Wegener, G.von Freymann, Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses [J], Advanced Materials, 2006, Vol. 18, No. 3, pp. 265-269
    [91 ]. S. Passinger, M. S. M. Saifullah, C. Reinhardt, K. R. V. Subramanian, B. N. Chichkov, M. E. Welland, Direct 3D Patterning of TiO_2 Using Femtosecond Laser Pulses [J], Advanced Materials, 2007, Vol. 19, No. 9, pp. 1218-1221
    [92 ]. L. Wu, Y. Zhong, C. T. Chan, K. S. Wong, G.P. Wang, Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography [J], Applied Physics Letters, 2005, Vol. 86. No. 24, pp. 241102/1-3
    [93] . J. Klein-Wiele, P. Simon, Fabrication of periodic nanostructures by phase-controlled multiple-beam interference [J], Applied Physics Letters, 2003, Vol. 83, No. 23, pp. 4707-4709
    [94] . T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, H. Misawa, Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses [J], Applied Physics Letter, 2003, Vol. 82, No. 17, pp. 2758-2760
    [95] . J. Si, J. Qiu, J. Zhai, Y. Shen, K. Hirao, Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser [J], Applied Physics Letters, 2002, Vol. 80, No. 3, pp. 359-361
    [96] . G.Qian, J. Guo, M. Wang, J. Si, J. Qiu, K. Hirao, Holographic volume gratings in bulk peylene-orange-doped hybrid inorganic-organic materials by the coherent field of a femtosecond laser [J], Applied Physics Letters, 2003, Vol. 83, No. 12, pp. 2327-2329
    [97] . K. Kawamura, N. Sarukura, M. Hirano, H. Hosono, Holographic encoding of fine-pitched micrograting structures in amorphous SiO_2 thin films on silicon by a single femtosecond laser pulse [J], Applied Physics Letters, 2001, Vol. 78, No. 8, pp. 1038-1040
    [98] . K. Kawamura, N. Sarukura, M. Hirano, N. Ito, H. Hosono, Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses [J], Applied Physics Letters, 2001, Vol. 79, No. 9, pp. 1228-1230
    [99] . Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, Y. Jiang, Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses [J], Applied Physics Letters, 2002, Vol. 80, No. 9, pp. 2002
    [100] . K. Kawamura, M. Hirano, Femtosecond-laser-encoded distributed feedback color center laser in lithium fluoride single crystal [J], Applied Physics Letters, 2004, Vol. 84, No. 3, pp. 311-313
    [101] .A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G.Kryukov, E. M. Dianov, Inscription of fiber Bragg grating by ultraviolet femtosecond radiation [J], Optics Letters, 2003, Vol. 28, No. 22, pp. 2171-2173
    [102] . Y. Shimotsuma, P. G.Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses [J], Physical Review Letters, 2003, Vol. 91, No. 24, pp. 247405/1-4
    [103 ] . J. R. Qiu, P. G.Kazansky, J. Si, K. Miura, T. Mitsuyu, K. Hirao, A. L. Gaeta, Memorized polarization-dependent light scattering in rare-earth-ion-doped glass [J], Applied Physics Letters, 2000, Vol. 77, No. 13, pp. 1940-1942
    [104] . V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, P. B. Corkum, Optically produced arrays of planar nanostructures inside fused silica [J], Physical Review Letters, 2006, Vol. 96, No. 5, pp. 057404/1-4
    [105] . C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, P. B. Corkum, Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica [J], Applied Physics Letters, 2005, Vol. 87, No. 1, pp. 014104/1-3
    [106] .R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, P. B. Corkum, Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass [J], Optics Letters, 2007, Vol. 32, No. 19, pp. 2888-2890
    [107] . R. W. Schoenlein, W. Z. Lin, J. G.Fujimoto, Femtosecond studies of nonequilibrium processes in metals [J], Physical Review Letters, 1987, Vol. 58, No. 16, pp. 1680-1683
    [108] . H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, G.A. Mourou, Time-resolved observation of electron-phonon relaxation in copper [J], Physical Review Letters, 1987, Vol. 58, No. 12, pp. 1212-1215
    [109] . P. B. Corkum, F. Brund, N. K. Sherman, Thermal response of metals to ultrashort-pulse laser excitation [J], Physical Review Letters, 1988, Vol. 61, No. 25, pp. 2886-2889
    [110] . S. Nolte, G.Kamlage, F. Korte, T. Bauer, T. Wagner, A. Ostendorf, C. Fallnich, and H. Welling, Microstructuring with Femtosecond Lasers [J], Advanced Engineerging Materials, 2000, Vol. 2, No. 1-2, pp. 23-27
    [111] . F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. -P. Ruske, B. N. Chichkov, A. Tunnermann, Sub-diffraction limited structuring of solid targets with femtosecond laser pulses [J], Optics Express, 2000, Vol. 7, No. 2, pp. 41-49
    [112] . R. Haight, D. Hayden, P. Longo, T. Neary, A. Wagner, Femtosecond laser mask advanced repair system in manufacturing [J], Journal of Vacuum Science & Technology, 1999, Vol. 17, No. 6, pp. 3137-3143
    
    [ 113 ] . X. Liu, M. Takeda, H. Ogawa, US Patent, 2002, Patent No. 6433303 B1
    [114] .S. Nolte G.Kamlage, F. Korte, T. Bauer, T. Wagner, A. Ostendorf, C. Fallnich, H. Welling, Microstructuring with Femtosecond Laser [J], Advanced Engineering Materials, 2000, Vol. 2, No. 1-2, pp. 23-227
    
    [115] . C. Li, S. Nikumb, F. Wong, An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices [J], Optics and Lasers in Engineering, 2006, Vol. 44, No. 10, pp. 1078-1087
    
    [116] . T. Her, R. J. Finlay, C. Wu, S. Deliwala, E. Mazur, Microstructuring of silicon with femtosecond laser pulses [J], Applied Physics Letters, 1998, Vol. 73, No. 12, pp. 1673-1675
    
    [117]. M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, C. M. Friend, Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask [J], Applied Physics Letters, 2003, Vol. 82, No. 11, pp. 1715-1717
    [118] . J. E. Carey, C. H. Crouch, M. Shen, E. Mazur, Visible and near-infrared responsivity of' femtosecond-laser microstructured silicon photodiodes [J], Optics Letters, 2005, Vol. 30, No. 14, pp. 1773-1775
    [119] . T. Baldacchini, J. E. Carey, M. Zhou, E. Mazur, Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtosecond Laser [J], Langmuir, 2006, Vol. 22, No. 11, pp. 4917-4919
    [120] .J. C. Wang, C. L. Guo, Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals [J], Applied Physics Letters, 2005, Vol. 87, No. 25, pp. 251914/1-3
    [121] .A. Y. Vorobyev, Chunlei Guo, Femtosecond laser nanostructuring of metals [J], Optics Express, 2006, Vol. 14, No. 6, pp. 2164-2169
    [122] . T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li, Z. Z. Xu, ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air [J], Applied Physics Lettrs, 2006, Vol. 89, No. 10, pp. 101115/1-3
    [123] . D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, I. Zergioti, Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer [J], Applied Physics Letters, 2006, Vol. 89, No. 19, pp. 193107-1/3
    [124] . Q. Z. Zhao, J. R. Qiu, X. W. Jiang, E. W. Dai, C. H. Zhou, C. S. Zhu, Direct writing computer-generated holograms on metal film by an infrared femtosecond laser [J], Optics Express, 2005, Vol. 13, No. 6, pp. 2089-2092
    
    
    
    [1]. 西北轻工业学院,玻璃工艺学[M],北京:中国轻工业出版社,2006
    
    [2]. 陆维敏,陈芳,谱学基础与结构分析[M],北京:高等教育出版社,2005
    
    [3] . C. V. Raman, K. S. Krishnan, A New Type of Secondary Radiation [J], 1928, Vol. 121, No. 3048, 501-502
    
    [4]. 程光煦,拉曼布里渊散射-原理及应用[M],北京:科学出版社,2001
    
    [5] . Olympus Corporation, Theory of Confocal Microscopy, Laser Scanning Confocal Microscopy, http://www.olvmpusfluoview.com/theory
    
    [1] . L. E. Brus, Quantum crystallites and nonlinear optics [J], Applied Physics A, 1991, Vol.53, No. 6, pp. 465-474
    
    [2] . A. D. Yoffe, Low-dimensional systems: quantum size effects and electronic properties ofsemiconductor microcrystallites (zero-dimensional systems) and somequasi-two-dimensional systems [J], Advances In Physics, 1993, Vol. 42, No. 2, pp.173-262
    
    [3] . R. Philip, G Kumar, N. Sandhyarani, T. Pradeep, Picosecond optical nonlinearity inmonolayer-protected gold, silver, and gold-silver alloy nanoclusters [J], Physical ReviewB, 2000, Vol. 62, No. 19, pp. 13160-13166
    
    [4] . H. Liao, R. Xiao, H. Wang, K. S. Wong, G K. L. Wong, Large third-order opticalnonlinearity in Au: TiO composite films measured on a femtosecond time scale [J],Applied Physics Letters, 1998, Vol. 72, No. 15, pp. 1817-1819
    
    [5] . Y. Xu, J. S. Cheng, W. H. Zheng, and D. Q. Gao, Study on the preparation andproperties of silver-doped borosilicate antibacterial glass [J], Journal of Non-CrystallineSolids, 2008, Vol. 354, No. 12-13, pp. 1342-1346
    
    [6] . M. Mennig, M. Schmitt, and H. Schmidt, Synthesis of Ag-Colloids in Sol-Gel DerivedSKVCoatings on Glass [J], Journal of Sol-Gel Science and Technology, 1997, Vol. 8,No. 1-3, pp. 1035-1042
    
    [7] . I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, Optical nonlinearites ofAu/SiO_2 composite thin films prepared by a sputtering method [J], Journal of AppliedPhysics, 1996, Vol. 79, No. 3, pp. 1244-1249
    
    [8] . P. D. Townsend and D. E. Hole, Optical responses of ion implanted nanoparticles insilica and glass [J], Vacuum, 2001, Vol. 63, No. 4, pp. 641-647
    
    [9] . S. E. Paje, M. A. Garcia, J. Llopis, and M. A. Villegas, Optical spectroscopy of silverion-exchanged As-doped glass [J], Journal of Non-Crystalline Solids, 2003, Vol. 318,No. 3, pp. 239-247
    
    [10] . S. L. Qu, Y. C. Gao, X. W. Jiang, H. D. Zeng, Y. L. Song, J. R. Qiu, C. S. Zhu, and K.Hirao, Nonlinear absorption and optical limiting in gold-precipitated glasses induced bya femtosecond laser [J], Optical Communication, 2003, Vol. 224, No. 4-6, pp. 321-327
    
    [11] . J. R. Qiu, X. W. Jiang, C. S. Zhu, M. Shirai, J. H. Si, N. Jiang, and K. Hirao,Manipulation of Gold Nanoparticles inside Transparent Materials [J], AngewandteChemic International Edition, 2004, Vol. 43, No. 17, pp. 2230-2234
    
    [12] . Y. Kondo. J. Qiu, T. Mitsuyu, K. Hirao, T. Yoko, Three-dimensional microdrilling bymultiphoton process and chemical etching [J], Japanese Journal of Applied Physics,1999, Vol. 38, No. 10A, pp. LI 146-L1148
    [13] . Y. Cheng, K. Sugioka, M. Masuda, K. Shihoyama, K. Toyoda, and K. Midorikawa, Optical gratings embedded in photosensitive glass by photochemical reaction using a femtosecond laser [J], Optics Express, 2003, Vol. 11, No. 15, pp. 1809-1816
    [14] . Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser [J], Optics Letters, 2003, Vol. 28, No. 1, pp. 55-57
    [15] . Y. Cheng, K. Sugioka, and K. Midorikawa, Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing [J], Optics Letters, 2004, Vol. 29, No. 17, pp. 2007-2009
    [16] . Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser [J], 2003, Vol. 28, No. 13, pp. 1144-1146
    [17] . T. A. Taton, C. A. Mirkin, R. L. Letsinger, Scanometric DNA Array Detection with Nanoparticle Probes [J], Science, 2000, Vol. 289, No. 5485, pp. 1757-1760
    [18] . Y. Watanabe, G.Namikawa, T. Onuki, K. Nishio, and T. Tsuchiya, Photosensitivity in phosphate glass doped with Ag~+ upon exposure to near-ultraviolet femtosecond laser pulses [J], Applied Physics Letters, 2001, Vol. 78, No. 15, pp. 2125-2127
    [19] . J. R. Qiu, X. W. Jiang, C. S. Zhu, H. Inouye, J. H. Si, K. Hirao, Optical properties of structurally modified glasses doped with gold ions [J], Optics Letters, 2004, Vol. 29, No. 4, pp. 370-372
    [20] . D. Moncke, D. Ehrt, Irradiation induced defects in glasses resulting in the photoionization of polvvalent dopants [J], Optical Materials, 2003, Vol. 25, No. 4, pp. 425-427
    [21] . N. Sarukura, Z. Liu, Y. Segawa, K. Edamatsu, Y. Suzuki, T. Itoh, V. Semashko, A. Naumov, S. Korableva, R. Abdulsabirov, M. Dubinskii, Ce~(3+) :LuLiF_4 as a broadband ultraviolet amplification medium [J], Optics Letters, Vol. 20, No. 3, pp. 294-296
    [22] . J. Qiu, Y. Shimizugawa, Y. Iwabuchi, K. Hirao, Photostimulated luminescence of Ce~(3+) -doped alkali borate glasses [J], Applied Physics Letters, 1997, Vol. 71, No. 1, pp. 43-45
    [23] . S. Stookey, G.Beall, J.Pierson, Full-color photosensitive glass [J], Journal of Applied Physics, 1978, Vol. 49, No. 10, pp. 5114-5123
    [24] . J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, K. Hirao, Space-selective precipitation of metal nanoparticles inside glasses [J], Applied Physics Letters, 2002, Vol. 81, No. 16, pp. 3400-3402
    [25] . J. W. H. Schreurs, Study of Some Trapped Hole Centers in X-Irradiated Alkali Silicate Glasses [J], Journal of Chemical Physics, 1967, Vol. 47, No. 2, pp. 818-830
    [26] . J. Stroud, Photoionization of Ce~(3+) in Glass [J], Journal of Chemical Physics, 1961, Vol.
    
    ??35, No. 3, pp. 844-850
    
    [27] . J. Stroud, Photoionization of Ce~(3+) in Glass [J], Journal of Chemical Physics, 1961, Vol.35, No. 3, pp. 844-850
    
    [28] . A. Paul, M. Mulholland, M. Zaman, Ultraviolet absorption of cerium (III) and cerium(IV) in some simple glasses [J], Journal of Materials Science, 1976, Vol. 11, No. 11 pp.2082-2086
    
    [29] . C. Pedrini, F. Rogemond, D. S. McClure, Photoionization thresholds of rare-earthimpurity ions. Eu~(2+):CaF_2, Ce~(3+):YAG, and Sm~(2+):CaF_2 [J], Journal of Applied Physics,1986, Vol. 59, No. 4, pp. 1196-1201
    
    [30] . J. W. H. Schreurs, Study of Some Trapped Hole Centers in X-Irradiated Alkali SilicateGlasses [J], Journal of Chemical Physics, 1967, Vol. 47, No. 2, pp. 818-830
    
    [31] . H. Hosono, Y. Abe, H. Kawazoe, H. Imagawa, Solarization mechanism of glasscontaining Ce~(3+) and As~(5+), Journal of Non-Crystalline Solids, Vol. 63, No. 3, pp. 357-363
    
    [32] . K. Kurihara, J. Kizling, P. Stenius, J. Fendler, Laser and Pulse Radiolytically InducedColloidal Gold Formation in Water and in Water-in-Oil Microemulsions [J], Journal ofthe American Chemical Society, 1983, Vol. 105, No. 9. pp. 2574-2579
    
    [33] . S. Chen, T. Akai, K. Kadono, T. Yazawa, Reversible control of silver nanoparticlegeneration and dissolution in soda-lime silicate glass through x-ray irradiation and heattreatment [J], Applied Physics Letters, 2001, Vol. 79, No. 22, pp. 3687-3689
    
    [34] . T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, k.Midorikawa, Investigation of photoreaction mechanism of photosensitive glass byfemtosecond laser [J], Journal of Applied Physics, 2005, Vol. 97, No. 6, pp. 063517/1-4
    
    [35]. M. Masuda, K. Sugioka, Y. Cheng, T. Hongo, K. Shihoyama, H. Takai, L. Miyamoto, K.Midorikawa, 3-D microstructuring inside photosensitive glass by femtosecond laserexcitation [J], Applied Physics A, 2003, Vol. 76, No. 5, pp. 857-860
    
    [36] . M. Masuda, K. Sugioka, T. Cheng, T. Hongo, K. Shihoyama, H. Takai, L. Miyamoto, K.Midorikawa, Direct fabrication of freely movable microplate inside photosensitive glassby femtosecond laser for lab-on-chip application [J], Applied Physics A, 2004, Vol. 78,No. 7, pp. 1029-1032
    
    [37] . B. Fisette, F. Busque, J. Y. Degorce, M. Meunier, Three-dimensional crystallizationinside photosensitive glasses by focused femtosecond laser [J], 2006, Vol. 88, No. 9, pp.091104/1-3
    
    [38] . J. Zheng, R. M. Dickson, Individual Water-Soluble Dendrimer-Encapsulated SilverNanodot Fluorescence [J], Journal of the American Chemical Society, 2002, Vol. 124,No. 47, pp. 13982-13983
    
    [39] . J. Zheng, J. T. Petty, R. M. Dickson, High Quantum Yield Blue Emission fromWater-Soluble Au_8 Nanodots [J], Journal of the American Chemical Society, 2003, Vol. 125, No. 26, pp. 7780-7781
    [40] . J. Zheng, C. W. Zhang, R. M. Dickson, Highly Fluorescent, Water-Soluble, Size-Tunable Gold Quantum Dots [J], Physical Review Letters, 2004, Vol. 93, No. 7, pp. 077402/1-4
    [41 ]. J. T. Petty, J. Zheng, N. V. Hud, and R. M. Dickson, DNA-Templated Ag Nanocluster Formation [J], Journal of the American Chemical Society, 2004, Vol. 126, No. 16, pp. 5207-5212
    [42] . C. Felix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, G.Ertl, Fluorescence and excitation spectra of Ag_4 in an argon matrix [J], Chemical Physics Letters, 1999, Vol. 313, No. 1-2, pp. 105-109
    [43] . I. Rabin, W. Schulze, G.Ertl, C. Felix, C. Sieber, W. Harbich, J. Buttet, Absorption and fluorescence spectra of Ar-matrix-isolated Ag_3 clusters [J], Chemical Physics Letters, 2000, Vol. 320, No. 1-2, pp. 59-64
    [44] . C. Felix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, G.Ertl, Ag_8 Fluorescence in Argon [J], Physical Review Letters, 2001, Vol. 86, No. 14, pp. 2992-2995
    [45] . L. A. Peyser, A. E. Vinson, A. P. Bartko, R. M. Dickson, Photoactivated Fluorescence from Individual Silver Nanoclusters [J], Science, 2001, Vol. 291, No. 5501, pp. 103-106
    [46] . L. A. Peyser, T. H. Lee, and R. M. Dickson, Mechanism of Ag_n Nanocluster Photoproduction from Silver Oxide Films [J], Journal of Physical Chemistry B, Vol. 106, No. 32, pp. 7725-7728
    [47] . J. G.Zhang, S. Q. Xu, and E. Kumacheva, Photogeneration of Fluorescent Silver Nanoclusters in Polymer Microgels [J], Advanced Materials, 2005, Vol. 17, No. 19, pp. 2336-2340
    [48] . T. Gleitsmann, B. Stegemann, and T. M. Bernhardt, Femtosecond-laser-activated fluorescence from silver oxide nanoparticles [J], Applied Physics Letters, 2004, Vol. 84, No. 20, pp.4050-4052
    [49] . E. Borsella, F. Gonella, P. Mazzoldi, A. Quaranta, G. Battaglin, R. Polloni, Spectroscopic investigation of silver in soda-lime glass [J], Chemical Physics Letters, 1998, Vol. 284, No. 5-6, pp. 429-434
    [50] . S. E. Paje, J. Llopis, M. A. Villegas, M. A. Garcra, J. M. Fernandez Navarro, Thermal effects on optical properties of silver ruby glass [J], Applied Physics A, 1998, Vol. 67, No. 4, pp. 429-433
    [51 ]. D. Kolb, F. Forstman, Matrix Isolation Spectroscopy [M], New York: Springer-Verlag Press, 1981
    [52] . P. Bechthold, U. Kettler, W. Krasser, Trapping-site effects in resonance Raman spectra of Ag_2 molecules isolated in rare-gas matrices [J], Surface Science, 1985, Vol. 156, No. 2, pp. 875-882
    [53 ]. V. Podlipensky, V. Grebenev, G.Seifert, H. Graener, Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study [J], Journal of Luminescence, 2004, Vol. 109, No. 3-4, pp. 135-142
    [1] . N. Bloembergen, Nonlinear optics [M], New York: Benjamin Press, 1965
    
    [2] . E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Calan, and E. Mazur, Three-dimensional optical storage inside transparent materials [J], Optics Letters, 1996, Vol. 21, No. 24, pp. 2023-2025
    [3] . W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, K. Itoh, Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses [J], Optics Letters, 2000, Vol. 25, No. 22, pp. 1669-1671
    [4] . A. M. Streltsov, N. F. Borrelli, Study of femtosecond-laser-written waveguides in glasses [J], Journal of Optical Society of America B, 2002, Vol. 19, No. 10, pp. 2496-2504
    [5] . V. Mizeikis, K. Seet, S. Juodkazis, H. Misawa, Three-dimensional woodpile photonic crystal templates for the infrared spectral range [J], Optics Letters, 2004, Vol. 29, No. 17, pp. 2061-2063
    [6] . S. Kanehira, J. H. Si, J. R. Qiu, K. Fujita, K. Hirao, Periodic nanovoid structures via femtosecond laser irradiation [J], Nano Letters, 2005, Vol. 5, No. 8, pp. 1591-1595
    [7l . S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, Optically produced cross patterning based on local dislocations inside MgO single crystals [J], Applied Physics Letters, 2007, Vol. 90, No. 16, pp. 163110-1/3
    [8] . E. Toratani, M. Kamata, and M. Obara, Self-fabrication of void array in fused silica by femtosecond laser processing [J], Applied Physics Letters, 2005, Vol. 87, No. 17, pp. 171103-1/3
    [9] . R. Y. Chiao, E. Garmire, and C. H. Townes, Self-Trapping of Optical Beams [J], Physical Review Letters, 1964, Vol. 13, No. 15, pp. 479-482
    [10] . M. M. T. Loy, Y. R. Shen, Small-Scale Filaments in Liquids and Tracks of Moving Foci [J], Physical Review Letters, 1969, Vol. 22, No. 19, pp. 994-997
    [11]. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, L. Berge, Self-Guided Propagation of Ultrashort IR Laser Pulses In Fused Silica [J], Physical Review Letters, 2001, Vol. 87, No. 21, pp. 213904-1/4
    [12] . C.B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy [J], Optics Letters, 2001, Vol. 26, No. 2, pp. 93-95
    [13] . L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, Femtosecond laser-induced damage and filamentary propagation in fused silica [J], Physical Review Letters, 2002, Vol. 89, No. 18, pp. 186601-1/3
    [14] . A. Brodeur, F. A. Iikov, and S. L. Chin, Beam filamentation and the white light continuum divergence [J], Optics Communication, 1996, Vol. 129, No. 3-4, pp. 193-198
    [15] . O. G.Kosareva, V. P. Kandidov, A. Brodeur, S. L. Chin, From filamentation in condensed media to filamentation in gases [J], Journal of Nonlinear Optical Physics & Materials, 1997, Vol. 6, No. 4, pp. 485-494
    [16] . Z. Wu, H. Jiang, Q. Sun, H. Yang, Q. Gong, Filamentation and temporal reshaping of a femtosecond pulse in fused silica [J], Physical Review A, 2003, Vol. 68, No. 6, pp. 063820-1/8
    [17] . W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, V. P. Kandidov, Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol) [J], Optics Communication, 2003, Vol. 225, No. 1-3, pp. 193-209
    
    [18] . Y. R. Shen, The Principles of Nonlinear Optics [M], New York: Wiley Press, 1984
    [19] . W. G.Wagner, H. A. Haus, and J. H. Marburger, Large-Scale Self-Trapping of Optical Beams in the Paraxial Ray Approximation [J], Physical Review, 1968, Vol. 175, No. 1, pp. 256-265
    [20] . A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, Effect of refractive index-mismatch on laser microfabrication in silica glass [J], Applied Physics A, 2003, Vol. 76, No. 2, pp. 257-260
    [21 ]. Z. X. Wu, H. B. Jiang, Q. Sun, H. Yang, and Q. H. Gong, Filamentation and temporal reshaping of a femtosecond pulse in fused silica [J], Physical Review A, 2003, Vol. 68, No. 6, pp. 063820/1-8
    [22] . P. Torok, P. Varga, Z. Laczik, G.R. Booker, Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation [J], Journal of the Optical Society of America A, 1995, Vol. 12, No. 2, pp. 325-332
    [1] . K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask [J], Applied Physics Letters, 2001, Vol. 62, No. 10, pp. 1035-1037
    [2] . T. Fujiwara, M. Takahashi, A. J. Ikushima, Second-harmonic generation in germansilicate glass poled with ArF laser irradiation [J], Applied Physics Letters, 1997, Vol. 21, No. 8, pp. 1032-1034
    [3] . S. Matsumoto, T. Fujiwara, M. Ohama, and A. Ikushima, Crystallization of GeO_2-SiO_2 glass by poling with ArF-laser excitation [J], Optics Letters, Vol. 24, No. 20, pp.1404-1406
    [4] . A. Majchrowski, J. Kisielewski, E. Michalski, K. Ozga, I. V. Kityk, T. Lukasiewicz, UV-induced two-photon absorption in BiB_3O_6 single crystals [J], Optics Communication, 2005, Vol. 25, No. 4-6, pp. 334-343
    [5] . I. V Kityk, W. Imiolek, A. Majchrowski, E. Michalski, Photoinduced second harmonic generation in partially crystallized BiB_3O_6 glass [J], 2003, Vol. 219, No. 1-6, pp. 421-426
    [6] . T. Honma, Y. Benino, T. Fujiwara, T. Komatsu, R. Sato, Technique for writing of nonlinear optical single-crystal lines in glass [J], Applied Physics Letters, 2003, Vol. 83, No. 14, pp. 2796-2798
    [7] . T. Honma, Y. Benino, T. Fujiwara, T. Komatsu, R. Sato, Nonliner optical crystal-line writing in glass by yttrium aluminum garnet laser irradiation [J], Applied Physics Letters, 2003, Vol. 82, No. 892-894
    [8 ] . T. Honma, Y. Benino, T. Fujiwara, R. Sato, T. Komatsu, Spatially selected crystallization in glass by YAG laser irradiation [J], Journal of Non-Crystalline Solids, 2004, Vol. 345-346, No. 10, pp. 127-131
    [9] . R. Ihara, T. Honma, Y. Benino, T. Fujiwara, R. Sato, T. Komatsu, Writing of two-dimensional crystal curved lines at the surface of Sm_2O_3-Bi_2O_3-B_2O_3 glass by samarium atom heat processing [J], Solid State Communications, 2005, Vol. 136, No. 5, pp. 273-277
    [10] . T. Honma, Y. Benino, T. Fujiwara, and T. Komatsu, Transition metal atom heat processing for writing of crystal lines in glass [J], Applied Physics Letters, 2006, Vol. 66, No. 23, pp. 231105-1/3
    [11]. A. F. Maciente, V. R. Mastelaro, A. L. Martinez, A. C. Hernandes, C. A. C. Carneiro, Surface crystallization of β-BaB_2O_4 phase using a CO_2 laser source [J], Journal of Non-Crystalline Solids, 2002, Vol. 306, No. 3, pp. 309-312
    [12] . W. Avansi, V. R. Mastelaro, M. R. B. Andreeta, Laser induced modification on 40BaO-45B_2O_3-15TiO_2 glass composition [J], Journal of Non-Crystalline Solids, 2006, Vol. 352, No. 32-35, pp. 3398-3403
    [13] . V. P. Veiko, N. V. Nikonorov, and P. A. Skiba, Phase-structural modification of glass-ceramic induced by laser radiation [J], Journal of Optical Technology, 2006, Vol. 73, No. 6, pp. 419-424
    [14] . K. Miura, J. Qiu, T. Mitsuyu, K. Hirao, Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses [J], Optics Letters, Vol. 25, No. 6, pp. 408-410
    [15]. Y. Yonesaki, K. Miura, R. Araki, K. Fujita, K. Hirao, Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser [J], Journal of Non-Crystalline Solids, 2005, Vol. 351, No. 10-11, pp. 885-892
    [16] . B. K. Yu, B. Chen, X. Y. Yang, J. R. Qiu, X. W. Jiang, C. S. Zhu, and K. Hirao, Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses [J], Journal of Optical Society of America B, 2004, Vol. 21, No. 1, pp. 83-87
    [17] . P.B. Moore and J. Louisnathan, Fresnoite: Unusal Titanium Coordination [J], Science, 1967, Vol. 156, No. 3780, pp. 1361-1362
    [18]. S. A. Markgraf, A. Halliyai, A. S. Bhalla, R. E. Newnham, C. T. Prewitt, X-ray structure refinement and pyroelectric investigation of fresnoite, Ba_2TiSi_2O_8 [J], Ferroelectrics, 1985, Vol. 62, No. 4, pp. 17-26
    [19] . M. Kimura, Elastic and piezoelectric properties of Ba_2Si_2TiO_8 [J], Journal of Applied Physics, 1977, Vol. 48, No. 7, pp. 2850-2856
    [20] . M. Kimura, Y. Fujino, and T. Kawamura, New piezoelectric crystal: Synthetic fresnoite (Ba_2Si_2TiO_8) [J], Applied Physics Letters, 1976, Vol. 29, No. 4, pp. 227-228
    [21] . Y. Takahashi, K. Kitamura, Y. Benino, T. Fujiwara, and T. Komatsu, Second-order optical nonlinear and luminescent properties of Ba_2TiSi_2O_8 nanocrystallized glass [J], Applied Physics Letters, 2005, Vol. 86, No. 9, pp. 091110-1/3
    [22] . Y. Dai, B. K. Yu, B. Lu, J. R. Qiu, X. N. Yan, X. W. Jiang, C. S. Zhu, Thermal Stress-Induced Birefringence in Borate Glass Irradiated by Femtosecond Laser Pulses [J], Chinese Physics Letters, 2005, Vol. 22, No. 10, pp. 2626-2629
    
    [23] . S. A. Markgraf, S. K. Sharma, A. S. Bhalla, Raman study of fresnoite-type materials: Polarized single crystal, crystalline powders, and glasses [J], Journal of Materials Research, 1993, Vol. 8, No. 3, pp. 635-648
    [24] . Th. G. Mayerhofer, H. H. Dunken, Single-crystal IR spectroscopic investigation on fresnoite, Sr-fresnoite and Ge-fresnoite [J], Vibrational Spectroscopy, 2001, Vol. 25, No. 2, pp. 185-195
    [25] . H. Kogelnik, Coupled wave theory for thick hologram gratings [J], The Bell System Technical Journal, 1969, Vol. 48, No. 9, pp. 2909-2247
    
    
    
    [26] . T. Hoche, W. Neumann, S. Esmaeilzadeh, R. Uecker, M. Lentzen, and C. Russel, TheCrystal Structure of Sr_2TiSi_2O_8 [J], Journal of Solid State Chemistry, 2002, Vol. 166, No.1, pp. 15-23
    
    [27] . M. Schneider, W. Richter, R. Keding, and C. Russel, XPS investigations on coordinationand valency of Ti in fresnoite glasses and glass ceramics [J], Journal of Non-CrystallineSolids, 1998, Vol. 226, No. 3, pp. 273-280
    
    [28] . J. K. Yuan, P. Z. Fu, J. X. Wang, F. Guo, Z. P. Yang, Y. C. Wu, A new nonlinear opticalmaterial Sr_2TiSi_2O_8 [J], Progress in Crystal Growth and Characterization of Materials,2000, Vol. 40, No. 1-4, pp. 103-106
    
    [29] . S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Y. Arai,Heat accumulation effects in femtosecond laser written waveguides with variablerepetition rate [J], Optics Express, 2005, Vol. 13, No. 12, pp. 4708-4716
    
    [30] . M. Thorpe, Continuous deformations in random networks [J], Journal ofNon-Crystalline Solids, 1983, Vol. 57, No. 3, pp. 355-370
    
    [31] . J. C. Phillips, Topology of covalent non-crystalline solids I: Short-range order inchalcogenide alloys [J], Journal of Non-Crystalline Solids, 1979, Vol. 34, No. 2, pp.153-181
    
    [32] . R. Keding, C. Russel, The mechanism of electrochemically induced nucleation in glassmelts with the composition 2BaO · TiO_2 · 2.75SiO_2 [J], Journal of Non-Crystalline Solids,2005, Vol. 351, No. 16-17, pp. 1441-1446
    
    [33] . R. Keding, C. Russel, Oriented strontium fresnoite glass-ceramics prepared byelectro-chemically induced nucleation [J], Journal of Materials Science, 2004, Vol. 39,No. 4, pp. 1433-1435
    
    [34] . M. Kimura, K. Doi, S. Nanamatsu, and T. Kawamura, A new piezoelectric crystal:Ba_2Ge_2TiO_8 [J], Applied Physics Letters, 1973, Vol. 23, No. 10, pp. 531-533
    
    [35] . M. Kimura, K. Utsumi, and S. Nanamatsu, Ferroelastic behavior in Ba_2Ge_2TiO_8 [J],Journal of Applied Physics, 1976, Vol. 47, No. 6, pp. 2249-2251
    
    [36] . Y. Takahashi, Y. Benino, T. Fujiwara, and T. Komatsu, Optical second order nonlinearityof transparent Ba_2TiGe_2O_8 crystallized glass [J], Applied Physics Letters, 2002, Vol. 81,No. 2, pp. 223-225
    
    [37].刘光华,稀土材料学[M],北京:化学工业出版社,2007
    
    [38].张希艳,稀土发光材料[M],北京:国防工业出版社,2005
    
    [39] . H. Lin, X. Y. Wang, L. Lin, D. L. Yang, T. K. Xu, J. Y. Yu and E. Y. B. Pun, Spectral parameters and visible fluorescence of Sm~(3+) in alkali-barium-bismuth-tellurite glass with high refractive index [J], Journal of Luminescence, 2006, Vol. 116, No. 1-2, pp. 139-144
    
    [40] . J. Qiu, K. Miura, N. Sugimoto, K. Hirao, Preparation and fluorescence properties of??fluoroaluminate glasses containing Eu~(2+) ions [J], Journal of Non-Crystalline Solids, 1997, Vol. 213-214, pp. 266-270
    
    [41] . S. Q. Xu, G N. Wang, S. X. Dai, J. J. Zhang, L. L. Hu, and Z. H. Jiang, Infrared to visible upconversion in Er~(3+)-doped lead oxyfluorosilicate glasses [J], Journal of Luminescence, 2004, Vol. 109, No. 3-4, pp. 187-192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700