用户名: 密码: 验证码:
MiR-188-5p靶向AAC11抑制肝细胞癌生长和侵袭转移的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[背景和目的]
     肝细胞癌(hepatocellular carcinoma, HCC)是世界上最常见的恶性肿瘤之一,在亚洲东部和非洲南部的发病率相对较高。HCC恶性程度较高,全球每年HCC死亡病例数高达600,000,高居全球癌症死因的第三位。虽然目前HCC的治疗手段已取得显著进步,但其5年生存率仍长期徘徊于30%-40%。究其原因在于,目前依然对晚期肝癌和肝癌的复发转移缺乏有效的治疗手段。累积的研究发现,HCC的发生和发展是一多步骤的复杂过程,其中涉及到众多的生长因子、癌基因和抑癌基因的异常表达或激活。因而,阐明HCC发生发展过程中的分子机制对HCC的诊断、预防和治疗就显得尤为重要。在过去的几十年间,国内外学者在该领域开展了大量研究,并已发现p53、Rb、PI3K/AKT/mTOR、Ras/MAPK及Egfl7等一系列与肝癌发生和发展密切相关的基因或信号通路。尽管如此,HCC发生发展的具体分子机制仍然大部分未知。
     微小FRNA (microRNA, miRNA)是一类长度为17-25个核苷酸的非编码调控RNA。MiRNAs作为转录后调控因子,可与其靶基因信使RNAs (messenger RNAs, mRNAs)的3’非读码区(3'untranslated region,3'-UTR)特异性结合,诱导靶基因mRNAs(?)勺降解或抑制其翻译,负性调控其靶基因的表达。自1993年Ambros和Ruvkun等发现并报道第一个miRNA以来,大量的(?)miRNAs及其相关文献被鉴定和发表,miRNAs研究已成为当今生命科学研究领域的一大热点。迄今在人类基因组中检测并证实的miRNAs已超过1000个。研究发现,miRNAs参与了生命过程中的一系列重要进程,包括肿瘤的发生和发展。最近的多项研究证实,miRNAs在HCC的发生发展中具有重要作用,可调控HCC细胞的生长、凋亡、侵袭转移和DNA甲基化等众多病理进程。尽管,miRNAs在肝癌发生发展调控中的重要性业已吸引了国内外众多学者的关注,绝大多数1niRNAs在肝癌中的作用及其作用机制依然未知,迫切需要进一步研究。
     此前,我们在长期的临床实践中发现并命名了一特殊类型的肝癌—孤立性大肝癌(Solitary large hepatocellular carcinoma, SLHCC),系指病灶呈单个、直径大于5cm、呈膨胀性生长、常有包膜或假包膜的一类大肝癌。据此,我们将肝癌按照大体类型分为三类:SLHCC、结节性肝癌(结节数≥2个;Nodular HCC, NHCC)和小肝癌(肿瘤直径≤5cm;Small HCC, SHCC)。进一步研究证实,SLHCC具有相对独特的临床病理特征,且其复发转移潜能与SHCC目近,均显著低于NHCC。根治性肝切除术后,SLHCC的总生存时间和无瘤生存时间与SHCC相比无显著性差异,但显著性优于NHCC。为深入了解SLHCC的分子病理特点,我们采用基因芯片技术比较了三种类型肝癌之间的基因表达差异,结果发现,7.89%(668/8464)的基因在SLHCC、SHCC和NHCC之间存在差异表达。以上结果提示上述三种类型肝癌具备各自独特的临床病理和分子病理特点。基于mRNAs可调控人类基因组中30%的基因表达这一事实,我们推测,SLHCC、SHCC和NHCC亦可能具有各自独特的niRNAs表达谱。
     为验证这一假说,我们在本研究中首先利用miRNAs芯片技术比较了SLHCC、SHCC和NHCC的(?)niRNAs表达谱,以筛选三者之间的差异表达(?)niRNAs。我们选取在三者中存在差异表达的miR-188-5p作为研究对象,深入研究了其在肝癌中的表达、生物学功能及其作用的分子机制。我们的研究结果证实,miR-188-5p在肝癌内表达显著性下调,并与肝癌患者的预后显著性相关,且过表达miR-188-5p可在体内外抑制肝癌细胞的增殖和侵袭转移;而抗凋亡克隆11(Antiapoptosis clone 11, AAC11)基因系miR-188-5p的直接功能性靶基因。我们的研究结果表明,miR-188-5p可作为肝癌预后监测的新标志物和治疗的新型靶点。
     [方法和结果]
     1.SLHCC、SHCC和NHCC中差异表达miRNAs的筛选:利用miRNA芯片分析,我们检测了SLHCC、SHCC和NHCC中的miRNAs表达谱,我们发现,1miR-188-5p的表达水平在SLHCC和SHCC中无显著性差异,但均显著高于NHCC。这种表达差异与上述三种类型肝癌之间临床病理特征的差异具有一致性,提示miR-188-5p可能参与了肝癌发生发展的调控。因而,我们选取miR-188-5p作为进一步深入研究的对象。
     2. miR-188-5p在肝癌内的表达水平显著性下降:我们采用实时定量RT-PCR技术,检测了72例肝癌组织及其对应的邻近非癌肝组织(adjacent nontumorous liver tissue, ANLT)内miR-188-5p的表达水平,结果显示,与ANLTs相比,miR-188-5p在HCC内的表达水平显著性下调,平均下调倍数为3.75倍。且与芯片结果相一致的是,miR-188-5p在SLHCC中的表达水平与SHCC相近(0.52vs.0.65,P=0.017),但显著性高于NHCC (0.52 vs.0.21, P<0.001)。此外,我们进一步分析了miR-188-5p与肝癌侵袭转移的关系,通过检测其在ANLT、HCC和静脉癌栓(vein cancer embolus of HCC, HCC-M)中的表达水平,我们发现,HCC-M中miR-188-5p的表达水平最低(相对表达水平分别为1.0、0.57和0.12),提示miR-188-5p的表达水平与肝癌的侵袭转移潜能呈反比。
     3. miR-188-5p低表达与HCC临床病理特征及预后密切相关:我们根据qRT-PCR结果,将72例肝癌分为miR-188-5p高表达组(n
     27)和低表达组(n=45),并分析了其表达水平与肝癌临床病理特征和预后的关系。结果显示,miR-188-5p表达水平与HCC的肿瘤结节数目(P=0.010)和有无静脉浸润(P=0.002)密切相关。此外,miR-188-5p高表达HCC患者的总体生存时间及无瘤生存时间均明显高于miR-188-5p低表达的HCC患者(中位生存时间,35个月vs.16个月,P=0.044;中位无瘤生存时间,23个月vs.14个月,P0.048)
     4. miR-188-5p抑制肝癌的生长和侵袭转移:我们首先检测了miR-188-5p在2种正常肝细胞系(L02和CCL13)和3种具有不同复发转移潜能的肝癌细胞系(HepG2、MHCC97-L和HCCLM3)内的表达水平,结果显示,miR-188-5p在肝癌细胞系内的表达水平显著低于正常肝细胞系,且在具备最高复发转移潜能的HCCLM3细胞系内的表达水平最低(相对表达水平依次为:1.0、0.62、0.45、0.41和0.06)。
     我们选取HCCLM3作为研究对象,采用慢病毒介导的过表达技术,建立了miR-188-5p稳定过表达HCCLM3肝癌细胞系和相应的对照细胞系—HCCLM3miR-188-5p和HCCLM3control细胞系,进了检测了两者之间细胞生物学行为的差异。结果显示,HCCLM3miR-188-5p细胞的生长速度显著慢于HCCLM3control细胞(P<0.005);集落形成实验证实,相比于HCCLM3control细胞,HCCLM3miR-188-5p细胞的集落数目减少了60%以上(200±30 vs.75±18,P<0.001);划痕愈合实验证实,HCCLM3miR-188-5p细胞的划痕愈合能力显著慢于HCCLM3control细胞(94% vs.48%,P<0.01);基质胶Transwell侵袭小室实验的结果亦显示,HCCLM3miR-188-5p细胞迁移运动能力较HCCLM3control细胞明显下降(50±9 vs.125±15,尸<0.001)。
     5.AAC11是miR-188-5p的直接靶基因:采用生物信息学软件miRanda(microrna.org和miRbase)和TargetScan搜寻miR-188-5p的潜在靶基因,发现AAC11在其3’-UTR存在两个miR-188-5p的结合位点。其中,一结合位点在黑猩猩、恒河猴、狗、猫、马和人等不同物种间存在高度保守性,而另一结合位点仅在恒河猴和人之间存在保守性。为进一步证实miR-188-5p能否直接与AAC11的3’-UTR结合,我们构建了包含/AAC11 3'-UTR全长序列、结合位点1序列(野生型和突变型)或结合位点2序列(野生型和突变型)的荧光素酶报告基因载体。荧光素酶报告基因分析证实,miR-188-5p可与AAC11的全长3’-UTR结合,并显著抑制其荧光素酶的信号强度(约70%),而突变型则不影响其信号强度。Western blot分析亦证实,miR-188-5p的过表达可显著抑制HCCLM3细胞的内源性AAC11的蛋白表达水平。以上结果提示,AAC11是miR-188-5p的直接下游靶基因。
     6.AAC11表达水平的恢复可消除(?)niR-188-5p过表达诱导的肝癌细胞生长和侵袭转移抑制:为进一步证实miR-188-5p调控细胞生长和侵袭转移的能力是否通过AAC11,我们构建了AAC11的慢病毒过表达载体,并将其转入HCCLM3miR-188-5p细胞中,以恢复AAC11的表达水平。生长曲线分析、集落形成实验、划痕愈合实验及基质胶Transwell侵袭小室实验的结果均显示,AAC11表达水平恢复后,HCCLM3miR-188-5p细胞的细胞生长和侵袭转移能力亦得到恢复,提示AAC11是miR-188-5p的功能性靶基因。
     7.miR-188-5p过表达可在体内抑制肝癌细胞的生长和转移:为在活体内观察miR-188-5p过表达对HCC生长和侵袭转移能力的影响,我们构建了裸鼠原位肝癌转移模型。结果显示,HCCLM3miR-188-5p细胞形成的肝脏原位肿瘤体积明显小于HCCLM3control细胞(P0.05),而HCCLM3miR-188-5p+AAC11细胞形成的肝脏原位瘤体积明显大于HCCLM3miR-188-5p细胞(P<0.05),但与HCCLM3control细胞相比明显差异(P>0.05)。裸鼠肝和肺脏的连续切片观察结果显示,HCCLM3miR-188-5p肿瘤无肝内和远处肺内转移,而HCCLM3control肿瘤的肝内和肺内转移率分别为100%和80%,两者相比具有显著性差异(P<0.05)。此外,恢复AAC11表达后,HCCLM3的侵袭转移能力已得到了大部分恢复,其肝内和肺内转移率分别为80%和60%。我们的这些结果证明,体内过表达miR-188-5p可通过靶向AAC11抑制HCC的生长、肝内转移及肺转移。
     [主要创新点]
     1、本研究首次发现miR-188-5p在HCC中低表达,且其表达水平与HCC临床病理特征及预后密切相关,提示(?)niR-188-5p是一个新的HCC预后标志物,这首次将(?)niR-188-5p引入了HCC及恶性肿瘤研究领域。
     2、本研究首次证实了miR-188-5p在HCC生长和侵袭转移调控中具有重要作用,并阐明了miR-188-5p通过靶向AAC11抑制肝癌细胞生长和迁移运动的分子机制,有助于加深对肝癌发生发展分子机制的了解。
     3、本研究通过动物实验证明,miR-188-5p的过表达可在动物活体内显著抑制HCC的生长、肝内转移和肺转移,提示miR-188-5p可作为是一个新的HCC干预治疗的靶点,在HCC分子干预研究中具有重要价值。
     [结论]
     本研究首次发现miR-188-5p在HCC中呈低表达并与肝癌的临床病理特征和预后显著相关,进而阐明了miR-188-5p通过靶向AAC11抑制肝癌细胞生长、侵袭和转移的分子机制,揭示了miR-188-5p在HCC发生和发展中的关键性生物学作用,提示miR-188-5p是一个新的HCC预后标志物和一个新的HCC干预治疗靶点。
【Background and Aims】
     Hepatocellular carcinoma (HCC) is one of the most common human malignancies worldwide, especially in East Asia and South Africa. Duing to it's highly malignant potential, HCC ranks as the third leading cause of cancer death in the world, resulting in almost 600,000 deaths each year. Despite great improvement in the treatment options, the long-time survival of patients with HCC remains unsatisfactory, with a 5-year survival rate of 20% to 30% reported in the literature, because of the challenging problems for advanced and metastatic HCC treatment. Carcinogenesis and progression of HCC are multistage process that involve lots of growth factors, oncogenes and tumor suppressor genes. Making clear the molecular events underlied the tumorgenesis of HCC are important for its screening, prevention, and treatment. In past decades, many factors involved in the pathogenesis of HCC have been identified, including p53, Rb, PI3K/AKT/mTOR, Ras/MAPK, Egfl7 and so on. However, the molecular mechanisms of HCC are still largely unknown.
     MicroRNAs (miRNAs) are highly conserved small non-coding regulatory RNAs with sizes of 17-25 nucleotides. As posttranscriptional regulators, miRNAs can negatively regulate gene expression by binding directly to the 3'untranslated region (3'-UTR) of corresponding target messenger RNAs (mRNAs) in a sequence-specific manner, which induces mRNA degradation or protein translation repression. Since the first miRNA was reported by Ambros and Ruvkun in 1993, the number of miRNAs as well as related publications have expanded enormously. Currently, more than 1000 human miRNAs have been identified, and aberrant expression of these miRNAs is involved in various physiological and pathological processes, including human carcinogenesis. Recently, emerging evidence links the biological function of miRNAs to the initiation, promotion, and progression of HCC, and studies have confirmed that miRNAs played multiple roles in pathological processes of HCC, such as cell proliferation, cell death, metastasis and DNA methylation, etc. Although, the importance of miRNAs in hepatocarcino-genesis has attracted much attention in recent years, the pathological relevance and significance of the majority of miRNAs in HCC remain unclear.
     Previously, we have found a specific subtype of HCCs, which were >5 cm in diameter, had just single lession, and always grows expansively within an intact capsule or pseudocapsule, and we categorized them as solitary large hepatocellular carcinoma (SLHCC). Accordingly, we routinely classified HCCs into 3 different subtypes:SLHCC, nodular HCC (NHCC, node number≥2) and small HCC (SHCC, diameter<5 cm). Further study confirmed that SLHCC had unique clinical and pathological characteristics, and its metastastic potential was comparable with SHCC, but significantly lower than NHCC. After hepatic resection, SLHCC exhibited a similar long-time overall and disease-free survival with SHCC, but much better than NHCC. To gain a better understanding of the molecular biologic characteristics of SLHCC, we analyzed the gene expression pattern of SLHCC by using cDNA microarray and we noticed that 7.89%(668 of 8464) human genes had significantly different expression levels between SLHCC, SHCC and NHCC. These findings together with the fact that miRNAs can posttranscriptionally regulate almost 30% of human genes, lend support to the hypothesis that different types of HCCs may also have individual miRNAs expression profiles, which contribute to their specific clinical, pathological and molecular characteristics.
     Therefore, in the present study, we first compare the miRNAs expression profiles of SLHCC, SHCC and NHCC by miRNA array analysis. We primarily focused on miR-188-5p for further study, and comprehensively investigate its expression, biological functions and molecular mechanism in carcinogenesis of HCC. We found that miR-188-5p was significantly decreased in HCC tissues, and enforced expression of miR-188-5p could inhibit HCC cell proliferation and metastasis in vitro and in vivo. In addition, Antiapoptosis clone 11 (AAC11) was confirmed as a direct and functional target of miR-188-5p. These findings indicate miR-188-5p could serve as a potential therapeutic target for HCC.
     【Methods and Results】
     1. Identification of miRNAs Differentially Expressed in SLHCC, SHCC and NHCC:By using miRNA array analysis, we compared the miRNAs expression profiles displayed by SLHCC, SHCC and NHCC. We found that the expression level of miR-188-5p in SLHCC and SHCC was comparable, and both significantly high than that in NHCC. The expression pattern of miR-188-5p was similar with differences of the clinicalopathological characteristics of these three HCC subtypes, suggesting miR-188-5p involved in the carcinogenesis and development of HCC. So, we focused miR-188-5p for further study.
     2. miR-188-5p Is Frequently Down-regulated in HCC:To explore the expression of miR-188-5p in HCC,72 cases of HCC tissues and the corresponding ANLTs was measured by qRT-PCR. The results showed that the expression of miR-188-5p was remarkably down-regulated in HCC tissues, and the median decrease fold was 3.75 times. Consistent with the miRNA array data, the median miR-188-5p expression level in SLHCC was similar with that of SHCC (0.52 vs.0.65, P=0.017), but significantly higher than that of NHCC (0.52 vs.0.21, P<0.001). Furthermore, the relationship between the expression of miR-188-5p and the metastatic status of HCC was also analyzed. Our results indicated that compared with ANLT and primary lession of HCC, the vein cancer embolus of HCC (HCC-M) had the lowest expression level of miR-188-5p (relative expression=1.0,0.57 and 0.12; respevtively).
     3. Correlations of miR-188-5p Expression with Clinicopathologic Characteristics and Prognosis of HCC:According to the qRT-PCR results, the expression of miR-188-5p in HCC tissues was divided into low expression group (n=45) and high expression group (n=27), and the correlations of miR-188-5p expression with clinicopathologic characteristics and prognosis of HCC were analyzed. The miR-188-5p expression levels were found to be significantly higher in HCCs with multiple nodules or with vein invasion (P=0.010 and P=0.002, respectively). Additionally, HCC patients with high miR-188-5p expression had better overall survival (median survival time,35 months vs.16 months, P=0.044) and disease-free survival (median disease-free survival time,23 months vs.14 months, P=0.048) than those with the low expression.
     4. miR-188-5p Inhibits HCC Cell Proliferation and Metastasis in Vitro:We firstly confirmed the expression of miR-188-5p in two normal liver cell lines (LO2 and CCL13) and three HCC cell lines (HepG2, MHCC97-L, and HCCLM3). With LO2 cell as control, the expression of miR-188-5p in these five cell lines was 1.0,0.62,0.45,0.41 and 0.06, separately, which showed that HCC cells had lower miR-188-5p expression than normal liver cells. Furthermore, for the three HCC cells with different metastatic potential, HCCLM3 cell had the lowest miR-188-5p expression level, implicating a potential role for miR-188-5p in HCC metastasis.
     Among these five cells, HCCLM3 was selected to establish miR-188-5p stably expressing cell (HCCLM3miR-188-5p). Our results showed that the cell proliferation of HCCLM3miR-188-5p cells were significantly slower than that HCCLM3control cells (cells transfected with empty vector). Moreover, colony formation assay indicated that enforced expression of miR-188-5p resulted in more than 60% decrease in colony numbers when compared with the vector control (200±30 vs.75±18, P <0.001). The wound healing assay showed that the closure of HCCLM3miR-188-5p cells was significantly slower than that of HCCLM3control cells (94% vs.48%, P<0.01). Transwell assays with Matrigel demonstrated that miR-188-5p could dramatically inhibit the invasive capacities of HCCLM3 cell compared with vector control (125±15 vs.50±9, P<0.001). These results suggested that miR-188-5p can significantly inhibit HCC cell migration and invasion in vitro.
     5. AAC11 Was a Driect Downstream Target of miR-188-5p:The potential miR-188-5p target genes were searched with miRanda (microrna.org and miRbase) and TargetScan. We found that AAC11 contained two miR-188-5p binding site on its 3'-UTR, and one sequnence of the binding site is highly conserved across different species (chimpanzee, rhesus, dog, cat, horse and human), but another sequnence of the binding site is only conserved in rhesus and human. To confirm whether miR-188-5p could direct binding to the 3'-UTR of AAC11, vectors containing a series of 3'-UTR fragments, including fulllength 3'-UTR, binding site 1 (wild-type and mutant), and binding site 2 (wild-type and mutant), were by inserting the sequences into the region immediately downstream of the luciferase reporter gene. The luciferase activity assays indicated that the relative luciferase activity, normalized by luciferase activity of Renilla, was remarkably reduced (almost 70%) by miR-188-5p when the full-length wild-type 3'-UTR of AAC11 was present, whereas the reduction with mutant AAC11 3'-UTR was not as sharp as that observed in the wild-type counterpart. Additionally, our results also showed that mutation of the two binding sites separately could restore the luciferase activity, suggesting both of the binding sites of miR-188-5p were involved in AAC11 posttranscriptionally down-regulation. Western blot analysis further demonstrated that the high expression of miR-188-5p dramatically suppressed the endogenous protein level of AAC11 in HCCLM3 cell. Taken together, these results indicated that AAC11 was a direct downstream target for miR-188-5p in HCC cells.
     6. Restoration of AAC11 Abrogated miR-188-5p Induced Cell Proliferation and Metastasis Suppression:We constructed a lentiviral expression vector of AAC11 without the 3'-UTR and reintroduced AAC11 into HCCLM3 cell stably expressing miR-188-5p. Western-blot results confirmed that the expression of AAC11 was recovered. And the reintroduction of AAC11 enhanced the proliferation ability of miR-188-5p expression cell. Moreover, colony formation inhibition of miR-188-5p was also antagonized by enforced expression of AAC11 Furthermore, the restoration of AAC11 significantly abrogated miR-188-5p mediated HCC cell migration and invasion suppression. These findings suggested that AAC11 was a functional target of miR-188-5p.
     7. miR-188-5p Inhibits HCC Cell Proliferation and Metastasis by Targeting AAC11 in Vivo:Consistant with the in vitro results, miR-188-5p inhibited tumor growth in vivo, and the size of liver local tumors of HCCLM3 cell stably expressing miR-188-5p was dramatically smaller than that of control vector group. In addition, based on the fact that miR-188-5p overexpression could decrease the expression of AAC11 and restoration of of AAC11 abrogated the growth inhibition effect of miR-188-5p, we can draw the conclusion that miR-188-5p inhibited HCC growth through down-regulation of AAC11 in vivo. Moreover, in light of the in vitro results implicating a role for miR-188-5p in HCC cell migration and invasion, we examined the mice for liver and lung metastasis of the carcinoma cells. The results showed that the intrahepatic and lung metastasis rate of control group was 100% and 80% respectively, wherase no metastasis was found in miR-188-5p group. However, the reintroduction of AAC11 enhanced the metastasis ability of miR-188-5p expression cell, with 80% intrahepatic metastasis and 60% lung metastasis. Together, these data support an important role for miR-188-5p in HCC growth and metastasis in vivo.
     【Main Innovative Points】
     1. For the first time, the present study documented that miR-188-5p was down-regulated in HCC and correlated significantly to clinicopathologic characteristics as well as prognosis of HCC, which implicated miR-188-5p as a potential prognostic marker of HCC and extend the research of miR-188-5p to HCC.
     2. The present study has showed the critical roles of miR-188-5p in suppressing cell proliferation and metastasis of HCC by driectly targeting AAC11, which help understanding the molecular mechanism of carcinogenesis and development of HCC.
     3. Through HCC mouse model, the present study documented that miR-188-5p overexpression could suppress the proliferation, intrahepatic and pulmonary metastasis of HCC in vivo, implicating miR-188-5p as a novel potential therapeutic target for HCC
     【Conclusions】
     The present study firstly confirmed that miR-188-5p was down-regulated in HCC and correlated significantly to clinicopathologic characteristics as well as prognosis of HCC, and demonstrated the critical role of miR-188-5p in suppressing cell proliferation and metastasis of HCC by driectly targeting AAC11, which suggested miR-188-5p as a novel prognostic marker and a candidate therapeutic target for HCC.
引文
[1]Roberts LR. Sorafenib in liver cancer-just the beginning. N Engl J Med.2008; 359:420-422.
    [2]Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in Advanced Hepatocellular Carcinoma. N Engl J Med.2008;359:378-390.
    [3]Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics.2002;CA Cancer J Clin.2005;55:74-108.
    [4]陈万青,张思维,孔灵芝,等.中国肿瘤登记处2004年恶性肿瘤死亡资料分析.中国肿瘤.2008;11:913-916.
    [5]Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208-1236.
    [6]Song TJ, Ip EW, Fong Y. Hepatocellular carcinoma:current surgical management. Gastroenterology.2004;127:S248-260.
    [7]杨连粤,黄耿文,黄建华,等.114例大肝癌的手术切除.中国实用外科杂志.2002;22:353-355.
    [8]Yang LY, Fang F, Ou DP, et al. Solitary large hepatocellular carcinoma:a specific subtype of hepatocellular carcinoma with good outcome after hepatic resection. Ann Surg.2009;249:118-123.
    [9]Fan ST, Lo CM, Liu CL, et al. Hepatectomyfor hepatocellular carcinoma: toward zero hospital deaths. Ann Surg.1999;229:322-330.
    [10]Takayama T, Makuuchi M, Hirohashi S, et al. Early hepatocellular carcinoma as an entity with a high rate of surgical cure. Hepatology.1998;28:1241-6.
    [11]Llovet JM, Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol.2008;48 Suppl 1:S20-S37.
    [12]Fan Wu, Lian-Yue Yang, Yun-Feng Li, et al. Novel Role for Epidermal Growth Factor-Like Domain 7 in Metastasis of Human Hepatocellular Carcinoma. Hepatology.2009;50:1839-50.
    [13]El-Serag HB, Rudolph KL. Hepatocellular carcinoma:epidemiology and molecular carcinogenesis. Gastroenterology.2007;132:2557-2576.
    [14]Mark A Feitelson, Bill Sun, N Lale Satiroglu Tufan, et al. Genetic mechanisms of hepatocarcinogenesis. Oncogene.2002;21:2593-604.
    [15]Kusano N, Shiraishi K, Kubo K, et al. Genetic aberrations detected by comparative genomic hybridization in hepatocellular carcinomas:their relationship to clinicopathological features. Hepatology.1999;29:1858-62.
    [16]Wang W, Yang LY, Huang GW, et al. Genomic analysis reveals RhoC as a potential marker in hepatocellular carcinoma with poor prognosis. Br J Cancer. 2004;90:2349-2355
    [17]Wang W, Wu F, Fang F, et al. RhoC is essential for angiogenesis induced by hepatocellular carcinoma cells via regulation of endothelial cell organization. Cancer Sci.2008;99(10):2012-8.
    [18]Wang W, Wu F, Fang F, et al. Inhibition of invasion and metastasis of hepatocellular carcinoma cells via targeting RhoC in vitro and in vivo. Clin Cancer Res.2008;14(21):6804-12.
    [19]Ou DP, Tao YM, Tang FQ, et al. The hepatitis B virus X protein promotes hepato-cellular carcinoma metastasis by upregulation of matrix metalloproteinases. Int J Cancer.2007;15:1208-1214.
    [20]Yang LY, Lu WQ, Huang GW, et al. Correlation between CD105 expression and postoperative recurrence and metastasis of hepatocellular carcinoma. BMC Cancer.2006 2;6:110.
    [21]Chang ZG, Yang LY, Wang W, et al. Determination of high mobility group Al (HMGA1) expression in hepatocellular carcinoma:a potential prognostic marker. Dig Dis Sci.2005;50:1764-1770.
    [22]Yang LY, Tao YM, Ou DP, et al. Increased expression of Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2 correlated with poor prognosis of hepatocellular carcinoma. Clin Cancer Res.2006;12:5673-5679.
    [23]Wu F, Liu SY, Tao YM, et al. Decreased expression of methyl methansulfonate and UV sensitive gene clone 81 is related to poor prognosis of patients with hepatocellular carcinoma. Cancer.2008;112:2002-2010.
    [24]Fang F, Luo LB, Tao YM, Wu F, Yang LY. Decreased expression of inhibitor of growth 4 correlated with poor prognosis of hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev.2009 Feb;18(2):409-16.
    [25]Wang XM, Yang LY, Guo L, et al. p53-induced RING-H2 protein, a novel marker for poor survival in hepatocellular carcinoma after hepatic resection. Cancer.2009;115(19):4554-63.
    [26]Lagos-Quintana M, Rauhu R, LendeckelW, et al. Identification of novel genes coding for small exp ressed RNAs. Science.2001;294:853-858.
    [27]Lai EC. Micro RNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet.2002;30(4):363-4.
    [28]Tang G, Reinhart BJ, Bartel DP, et al. A biochemical framework for RNA silencing in plants. Genes Dev.2003;17(1):49-63.
    [29]Lee RC, Feinbaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.1993;75: 843-854.
    [30]Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet.2005;37:766-70.
    [31]Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet.2010;11:597-610.
    [32]Erson AE, Petty EM. miRNAs and cancer:New research developments and potential clinical applications. Cancer Biol Ther.2009;8:2317-22.
    [33]Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006;25:2537-2545.
    [34]Liang L, Wong CM, Ying Q, et al. MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology.2010;52:1731-40.
    [35]Xiong Y, Fang JH, Yun JP, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma Hepatology. 2010;51:836-45.
    [36]Yang F, Yin Y, Wang F, et al. miR-17-5p Promotes migration of human hepatocellular carcinoma cells through the p38 mitogen-activated protein kinase-heat shock protein 27 pathway. Hepatology.2010;51:1614-23.
    [37]Huang J, Wang Y, Guo Y, et al. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology.2010;52:60-70.
    [38]Wang W, Peng JX, Yang JQ, et al. Identification of Gene Expression Profiling in Hepatocellular Carcinoma Using cDNA Microarrays. Dig Dis Sci. 2009;54:2729-2735
    [39]Edmondson HA, Steiner PE. Primery caricinoma of the liver:a study of 100 cases among 48,900 necropsies. Cancer.1954,7:462-504.
    [40]Ou DP, Tao YM, Chang ZG, et al. Hepatocellular carcinoma cells containing hepatitis B virus X protein have enhanced invasive potential conditionally. Dig Liver Dis.2006;38:262-267.
    [41]Xu D, Perez RE, Ekekezie Ⅱ, et al. Epidermal growth factor-like domain 7 protects endothelial cells from hyperoxia-induced cell death. Am J Physiol Lung Cell Mol Physiol.2008;294:L17-23.
    [42]Wang W, Yang LY, Yang ZL, et al. Elevated expression of autocrine motility factor receptor correlates with overexpression of RhoC and indicates poor prognosis in hepatocellular carcinoma. Dig Dis Sci.2007;52:770-775.
    [43]Li WC, Ye SL, Sun RX, et al. Inhibition of growth and metastasis of human hepatocellular carcinoma by antisense oligonucleotide targeting signal transducer and activator of transcription 3. Clin Cancer Res.2006;12:7140-7148.
    [44]Yang LY, Wang W, Peng JX, et al. Differentially expressed genes between solitary large hepatocellular carcinoma and nodular hepatocellular carcinoma. World J Gastroenterol.2004;10:3569-3573.
    [45]Makuuchi M, Imamura H, Sugawara Y, Takayama T. Progress in surgical treatment of hepatocellular carcinoma. Oncology.2002;62:74-81.
    [46]杨连粤,杨建青,黄建华,等.大肝癌的外科治疗体会.临床外科杂志2001;9:11-13
    [47]杨连粤,黄耿文.大肝癌的外科治疗策略.临床外科杂志.2001;9:4-5.
    [48]Marrero JA. Hepatocellular carcinoma. Curr Opin Gastroenterol. 2005;21:308-312.
    [49]Poon R, Fan S, Wong J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg. 2000;232:10-24.
    [50]Nagasue N, Uchida M, Makino Y, et al. Incidence and factors associated with intrahepatic recurrence following resection of hepatocellular carcinoma. Gastroenterol ogy.1993;105:488-94.
    [51]Yamamoto J, Kosuge T, Takayama T, et al. Recurrence of hepatocellular carcinoma after surgery. Br J Surg.1996;83:1219-22.
    [52]Challen C, Guo K, Collier JD, et al. Infrequent point mutation in codon 12 and 61 of ras oncogenes in human hepatocellular carcinomas. J Hepatol. 1992;14(23):342-346.
    [53]Manam S, Storer RD, Prahalada S, et al. Activation of the H-ras, Ki-, and N-ras genes on chemically induced liver tumor from CD-1 mice. Cancer Res. 1992;52(12):3347-3352.
    [54]Tamori A, Nishiguchi S, Kubo S, et al. Possible contribution to hepatocarcinogenesis of X transcript of hepatitis B virus in Japanese patients with hepatitis C virus. Hepatology.1999;29(5):1429-34.
    [55]邵华,张宪党,黄海南,等.肝硬化及肝癌p53基因突变的实验研究.肿瘤防治杂志.2001;8(4):365-367.
    [56]Xu XR, Huang J, Xu ZG, et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci USA.2001;98:15089-94.
    [57]Calvisi DF, Factor VM, Loi R, et al. Activation of beta-catenin during hepatocarcinogenesis in transgenic mouse models:relationship to phenotype and tumor grade. Cancer Res.2001;61(5):2085-2091
    [58]Ito Y, Sasaki Y, Horimoto M, et al. Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology.1998;27:951-8.
    [59]Villanueva A, Llovet JM. Targeted Therapies for Hepatocellular Carcinoma. Gastroenterology.2011;26. [Epub ahead of print]
    [60]Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med.2008;359:378-90.
    [61]Zhang B, Pan X, Cobb GP, et al. microRNAs as oncogenes and tumor suppressor. Dev Biol.2007;302:1-12.
    [62]Chell CZ. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 2005,353:1768-1771.
    [63]Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia Proc Natl Acad Sci U S A.2002;99(24):15524-9.
    [64]Mavrakis KJ, Wolfe AL, Oricchio E, et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol.2010;12:372-9.
    [65]Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene.2006;25:2537-45.
    [66]Huang YS, Dai Y, Yu XF, et al. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J Gastroenterol Hepatol.2008;23:87-94.
    [67]Varnholt H, Drebber U, Schulze F, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology. 2008;47:1223-32.
    [68]Roessler S, Budhu A, Wang XW. Future of molecular profiling of human hepatocellular carcinoma. Future Oncol.2007;3:429-439.
    [69]Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol.2009;4:199-227.
    [70]Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67(4):1424-9.
    [71]Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature.2007;449(7163):682-8.
    [72]Shah YM, Morimura K, Yang Q, et al. Peroxisome proliferator-activated receptor alpha regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol Cell Biol.2007;27(12):4238-47.
    [73]Mott JL, Kobayashi S, Bronk SF, et al. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene.2007;26(42):6133-40.
    [74]Shimada K, Sano T, Sakamoto Y, et al. A long-term follow-up and management study of hepatocellular carcinoma patients surviving for 10 years or longer after curative hepatectomy. Cancer.2005; 104:1939-1947.
    [75]Poon RT, Fan ST, Ng IO, et al. Different risk factors and prognosis for early and late intrahepatic recurrence after resection of hepatocellular carcinoma. Cancer.2000;89:500-507.
    [76]Bruix J, Sherman M, Llovet JM, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol.2001;35:421-30.
    [77]The Cancer of the Liver Italian Program (CLIP). Prospective validation of the CLIP score:a new prognostic system for patients with cirrhosis and hepatocellular carcinoma. Hepatology.2000;31:840-5.
    [78]Ladeiro Y, Couchy G, Balabaud C, et al. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology.2008;47:1955-63.
    [79]Gramantieri L, Fornari F, Ferracin M, et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res.2009;15(16):5073-81.
    [80]Budhu A, Jia HL, Forgues M, et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology.2008;47:897-907.
    [81]Barbara L, Benzi Q Gaiani S, et al. Natural history of small untreated hepatocellular carcinoma in cirrhosis:a multivariate analysis of prognostic factors of tumor growth rate and patient survival. Hepatology.1992;16:132-7.
    [82]Bruix J, Boix L, Sala M, et al. Focus on hepatocellular carcinoma. Cancer Cell. 2004,5:215-9.
    [83]Zamule SM, Strom SC, Omiecinski CJ. Preservation of hepatic phenotype in lentiviral-transduced primary human hepatocytes. Chem Biol Interact.2008; 173:179-186.
    [84]Fornari F, Gramantieri L, Ferracin M, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma Oncogene. 2008;27(43):5651-61.
    [85]Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology.2007;133(2):647-58.
    [86]Chung GE, Yoon JH, Myung SJ, et al. High expression of microRNA-15b predicts a low risk of tumor recurrence following curative resection of hepatocellular carcinoma. Oncol Rep.2010;23(1):113-9.
    [87]Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell.2003;115:787-98.
    [88]Grimson A, Farh KK, Johnston WK, et al. MicroRNA targeting specificity in mammals:determinants beyond seed pairing. Mol Cell.2007;27(1):91-105.
    [89]Maziere P, Enright AJ. Prediction of microRNA targets. Drug Discov Today. 2007;12(11-12):452-8.
    [90]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell.2005;120(1):15-20.
    [91]Xie X, Lu J, Kulbokas EJ, et al. Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparison of several mammals. Nature. 2005;434(7031):338-45.
    [92]Tewari M, Yu M, Ross B, et al. AAC-11, a novel cDNA that inhibits apoptosis after growth factor withdrawal. Cancer Res 1997;57:4063-9.
    [93]Morris EJ, Michaud WA, Ji JY, et al. Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genet 2006;2:e196.
    [94]Faye A, Poyet JL. Targeting AAC-11 in cancer therapy. Expert Opin Ther Targets 2010,14:57-65.
    [95]Kim JW, Cho HS, Kim JH, et al. AAC-11 overexpression induces invasion and protects cervical cancer cells from apoptosis. Lab Invest 2000;80:587-94.
    [96]Sasaki H, Moriyama S, Yukiue H, et al. Expression of the antiapoptosis gene, AAC-11, as a prognosis marker in non-small cell lung cancer. Lung Cancer 2001;34:53-7.
    [97]Li N, Fu H, Tie Y, et al. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett.2009;275(1):44-53.
    [98]Zhang X, Liu S, Hu T, et al. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology.2009;50(2):490-9.
    [99]Yao J, Liang L, Huang S, et al. MicroRNA-30d promotes tumor invasion and metastasis by targeting Galphai2 in hepatocellular carcinoma. Hepatology. 2010;51(3):846-56.
    [100]Li Y, Tian B, Yang J, et al. Stepwise metastatic human hepatocellular carcinom a cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics. J Cancer Res Clin Oncol.2004;130:460-468.
    [101]Tian J, Tang ZY, Ye SL, et al. New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis. Br J Cancer.1999;81:814-821.
    [102]Li Y, Tang ZY, Ye SL, et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97.World J Gastroenterol.2001;7:630-636.
    [103]Li Y, Tang Y, Ye L, et al. Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray. J Cancer Res Clin Oncol.2003;129:43-51.
    [104]Lu XD, Qin WX, Li JJ, et al. The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res.2005;65:6843-6849.
    [105]Tomimaru Y, Sasaki Y, Yamada T, et al. The significance of surgical resection for pulmonary metastasis from hepatocellular carcinoma. Am J Surg. 2006;192:46-51.
    [106]Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science.2002;297(5589):2056-60.
    [107]Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 2006;26(21):8191-201.
    [108]Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther. 2006;13(6):496-502.
    [109]Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature.2005;438(7068):685-9.
    [110]Elmen J, Lindow M, Silahtaroglu A, et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 2008;36(4):1153-62.
    [111]Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature.2008;452:896-9.
    [112]Kota J, Chivukula RR, O'Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137(6):1005-1017.
    [1]Bosch FX, Ribes J, Diaz M, et al. Primary liver cancer:worldwide incidence and trends. Gastroenterology 2004;127:S5-S16.
    [2]Roberts LR. Sorafenib in liver cancer-just the beginning. N Engl J Med.2008; 359:420-422.
    [3]Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in Advanced Hepatocellular Carcinoma. N Engl J Med.2008;359:378-390.
    [4]Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics.2002;CA Cancer J Clin.2005;55:74-108.
    [5]陈万青,张思维,孔灵芝,等.中国肿瘤登记处2004年恶性肿瘤死亡资料分析.中国肿瘤.2008;11:913-916
    [6]Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208-1236.
    [7]杨连粤,黄耿文,黄建华,等.114例大肝癌的手术切除.中国实用外科杂志.2002;22:353-355.
    [8]Yang LY, Fang F, Ou DP, et al. Solitary large hepatocellular carcinoma:a specific subtype of hepatocellular carcinoma with good outcome after hepatic resection. Ann Surg.2009;249:118-123.
    [9]Fan ST, Lo CM, Liu CL, et al. Hepatectomy for hepatocellular carcinoma: toward zero hospital deaths. Ann Surg.1999;229:322-330.
    [10]Song TJ, Ip EW, Fong Y. Hepatocellular carcinoma:current surgical management. Gastroenterology.2004;127:S248-260.
    [11]Takayama T, Makuuchi M, Hirohashi S, et al. Early hepatocellular carcinoma as an entity with a high rate of surgical cure. Hepatology.1998;28:1241-6.
    [12]Llovet JM, Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol.2008;48 Suppl 1:S20-S37.
    [13]Pang RW, Joh JW, Johnson PJ, et al. Biology of hepatocellular carcinoma. Ann Surg Oncol 2008;15:962-971.
    [14]El-Serag HB, Rudolph KL. Hepatocellular carcinoma:epidemiology and molecular carcinogenesis. Gastroenterology.2007;132:2557-2576.
    [15]Mark A Feitelson, Bill Sun, N Lale Satiroglu Tufan, et al. Genetic mechanisms of hepatocarcinogenesis. Oncogene.2002;21:2593-604.
    [16]Kusano N, Shiraishi K, Kubo K, et al. Genetic aberrations detected by comparative genomic hybridization in hepatocellular carcinomas:their relationship to clinicopathological features. Hepatology.1999;29:1858-62.
    [17]Fan Wu, Lian-Yue Yang, Yun-Feng Li, et al. Novel Role for Epidermal Growth Factor-Like Domain 7 in Metastasis of Human Hepatocellular Carcinoma. Hepatology.2009;50:1839-50.
    [18]Lagos-Quintana M, Rauhu R, LendeckelW, et al. Identification of novel genes coding for small exp ressed RNAs. Science.2001;294:853-858.
    [19]Lee RC, Feinbaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.1993;75: 843-854.
    [20]Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet.2005;37:766-70.
    [21]Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet.2010; 11:597-610.
    [22]Erson AE, Petty EM. miRNAs and cancer:New research developments and potential clinical applications. Cancer Biol Ther.2009;8:2317-22.
    [23]Zhang B, Pan X, Cobb GP, et al. microRNAs as oncogenes and tumor suppressor. Dev Biol.2007;302:1-12.
    [24]Chell CZ. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 2005;353:1768-1771.
    [25]Esquela, Kerscher A, Slack FJ. Oncomim-micmRNAs with a role in cancer. Nat Rev Cancer.2006;6:259-269.
    [26]Reinhart BJ, Slack FA, Basson M, et al. The 21 nucleotide let-7 RNA regulates C. elegans developmental timing in Caenorhabditis elegans. Nature. 2000,403(6772)901-906.
    [27]Zhou Donggen, Luo Yuping, Li Siguang. The Structure, Biogenesis and Function of MicroRNA. Biotechnology bulletin.2005;5:20-26
    [28]Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation. RNA 2003;9(3):277-279.
    [29]Shi Xiarong, Yu Jian. MicroRNA's Characteristic and Function. Journal of Shanhai Jiaotong University.2004;38(5):829-833.
    [30]Grad Y, Aach J, Hayes GD, et al. Computational and experimental identification of C. elegans microRNAs. Mol Cell.2003,11(5):1253-63.
    [31]Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science.2001;294(5543):853-8.
    [32]Rodriguez A, Griffiths-Jones S, Ashurst JL, et al. Identification of Mammalian microRNA Host Genes and Transcription Units. Genome Research. 2004;14:1902-1910.
    [33]Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ. EMBO J.2004;23:4051-60.
    [34]Borchert GM, Lanier W, Davidson BL. RNA polymerase Ⅲ transcribes human microRNAs. Nat Struct Mol Biol.2006;13:1097-101.
    [35]Lee Y, Ahn C, Han J, et al. The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature.2003;425(6956):415-419.
    [36]Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science.2004;303(5654):95-98.
    [37]Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation:stepwise processing and subcellular localization.EMBO J.2002;21:4663-70.
    [38]Denli AM, Tops BB, Plasterk RH, et al. Processing of primary microRNAs by the Microprocessor complex. Nature.2004;432(7014):231-5.
    [39]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and funrion. Cell. 2004;116(2):281-297.
    [40]Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):295-296.
    [41]Millar AA, Waterhouse PM. Plant and animal microRNAs:similarities and differences. Funct Integr Genomics.2005;5(3):129-135.
    [42]Papp I, Mette MF, Aufsatz W, et al. Evidence for nuclear processing of plant microRNA and short interfering RNA precursors. Plant Physiol. 2003;132:1382-1390.
    [43]He L, Hannon GJ. MicroRNAs:small RNAs with a big role in gene regulation. Nat Rev Genet.2004;5(7):522-531.
    [44]Lu Jiaju, Liao Wenbin, Zhu Baibi, et al. The Progress of MicroRNA Research. Molecular Plant Breeding.2006;4(6):73-77.
    [45]Lagos-Quintana M, Rauhut R, Meyer J, et al. New microRNAs from mouse and human. RNA.2003;9(2):175-179.
    [46]Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science.2001;294(5543):862-864.
    [47]Reinhart BJ, Weinstein EQ Rhoades MW, et al. MicroRNAs in plants. Genes Dev.2002;16:1616-1626.
    [48]Reinhart BJ, Slack FA, Basson M, et al. The 21 nucleotide let-7 RNA regulates C. elegans developmental timing in Caenorhabditis elegans. Nature. 2000,403(6772):901-906.
    [49]Hplen T, Amarzguioui M, Wigger MT, et al. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res.2002;30(8):1757-1766.
    [50]Tanzer A, and Stadler PF. Molecular evolution of a microRNA cluster. J Mol Biol.2004;339(2):327-335.
    [51]Lai EC. Micro RNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet.2002;30(4):363-4.
    [52]Tang G, Reinhart BJ, Bartel DP, et al. A biochemical framework for RNA silencing in plants. Genes Dev.2003;17(1):49-63.
    [53]Sasaki T, Shiohama A, Minoshima S, et al. Identification of eight members of the Argonaute family in the human genome small star. Genomics. 2003;82(3):323-330.
    [54]Yoda M, Kawamata T, Paroo Z, et al. ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol.2010; 17:17-23.
    [55]Kawamata T, Seitz H, Tomari Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat Struct Mol Biol. 2009; 16:953-60.
    [56]Wang Y, Juranek S, Li H, et al. Structure of an Argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature. 2008;456:921-6.
    [57]Wang Y, Juranek S, Li H, et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature.2009;461.754-61.
    [58]Kawamata T, Tomari Y. Making RISC. Trends Biochem Sci.2010;35:368-76.
    [59]Iki T, Yoshikawa M, Nishikiori M, et al. In vitro assembly of plant RNA induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell.2010;39:282-291.
    [60]Iwasaki S, Kobayashi M, Yoda M, et al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell. 2010;39:292-299.
    [61]Leuschner PJ, Ameres SL, Kueng S, Martinez J. Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep. 2006;7:314-20.
    [62]Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell.2003;115:787-98.
    [63]Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev.2007;21:1025-30.
    [64]Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet.2005;37:495-500.
    [65]Grimson A, Farh KK, Johnston WK, et al. MicroRNA targeting specificity in mammals:determinants beyond seed pairing. Mol Cell.2007;27:91-105.
    [66]Liu J, Carmell MA, Rivas FV et al. Argonaute 2 is the catalytic engine of mammalian RNAi. Science.2004;305:1437-41.
    [67]Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science.2004;304:594-6.
    [68]Krek A, Grun D, Poy MN et al. Combinatorial microRNA target predictions. Nat Genet.2005;37:495-500.
    [69]Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol.2005;3:e85.
    [70]Behm-Ansmant I, Rehwinkel J, Doerks T, et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev.2006;20:1885-98.
    [71]Pillai RS, Artus CG, Filipowicz W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA. 2004;10:1518-25.
    [72]Beilharz TH, Humphreys DT, Clancy JL, et al. microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS ONE.2009;4:e6783.
    [73]Iwasaki S, Kawamata T, Tomari Y. Drosophila Argonautel and Argonaute2 employ distinct mechanisms for translational repression. Mol Cell. 2009;34:58-67.
    [74]Pillai RS, Bhattacharyya SN, Artus CG, et al. Inhibition of translational initiation by let-7 MicroRNA in human cells. Science.2005;309:1573-6.
    [75]Thermann R, Hentze MW. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature.2007;447:875-8.
    [76]Wang B, Love TM, Call ME, et al. Recapitulation of short RNA-directed translational gene silencing in vitro. Mol Cell.2006;22:553-60.
    [77]Chendrimada TP, Finn KJ, Ji X, et al. MicroRNA silencing through RISC recruitment of eIF6. Nature.2007;447:823-8.
    [78]Nissan T, Parker R. Computational analysis of miRNA-mediated repression of translation:implications for models of translation initiation inhibition. RNA. 2008;14:1480-91.
    [79]Wang B, Yanez A, Novina CD. MicroRNA-repressed mRNAs contain 40S but not 60S components. Proc Natl Acad Sci U S A.2008;105:5343-8.
    [80]Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5'UTR as in the 3'UTR. Proc Natl Acad Sci USA.2007;104:9667-72.
    [81]Maroney PA, Yu Y, Fisher J, Nilsen TW. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol.2006;13:1102-7.
    [82]Petersen CP, Bordeleau ME, Pelletier J, et al. Short RNAs repress translation after initiation in mammalian cells. Mol Cell.2006;21:533-42.
    [83]Nottrott S, Simard MJ, Richter JD. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol. 2006;13:1108-14.
    [84]Bhattacharyya SN, Habermacher R, Martine U, et al. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell.2006;125:1111-24.
    [85]Liu J, Valencia-Sanchez MA, Hannon GJ, et al. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol. 2005;7:719-23.
    [86]Sen GL, Blau HM. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol.2005;7:633-6.
    [87]Grimson A, Farh KK, Johnston WK, et al. MicroRNA targeting specificity in mammals:determinants beyond seed pairing. Mol Cell.2007;27(1):91-105.
    [88]Kedde M, Strasser MJ, Boldajipour B, et al. RNA-binding protein Dndl inhibits microRNA access to target mRNA. Cell.2007;131(7):1273-86.
    [89]Maziere P, Enright AJ. Prediction of microRNA targets. Drug Discov Today. 2007;12(11-12):452-8.
    [90]Zhu S, Si ML, Wu H, et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem.2007;282(19):14328-36.
    [91]le Sage C, Nagel R, Egan DA, et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J.2007;26(15):3699-708.
    [92]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell.2005;120(1):15-20.
    [93]Xie X, Lu J, Kulbokas EJ, et al. Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparison of several mammals. Nature. 2005;434(7031):338-45.
    [94]Johnson CD, Esquela-Kerscher A, Stefani Q et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007;67(16):7713-22.
    [95]Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A.2002;99(24):15524-9.
    [96]Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature.2005;435(7043):834-8.
    [97]Porkka KP, Pfeiffer MJ, Waltering KK, et al. MicroRNA expression profiling in prostate cancer. Cancer Res.2007;67(13):6130-5.
    [98]Visone R, Pallante P, Vecchione A, et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene. 2007;26(54):7590-5.
    [99]Mavrakis KJ, Wolfe AL, Oricchio E, et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol.2010;12:372-9.
    [100]Calin GA, Ferracin M, Cimmino A, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med.2005;353:1793-801.
    [101]Christgen M, Bruchhardt H, Hadamitzky C, et al. Comprehensive genetic and functional characterization of IPH-926:a novel CDH1-null tumour cell line from human lobular breast cancer. J Pathol.2009;217(5):620-32.
    [102]Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67(4):1424-9.
    [103]Scott GK, Mattie MD, Berger CE, et al. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res.2006;66(3):1277-81.
    [104]Shi XB, Xue L, Yang J, et al. An androgen-regulated miRNA suppresses Bakl expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A.2007;104(50):19983-8.
    [105]Schulte JH, Horn S, Otto T, et al. MYCN regulates oncogenic MicroRNAs in neuroblastoma. Int J Cancer.2008;122(3):699-704.
    [106]Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature.2007;449(7163):682-8.
    [107]Bommer GT, Gerin I, Feng Y, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol.2007;17(15):1298-307.
    [108]Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing:miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle.2007;6(13):1586-93.
    [109]Loffler D, Brocke-Heidrich K, Pfeifer G, et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood. 2007;110(4):1330-3.
    [110]Kulshreshtha R, Ferracin M, Wojcik SE, et al. A microRNA signature of hypoxia. Mol Cell Biol.2007,27(5):1859-67.
    [111]Woods K, Thomson JM, Hammond SM. Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem. 2007;282(4):2130-4.
    [112]Sylvestre Y, De Guire V, Querido E, et al. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem.2007;282(4):2135-43.
    [113]Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet.2006;38(9):1060-5.
    [114]Shah YM, Morimura K, Yang Q, et al. Peroxisome proliferator-activated receptor alpha regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol Cell Biol.2007;27(12):4238-47.
    [115]Mott JL, Kobayashi S, Bronk SF, et al. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene.2007;26(42):6133-40.
    [116]Lu Y, Thomson JM, Wong HY, et al. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol. 2007;310(2):442-53.
    [117]Thomson JM, Newman M, Parker JS, et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 2006;20(16):2202-7.
    [118]Blenkiron C, Goldstein LD, Thorne NP, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol.2007;8(10):R214.
    [119]Chiosea S, Jelezcova E, Chandran U, et al. Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res.2007;67(5):2345-50.
    [120]Muralidhar B, Goldstein LD, Ng G, et al. Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels. J Pathol.2007;212(4):368-77.
    [121]Suzuki HI, Yamagata K, Sugimoto K, et al. Modulation of microRNA processing by p53. Nature.2009;460:529-33.
    [122]Davis BN, Hilyard AC, Lagna Q et al. SMAD proteins control DROSHA mediated microRNA maturation. Nature.2008;454:56-61.
    [123]Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med.2009;13:39-53.
    [124]Paroo Z, Ye X, Chen S, et al. Phosphorylation of the human microRNAgenerating complex mediates MAPK/Erk signaling. Cell. 2009; 139:112-22.
    [125]Melo SA, Ropero S, Moutinho C, et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet. 2009;41:365-70.
    [126]Gillies JK, Lorimer IA. Regulation of p27Kipl by miRNA 221/222 in glioblastoma. Cell Cycle.2007;6(16):2005-9.
    [127]Galardi S, Mercatelli N, Giorda E, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem.2007;282(32):23716-24.
    [128]Kim HK, Lee YS, Sivaprasad U, et al. Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol.2006;174(5):677-87.
    [129]He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature.2007;447(7148):1130-4.
    [130]Kumar MS, Lu J, Mercer KL, et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet.2007;39(5):673-7.
    [131]Linsley PS, Schelter J, Burchard J, et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol.2007;27(6):2240-52.
    [132]Mertens-Talcott SU, Chintharlapalli S, et al. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res. 2007;67(22):11001-11.
    [133]Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A.2005;102(39):13944-9.
    [134]Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res.2007;67(3):976-83.
    [135]Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26(34):5017-22.
    [136]Matsubara H, Takeuchi T, Nishikawa E, et al. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene.2007;26(41):6099-105.
    [137]Scott GK, Goga A, Bhaumik D, et al. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem.2007;282(2):1479-86.
    [138]Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology.2007,133(2):647-58.
    [139]Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27(15):2128-36.
    [140]Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet.2006.;38(9):1060-5.
    [141]Lee DY, Deng Z, Wang CH, et al. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci U S A.2007;104(51):20350-5.
    [142]Mertens-Talcott SU, Chintharlapalli S, Li X, et al. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res.2007.;67(22):11001-11.
    [143]Samols MA, Skalsky RL, Maldonado AM, et al. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog.2007.;3(5):e65.
    [144]Hebert C, Norris K, Scheper MA, et al. High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer.2007;6:5.
    [145]Kulshreshtha R, Ferracin M, Wojcik SE, et al. A microRNA signature of hypoxia. Mol Cell Biol.2007;27(5):1859-67.
    [146]Marsit CJ, Eddy K, Kelsey KT. MicroRNA responses to cellular stress. Cancer Res.2006;66(22):10843-8.
    [147]Kutay H, Bai S, Datta J, et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem.2006;99(3):671-8.
    [148]Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769-73.
    [149]Tang F, Hajkova P, Barton SC, et al. MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res.2006,34(2):e9.
    [150]Kim do N, Chae HS, Oh ST, et al. Expression of viral microRNAs in Epstein-Barr virus-associated gastric carcinoma. J Virol.2007;81(2):1033-6.
    [151]Lawrie CH, Soneji S, Marafioti T, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer.2007; 121(5):1156-61.
    [152]Mattie MD, Benz CC, Bowers J, et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer.2006;5:24.
    [153]Pallante P, Visone R, Ferracin M, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer.2006;13(2):497-508.
    [154]Szafranska AE, Davison TS, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene.2007;26(30):4442-52.
    [155]Hutvagner Q Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science.2002;297(5589):2056-60.
    [156]Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 2006;26(21):8191-201.
    [157]Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther. 2006;13(6):496-502.
    [158]Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with'antagomirs'. Nature.2005;438(7068):685-9.
    [159]Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene. 2007;26(19):2799-803.
    [160]Elmen J, Lindow M, Silahtaroglu A, et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 2008;36(4):1153-62.
    [161]Cullen BR. RNAi the natural way. Nat Genet.2005;37(11):1163-5.
    [162]φrom UA, Kauppinen S, Lund AH. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene.2006;372:137-41.
    [163]Krutzfeldt J, Kuwajima S, Braich R, et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 2007;35(9):2885-92.
    [164]Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441(7092):537-41.
    [165]Lee YS, Kim HK, Chung S, et al. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem. 2005;280(17):16635-41.
    [166]Jing Q, Huang S, Guth S, et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell.2005;120(5):623-34.
    [167]Meng F, Henson R, Lang M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology.2006;130(7):2113-29.
    [168]Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A.2004;101(9):2999-3004.
    [169]Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257-61.
    [170]Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis:from genes to environment. Nat Rev Cancer.2006;6:674-687.
    [171]Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet.2002,31:339-346.
    [172]Ito Y, Sasaki Y, Horimoto M, et al. Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology.1998;27:951-8.
    [173]Boix L, Rosa JL, Ventura F, et al. c-met mRNA overexpression in human hepatocellular carcinoma. Hepatology.1994;19:88-91.
    [174]Suzuki K, Hayashi N, Yamada Y, et al. Expression of the c-met protooncogene in human hepatocellular carcinoma. Hepatology.1994;20:1231-6.
    [175]Moon WS, Rhyu KH, Kang MJ, et al. Overexpression of VEGF and angiopoietin 2:a key to high vascularity of hepatocellular carcinoma? Mod Pathol.2003;16:552-7.
    [176]Hirohashi K, Yamamoto T, Uenishi T, et al. CD44 and VEGF expression in extrahepatic metastasis of human hepatocellular carcinoma. Hepatogastroenterology.2004;51:1121-3.
    [177]Motoo Y, Sawabu N, Yamaguchi Y, et al. Sinusoidal capillarization of human hepatocellular carcinoma:possible promotion by fibroblast growth factor. Oncology.1993;50:270-4.
    [178]Rosmorduc O, Wendum D, Corpechot C, et al, Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis. Am J Pathol. 1999;155:1065-73.
    [179]Campbell JS, Hughes SD, Gilbertson DQ et al. Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci USA.2005;102:3389-94.
    [180]Jagirdar J, Nonomura A, Patil J, et al. Ras oncogene p21 expression in hepatocellular carcinoma. J Exp Pathol.1989;4:37-46.
    [181]Takada S, Koike K. Activated N-ras gene was found in human hepatoma tissue but only in a small fraction of the tumor cells. Oncogene. 1989;4:189-93.
    [182]Challen C, Guo K, Collier JD, et al. Infrequent point mutations in codons 12 and 61 of ras oncogenes in human hepatocellular carcinomas. J Hepatol. 1992;14:342-6.
    [183]Xu XR, Huang J, Xu ZG, et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci USA.2001;98:15089-94.
    [184]Laurent-Puig P, Legoix P, Bluteau O, et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology.2001;120:1763-73.
    [185]Satoh S, Daigo Y, Furukawa Y, et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet.2000;24:245-50.
    [186]Ding Q, Xia W, Liu JC, et al. Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mol Cell. 2005;19:159-70.
    [187]Zucman-Rossi J, Jeannot E, Nhieu JT, et al. Genotype-phenotype correlation in hepatocellular adenoma:new classification and relationship with HCC. Hepatology.2006;43:515-24.
    [188]Boige V, Laurent-Puig P, Fouchet P, et al. Concerted nonsyntenic allelic losses in hyperploid hepatocellular carcinoma as determined by a high-resolution allelotype. Cancer Res.1997;57:1986-90.
    [189]Nagai H, Pineau P, Tiollais P, et al. Comprehensive allelotyping of human hepatocellular carcinoma. Oncogene.1997;14:2927-33.
    [190]Lin Y, Shi CY, Li B, et al. Tumour suppressor p53 and Rb genes in human hepatocellular carcinoma. Ann Acad Med.1996;25:22-30.
    [191]Higashitsuji H, Itoh K, Nagao T, et al. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin repeat protein overexpressed in hepatomas. Nat Med.2000;6:96-9.
    [192]Joo M, Kang YK, Kim MR, et al. Cyclin D1 overexpression in hepatocellular carcinoma. Liver.2001;21:89-95.
    [193]Hickman ES, Moroni MC, Helin K. The role of p53 and pRB in apoptosis and cancer. Curr Opin Genet Dev.2002;12:60-6.
    [194]Weihrauch M, Benicke M, Lehnert G, et al. Frequent k-ras-2 mutations and p16(INK4A) methylation in hepatocellular carcinomas in workers exposed to vinyl chloride. Br J Cancer.2001;84.982-9.
    [195]Matsuda Y, Ichida T, Matsuzawa J, et al. p16(INK4) is inactivated by extensive CpG methylation in human hepatocellular carcinoma. Gastroenterol ogy.1999;116:394-400.
    [196]Scelfo RA, Schwienbacher C, Veronese A, et al. Loss of methylation at chromosome 11p15.5 is common in human adult tumors. Oncogene. 2002;21:2564-72.
    [197]Schwienbacher C, Gramantieri L, Scelfo R, et al. Gain of imprinting at chromosome 11p15:A pathogenetic mechanism identified in human hepatocarcinomas. Proc Natl Acad Sci USA.2000;97:5445-9.
    [198]Fabregat I, Roncero C, Fernandez M. Survival and apoptosis:a dysregulated balance in liver cancer. Liver Int.2007;27:155-62.
    [199]Ganten TM, Koschny R, Haas TL, et al. Proteasome inhibition sensitizes hepatocellular carcinoma cells, but not human hepatocytes, to TRAIL. Hepatology.2005;42:588-97.
    [200]Takehara T, Liu X, Fujimoto J, et al. Expression and role of Bcl-xL in human hepatocellular carcinomas. Hepatology.2001;34:55-61.
    [201]Watanabe J, Kushihata F, Honda K, et al. Prognostic significance of Bcl-xL in human hepatocellular carcinoma. Surgery.2004;135:604-12.
    [202]Beerheide W, Tan YJ, Teng E, et al. Downregulation of proapoptotic proteins Bax and Bcl-X(S) in p53 overexpressing hepatocellular carcinomas. Biochem Biophys Res Commun.2000;273:54-61.
    [203]Chen GG, Lai PB, Chan PK, et al. Decreased expression of Bid in human hepatocellular carcinoma is related to hepatitis B virus X protein. Eur J Cancer. 2001;37:1695-702.
    [204]Bressac B, Kew M, Wands J, et al. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature.1991;350:429-31.
    [205]Birchmeier C, Birchmeier W, Gherardi E, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol.2003;4:915-25.
    [206]Stuart KA, Riordan SM, Lidder S, et al. Hepatocyte growth factor/scatter factor induced intracellular signalling. Int J Exp Pathol.2000;81:17-30.
    [207]Chen WS. Advances in the relationship between microRNA and mechanism of human primary hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi. 2009;17:1218-1223.
    [208]Xi Y, Nakajima Q Gavin E, et al. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA.2007,13:1668-1674.
    [209]Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene.2006;25:2537-45.
    [210]Braconi C, Patel T. MicroRNA expression profiling:a molecular tool for defining the phenotype of hepatocellular tumors. Hepatology.2008;47:1807-9.
    [211]Huang YS, Dai Y, Yu XF, et al. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J Gastroenterol Hepatol.2008;23:87-94.
    [212]Ladeiro Y, Couchy G, Balabaud C, et al. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology.2008;47:1955-63.
    [213]Varnholt H, Drebber U, Schulze F, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology. 2008;47:1223-32.
    [214]Wang Y, Lee AT, Ma JZ, et al. Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J Biol Chem. 2008;283:13205-15.
    [215]Wong QW, Lung RW, Law PT, et al. MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathminl. Gastroenterol ogy.2008;135:257-69.
    [216]Kutay H, Bai S, Datta J, et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem.2006;99:671-8.
    [217]Budhu A, Jia HL, Forgues M, et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology.2008;47:897-907.
    [218]Gramantieri L, Ferracin M, Fornari F, et al. Cyclin Gl is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res.2007;67:6092-9.
    [219]Roessler S, Budhu A, Wang XW. Future of molecular profiling of human hepatocellular carcinoma. Future Oncol.2007;3:429-439.
    [220]Lee EJ, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer.2007;120:1046-1054.
    [221]Chang TC, Yu D, Lee YS, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet.2008;40:43-50.
    [222]O'Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature.2005;435:839-843.
    [223]Gao P, Wong CC, Tung EK, et al. Deregulation of microRNA expression occurs early and accumulates in early stages of HBV-associated multistep hepatocarcinogenesis. J Hepatol.2010 [Epub ahead of print].
    [224]Bruix J, Sherman M, Llovet JM, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol.2001;35:421-30.
    [225]Liver Cancer Study Group of Japan. Predictive factors for long term prognosis after partial hepatectomy for patients with hepatocellular carcinoma in Japan. Cancer.1994;74:2772-80.
    [226]Chevret S, Trinchet JC, Mathieu D, et al. A new prognostic classification for predicting survival in patients with hepatocellular carcinoma. Groupe d'Etude et de Traitement du Carcinome Hepatocellulaire. J Hepatol.1999,31:133-41.
    [227]The Cancer of the Liver Italian Program (CLIP). Prospective validation of the CLIP score:a new prognostic system for patients with cirrhosis and hepatocellular carcinoma. Hepatology.2000;31:840-5.
    [228]Leung TW, Tang AM, Zee B, et al. Construction of the Chinese University Prognostic Index for hepatocellular carcinoma and comparison with the TNM staging system, the Okuda staging system, and the Cancer of the Liver Italian Program staging system:a study based on 926 patients. Cancer. 2002;94:1760-9.
    [229]Barbara L, Benzi G, Gaiani S, et al. Natural history of small untreated hepatocellular carcinoma in cirrhosis:a multivariate analysis of prognostic factors of tumor growth rate and patient survival. Hepatology.1992;16:132-7.
    [230]Bruix J, Boix L, Sala M, et al. Focus on hepatocellular carcinoma. Cancer Cell. 2004;5:215-9.
    [231]Kaposi-Novak P, Lee JS, Gomez-Quiroz L, et al. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest.2006;116:1582-95.
    [232]Ito Y, Matsuura N, Sakon M, et al. Expression and prognostic roles of the G1-S modulators in hepatocellular carcinoma:p27 independently predicts the recurrence. Hepatology.1999;30:90-9.
    [233]Tannapfel A, Grund D, Katalinic A, et al. Decreased expression of p27 protein is associated with advanced tumor stage in hepatocellular carcinoma. Int J Cancer.2000;89:350-5.
    [234]Nakai S, Masaki T, Shiratori Y, et al. Expression of p57(KIP2) in hepatocellular carcinoma:relationship between tumor differentiation and patient survival. Int J Oncol.2002;20:769-75.
    [235]Garcia EJ, Lawson D, Cotsonis G, et al. Hepatocellular carcinoma and markers of apoptosis (bcl-2, bax, bcl-x):prognostic significance. Appl Immunohistochem Mol Morphol.2002;10:210-7.
    [236]Gramantieri L, Fornari F, Ferracin M, et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res.2009;15(16):5073-81.
    [237]Camps C, Buffa FM, Colella S, et al. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res. 2008;14:1340-8.
    [238]Volinia S, Calin GA, Liu CQ et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103:2257-61.
    [239]Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer.2006;6:259-69.
    [240]Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer.2006;6:857-66.
    [241]Hanahan D, Weinberg RA. The hallmarks of cancer. Cell.2000;100.57-70.
    [242]Jopling CL, Yi M, Lancaster AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science.2005;309:1577-1581.
    [243]Jopling CL. Regulation of hepatitis C virus by microRNA-122. Biochem Soc Trans.2008;36:1220-1223.
    [244]Murakami Y, Aly HH, Tajima A, et al. Regulation of the hepatitis C virus genome replication by miR-199a. J Hepatol.2009;50(3):453-460.
    [245]Ura S, Honda M, Yamashita T, et al. Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology.2009;49(4):1098-112.
    [246]Qi P, Dou TH, Geng L, et al. Association of a variant in MIR 196A2 with susceptibility to hepatocellular carcinoma in male Chinese patients with chronic hepatitis B virus infection. Hum Immunol.2010;71(6):621-6.
    [247]Yang L, Ma Z, Wang D, Zhao W, et al. MicroRNA-602 regulating tumor suppressive gene RASSF1A is overexpressed in hepatitis B virus-infected liver and hepatocellular carcinoma. Cancer Biol Ther.2010;9(10):803-8.
    [248]Wang Y, Lu Y, Toh ST, et al. Lethal-7 is down-regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. J Hepatol.2010;53(1):57-66.
    [249]Huang J, Wang Y, Guo Y, et al. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology. 2010;52(1):60-70.
    [250]Jiang J, Gusev Y, Aderca I, et al. Association of MicroRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res.2008;14(2):419-27.
    [251]Liu W, Mao SY, Zhu WY. Impact of tiny miRNAs on cancers. World J Gastroenterol.2007;13:497-502.
    [252]Okamoto K, Li H, Jensen MR, et al. Cyclin G recruits PP2A to dephosphorylate Mdm2. Mol Cell.2002;9:761-71.
    [253]Ohtsuka T, Jensen MR, Kim HG, et al. The negative role of cyclin G in ATM-dependent p53 activation. Oncogene.2004;23:5405-8.
    [254]Fornari F, Gramantieri L, Ferracin M, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene. 2008;27(43):5651-61.
    [255]Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell.2005;120:635-47.
    [256]Shah YM, Morimura K, Yang Q, et al. Peroxisome proliferator-activated receptor alpha regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol Cell Biol.2007;27(12):4238-47.
    [257]Frankel LB, Christoffersen NR, Jacobsen A, et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem.2008;283:1026-33.
    [258]Voorhoeve PM, le Sage C, Schrier M, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell.2006;124:1169-81.
    [259]Lin CJ, Gong HY, Tseng HC, et al. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun.2008;375(3):315-20.
    [260]Elyakim E, Sitbon E, Faerman A, et al. hsa-miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy. Cancer Res. 2010;70(20):8077-87.
    [261]Dai R, Li J, Liu Y, et al. miR-221/222 suppression protects against endoplasmic reticulum stress-induced apoptosis via p27(Kipl)- and MEK/ERK-mediated cell cycle regulation. Biol Chem.2010;391(7):791-801.
    [262]Fornari F, Milazzo M, Chieco P, et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res.2010;70(12):5184-93.
    [263]Su H, Yang JR, Xu T, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 2009;69(3):1135-42.
    [264]Braconi C, Valeri N, Gasparini P, et al. Hepatitis C virus proteins modulate microRNA expression and chemosensitivity in malignant hepatocytes. Clin Cancer Res.2010,16(3):957-66.
    [265]Chung GE, Yoon JH, Myung SJ, et al. High expression of microRNA-15b predicts a low risk of tumor recurrence following curative resection of hepatocellular carcinoma. Oncol Rep.2010;23(1):113-9.
    [266]Li N, Fu H, Tie Y, et al. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett.2009;275(1):44-53.
    [267]Zhang X, Liu S, Hu T, et al. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology.2009;50(2):490-9.
    [268]Salvi A, Sabelli C, Moncini S, et al. MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. FEBS J.2009;276(11):2966-82.
    [269]Tan HX, Wang Q, Chen LZ, et al. MicroRNA-9 reduces cell invasion and E-cadherin secretion in SK-Hep-1 cell. Med Oncol.2010;27(3):654-60.
    [270]Coulouarn C, Factor VM, Andersen JB, et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene.2009;28(40):3526-36.
    [271]Yao J, Liang L, Huang S, et al. MicroRNA-30d promotes tumor invasion and metastasis by targeting Galphai2 in hepatocellular carcinoma. Hepatology. 2010;51(3):846-56.
    [272]Wong QW, Ching AK, Chan AW, et al. MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin Cancer Res.2010;16(3):867-75.
    [273]Yang F, Yin Y, Wang F, et al. miR-17-5p Promotes migration of human hepatocellular carcinoma cells through the p38 mitogen-activated protein kinase-heat shock protein 27 pathway. Hepatology.2010;51(5):1614-23.
    [274]Ding J, Huang S, Wu S, et al. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol.2010;12(4):390-9.
    [275]Wong CC, Wong CM, Tung EK, et al. The micoRNA MiR-139 suppresses metastasis and progression of hepatocellular carcinoma by downregulating Rho-kinase 2 (ROCK2). Gastroenterology.2010. [Epub ahead of print]
    [276]Liang L, Wong CM, Ying Q, et al. MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology.2010,52(5):1731-40.
    [277]Bhattacharya SD, Garrison J, Guo H, et al. Micro-RNA-181a regulates osteopontin-dependent metastatic function in hepatocellular cancer cell lines. Surgery.2010;148(2):291-7.
    [278]Shen Q, Cicinnati VR, Zhang X, et al. Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Mol Cancer.2010;9:227.
    [279]Salvi A, Arici B, Portolani N, et al. In vitro c-met inhibition by antisense RNA and plasmid-based RNAi down-modulates migration and invasion of hepatocellular carcinoma cells. Int J Oncol.2007;31:451-60.
    [280]Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature.2008;452:896-9.
    [281]Kota J, Chivukula RR, O'Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137(6):1005-1017.
    [282]戚鹏,高春芳miRNA在肝细胞癌中的研究进展.中国生物工程杂志.2008;28:94-101.
    [283]Xiao J, Yang B, Lin H, et al. Novel approaches for gene-specific interference via manipulating actions of microRNAs:examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol.2007;212:285-292.
    [284]Yang J, Zhou F, Xu T, et al. Analysis of sequence variations in 59 microRNAs in hepatocellular carcinomas. Mutat Res.2008;638:205-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700