用户名: 密码: 验证码:
WC硬质合金顶锤的理论研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以有限元法作为结构分析手段,建立了高压碳化钨顶砧(顶锤)的有限元力学模型。在六面顶顶锤工作的超高压条件下,完成了六面顶顶锤几何参数的模拟分析及优化设计,为金刚石六面顶压机关键零部件——碳化钨顶锤的设计与分析提供了一套较为完整的解决方案。
     1.以碳化钨顶锤小斜边末尾处节点所在位置为参考点确立了碳化钨顶锤的破裂判据。分析结果表明碳化钨顶锤的传压效率伴随着斜边宽度的增加以及斜边角度的减小而降低;加热顶锤的热剪切应力值较非加热锤的热剪切应力值高出18%,在理论上解释了加热顶锤使用寿命比非加热顶锤使用寿命低的实验事实。
     2.基于贾晓鹏教授的“双斜边碳化钨顶锤”的设计构想,以有限元法和金刚石高压合成实验为手段进行了设计构想的理论研究与实验验证,成功设计出一系列新型贾氏双斜边碳化钨顶锤。贾氏双斜边碳化钨顶锤能够提高碳化钨顶锤的传压效率,降低超硬材料合成所需的油压值。贾氏双斜边碳化钨顶锤能够在低油压值时成功合成出高品级工业金刚石和优质宝石级金刚石。
     3.基于贾晓鹏教授的“复合式顶锤”的设计构想,以多层压力容器设计理论为基础,运用有限元法对大腔体六面顶压机配套顶锤进行优化分析,设计出一系列新型贾氏碳化钨复合顶锤。在不降低高压腔体密封性和顶锤性能的前提下,贾氏碳化钨复合顶锤的碳化钨锤头重量较原有碳化钨顶锤大幅度缩小,但其抗冲击能力却得到加强;贾氏碳化钨复合顶锤能够成功合成出高品级工业金刚石和优质宝石级金刚石。
     4.优化设计出几种新型功能碳化钨顶锤,分析结果表明新型圆角碳化钨顶锤,能够降低应力集中效应,相同使用条件下,圆角顶锤使用寿命能够较传统顶锤大幅提高。6-2式一体“四棱锥”形碳化钨顶锤,在不改变铰链式六面顶压机液压系统的前提下,其可获得的极限腔体压力可达到9.56 GPa,将极限腔体压力较传统顶锤升高44.2 %。为了增大六面顶压机合成腔体而设计的异形碳化钨顶锤能够获得5-6 GPa的腔体压力,可以提供优质工业金刚石、立方氮化硼等超硬材料所需的合成条件。
We have developed a modeling of effective design of WC anvil by finite element method (FEM). The criterion for crack of WC anvil used in cubic high pressure apparatus (CHPA) has been founded successfully. According to the von Mises criterion, some new type WC anvil have been developed, for example, double-beveled anvil, hybrid-anvil, double-beveled hybrid-anvil, radius anvil, 6-2 type WC anvil and rectangular WC anvil.
     The criterion for crack of WC anvil used in CHPA has been founded successfully. The simulation results indicated that the criterion for crack of WC anvil should make the reference point at the end of bevel edge and the optimum value of the angle and length of the bevel edge should be 13 mm and 41.5 degree. Further more, we performed finite element simulations of high pressure experiment in CHPA to determine the temperature and the stress in WC anvil.
     A new double-beveled anvil for the synthesis of high-quality diamonds has been described. Our results indicate that the pressure generation of a double-beveled anvil is more efficient than that of a single-beveled anvil. Furthermore, double-beveled anvil can maintain the pressurized seal stability of the sample chamber, which is often sacrificed with improve the pressure of sample cell.
     A hybrid-anvil and double-beveled hybrid-anvil used in CHPA are developed, which can save weight compared to the traditional anvil. The ultimate attainable cell pressure of a double-beveled hybrid-anvil is about 7.0 GPa, which is more efficient than that of a single-beveled anvil. We note from high pressure experiments that the rate of failure crack decreases and the cost of anvil save after the modification of the anvil.
     We have developed and analyzed some new functional WC anvil. Our results indicate that the stress concentration of radius anvil can be decreased sharply compared to the traditional anvil. In order to increase the ultimate attainable cell pressure, a 6-2 type WC anvil has been developed. Our results indicate that the ultimate attainable cell pressure of 6-2 type WC anvil is about 9.56 GPa. A new type rectangular WC anvil have been developed too, whose aim is to use for increase the volume of high-pressure cell and synthetic higher quality diamond than traditional anvil. The rectangular WC anvil can increase the volume of cell about 18.9 % compared to the traditional anvil.
引文
1. MAGILL F N. the Nobel Prize winners: Physics [M]. Pasadena: Salem Press, 1989, 2: 528-538.
    2. BRIDGMAN P W. Recent work in the field of high pressures [J]. Amer Scient, 1943, 31(1): 1-35.
    3. SLATER J C. P W Bridgman and high—pressure physics [J]. Science, 1965, 148(3 671): 805—806.
    4.刘娜,刘战存.布里奇曼对高压物理学的研究[J].大学物理, 2009, 28(3): 43-48.
    5. PALYANOV YU N, BORZDOV YU M, KHOKHRYAKOV A F, KUPRIYANOV I N, SOBOLEV N V. Sulfide melts–graphite interaction at HPHT conditions: Implications for diamond genesis [J]. Earth and Planetary Science Letters, 2006, 250 : 269–280.
    6. LIANG Z Z , KANDA H, JIA X, MA H A, ZHU P W, GUAN QING-FENG, ZANG C Y. Synthesis of diamond with high nitrogen concentration from powder catalyst-C-additive NaN3 by HPHT [J]. Carbon, 2006, 44: 913–917.
    7. QIU W, CHOWDHURY S, HAMMER R, VELISAVLJEVIC N, BAKER P, VOHRA Y K. Physical and mechanical properties of C60 under high pressures and high temperatures [J]. High Pressure Research, 2006, 26: 175– 183.
    8. DUB S N, PETRUSHA I A. Mechanical properties of polycrystalline cBN obtained from pyrolytic gBN by direct transformation technique [J]. High Pressure Research, 2006, 26: 71- 77.
    9. HALL H TRACY. High Pressures-Temperatures Apparatus [M]. New York: Gordon and Breach Science Publishers, 1964.
    10. BRIDGMAN W. the Physics of High Pressure [M]. London: G. Bell and Sons Ltd, 1952.
    11. BRIDGMAN P W, Polymorphism, Principally of the Elements up to 50,000 kg/cm2 [J]. Phys. Rev., 1935, 48:893.
    12.齐克利斯著;王殿儒,罗明晖译.高压和超高压物理-化学研究技术[M].北京:科学出版社, 1983.
    13. SUNG C M. A century of progress in the development of very high pressure apparatus for scientific research and diamond synthesis [J]. High Temperature-High Pressure, 1997, 29: 253-293.
    14.方亭亭.值得我国推广的新型液压机——大型凹砧式两面顶液压机[J].超硬材料科学与工程, 1995, 3: 8-10.
    15. HALL H T. Ultra-High-Pressure, High-Temperature Apparatus: the“Belt”[J]. Rev. Sci. Instr., 1960, 31:125-131.
    16. HALL H T. Anvil Guide Device for Multiple-Anvil High Pressure Apparatus [J]. Rev. Sci. Instr., 1962, 33: 1278.
    17.姚裕成等.从两面顶、六面顶、凹模的特点论我国合成金刚石装备大型化的方向[J].人工晶体学报, 1999, 1。
    18.郭永存,李植华,张广云.金刚石的人工合成与应用[M].北京:科学出版社,1984。
    19.王光祖.中国超硬材料发展30周年,中国超硬材料发展战略研讨会论文集[C].郑州:[出版者不祥],1993.
    20.陆振勤,郭艳青.关于六面顶压机液压元件修复的探讨[J].金刚石与磨料磨具工程,1998: 24-25.
    21.梁颖.“六面顶压机关键零部件的结构优化设计”[D].郑州:郑州大学, 2005.
    22.秦杰明.“Fe100-xNix粉末触媒合成工业金刚石的研究”[D].吉林:吉林大学原子与分子物理研究所超硬材料国家重点实验室, 2006.
    23.张建琼.“金属—硼—碳系工业金刚石的高温高压合成”[D].吉林:吉林大学原子与分子物理研究所超硬材料国家重点实验室, 2006.
    24. Haygarth J C, Geffing I C, and Kennedy G. C., J. Appl. Phys [J], 1967, 38:1557.
    25.郝兆印,陈宇飞,邹广田.人工合成金刚石[M].吉林:吉林大学出版社,1996.
    26.胡继良.金刚石合成高压腔白云石内衬的研究[J].探矿工程, 1995, 3: 18.
    27.韩奇钢,马红安,李瑞,周林,田宇,贾晓鹏.六面顶压机硬质合金顶锤应力与破裂机理的有限元分析[J].重型机械,2007, 3: 27-31.
    28.石侃.“Cz法晶体生长中温度场分布的有限元分析”[D].吉林:长春理工大学, 2009.
    29.武钢.“钢框架加腋节点的力学性能研究”[D].内蒙古:内蒙古工业大学,2007.
    30.卜高乐“.变截面冷弯成型的FEA仿真研究”[D].内蒙古:北方工业大学, 2007.
    31.邢铁雷.“连续刚构桥静动力分析及混凝土应力测试试验”[D].重庆:西南交通大学, 2008.
    32.薛霆虓.“大尺度断层活动数值模拟及地震学研究”[D].安徽:中国科学技术大学, 2008.
    33.张玉梅.“早期混凝土的温度应力及裂缝控制”[D].北京:北京交通大学, 2007.
    34.田常兵.“小钢管劲性骨架混凝土箱拱施工阶段力学性能研究”[D].湖北:武汉理工大学, 2007.
    35.苏工兵.“苎麻茎秆力学建模及有限元模拟分析研究”[D].湖北:华中农业大学, 2007.
    36.杜耀辉.“混凝土箱梁早期温度裂缝分析及其工程应对措施”[D].陕西:长安大学, 2008.
    37.刘泉.“松原龙华松花江特大桥试验研究”[D].黑龙江:东北林业大学, 2008.
    38.曾怡.“低振动低噪声集装箱起重机上部结构动力快速分析”[D].上海:同济大学, 2007.
    39.黄菲.“沥青路面永久变形数值模拟及车辙预估”[D].江苏:东南大学, 2006.
    40.张雪冰.“基于.NET的平面杆系结构仿真系统的研究与开发”[D].安徽:安徽理工大学, 2008.
    41. GERALD CURTIS F., Wheatley Patrick O., Applied Numerical Analysis [J], Pearson Education, 2006.
    42.小飒工作室.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社,2004(6).
    43.博弈创作室. ANSYS9.0经典产品基础教程与实例详解[M].北京:中国水利水电出版社,2006.
    44.王强,蔡冬梅,何芳,赵东.基于三维有限元的六面顶顶锤应力分析[J].重型机械,2004, 3: 45-48.
    45.姜一平,贾晓鹏,马红安,等.高压合成La填充型CoSb3方钴矿热电材料及其电输运性能[J].高压物理学报,2009, 23(2): 87-90.
    46. LI X L, MA H A, ZUO G H, et al. Low-temperature Sintering of High-density Aluminium Nitride Ceramics without Additives at High Pressure [J]. Scripta Materialia, 2007, 56:1015–1018.
    47.王光祖,翟小青,罗明.铰链式六面砧高压高温装置[J].金刚石与磨料磨具工程.2000,120:34—37.
    48.李志宏,赵清国,赵博,等.发展中的中国六面顶压机和人造金刚石[J].磨料磨具通讯,2007, 195 (1): 1-5.
    49. GETTING IVAN C, CHEN GANGLIN, and BROWN JENNIFER A. the Strength and Rheology of Commercial Tungsten Carbide Cermets Used in High-pressure Apparatus [J]. Pure and Applied Geophysics, 1993, 141(2/3/4): 545-577.
    50.张学言,闫澍旺.岩土塑性力学基础[M].天津:天津大学出版社,2004: 76-77.
    51. VENKATESWARAN C, ANBUKUMARAN K, VICTOR JAYA N, et al. Design and Performance of Belt-type High Pressure High Temperature Apparatus [J]. Rev Sci Instrum, 1997, 68(1):189-192.
    52.李尚升.优质IIa型宝石级金刚石的高温高压合成及机理研究[D].长春:吉林大学原子与分子物理研究所超硬材料国家重点实验室, 2009:23-34.
    53.王民,王松顺.硬质合金顶锤和压缸的破裂特征、破坏因素的分析和提高使用寿命的途径[J].硬质合金,1994, 11(4): 231-240.
    54. MAO H K,and BELL P M. Carnegie Inst. Washington Year, 1977[C].
    55.邹仿棱.国内外顶锤生产技术状况及发展方向[J].有色金属, 1999:7-20.
    56.张春友,陈成,陈硕.节钴型梯度硬质合金的研究[J].湖南冶金,2005:3-11.
    57. HAN QIGANG, MA HONGAN, LI RUI, ZHOU LIN, TIAN YU, LIANG ZHONGZHU, JIA XIAOPENG. Finite element analysis of high-pressure anvils according to the principle of lateral support [J]. J. Appl. Phys., 2007, 102: 084504.
    58. HAN QIGANG, MA HONGAN, LI RUI, ZHOU LIN, TIAN YU, JIA XIAOPENG. Finite element design of double bevel anvils of large volume cubic high pressure apparatus [J]. Rev. Sci. Instrum., 2007, 78:113906.
    59. CHANG YUAN-CHENG, ZHANG YI-MEN, ZHANG YU-MING. Numerical simulation of transconductance of AlGaN/GaN heterojunction field effect transistors at high temperatures [J]. Chinese Physics, 2006, 15(3):636-640.
    60.龙文元,蔡启舟,魏伯康,陈立亮.相场法模拟多元合金过冷熔体中的枝晶生长[J].物理学报, 2006, 55:1341-1345.
    61. BUTELER D.I., NEVES P.C.U., RAMOS L.V., SANTOS C.E.R., SOUZA R.M., SINATORA A. Effect of anvil geometry on the stretching of cylinders [J]. Journal of Materials Processing Technology, 2006, 179:50-55.
    62. DENG DONG-MEI, LIU ZHU-BAR, ZHOU LAI-SHUI. Numerical Simulation of Inner Stress Fields for Stretching Block With Rectangular Section Between Flat Anvils[J]. Journal of iron and steel research, international, 2006, 13:75-78.
    63. BRIDGMAN P. W. Reply to“Remarks on Compressive and Tensile Strengths”[J]. J. Appl. Phys, 1947, 18:782-783.
    64. HAYGARTH T. C., GEFFING I. C., KENNEDY G. C. Determination of the Pressure of the Barium I‐II Transition with Single‐Stage Piston‐Cylinder Apparatus [J]. J. Appl. Phys. 1967, 38: 4557.
    65. MA H. A., JIA X. P., CHEN L. X., ZHU P. W., GUO W. L., GUO X. B., WANG Y. D., LI S. Q., ZOU G. T., ZHANG GRACE, PHILLIP BEX. High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4 [J]. J. Phys: Condens. Matter, 2002, 14: 11269-11273.
    66. WILLIAM C. MOSS, JOHN O. HALLAUIST, ROBIN REICHLIN, KENNETH A. GOETTEL, and SUE MARTIN. Finite element analysis of the diamond anvil cell: Achieving 4.6 Mbar [J]. Appl. Phys. Lett., 1986, 48: 1258-1260.
    67. XU JI-AN, MAO HO-KWANG, HEMLEY RUSSELL J., HINES EARL. Large volume high-pressure cell with supported moissanite anvils [J]. Rev. Sci. Instrum, 2004, 75:1034.
    68. YAMAZAKI D, KARATO S. High-pressure rotational deformation apparatus to 15 GPa [J]. Rev. Sci. Instrum., 2001, 72: 4207.
    69. NISHIYAMA NORIMASA, WANG YANBIN, SANEHIRA TAKESHI, IRIFUNE TETSUO, RIVERS MARK L. Development of the Multi-anvil Assembly 6-6 for DIA and D-DIA type high-pressure apparatuses [J], High Pressure Research, 2008, 28(3): 307-314.
    70. TANGE YOSHINORI, IRIFUNE TETSUO, FUNAKOSHI KEN-ICHI. Pressure generation to 80 GPa using mulyianvil apparatus with sintered diamond anvils [J].High Pressure Research, 2008, 28(3), 245-254.
    71.贾晓鹏.顶锤:中国, ZL 200620200088.2(p), 2007.
    72. HAN QI-GANG, JIA XIAO-PENG, QIN JIE-MING, LI RUI, ZHANG CONG, LI ZHAN-CHANG, TIAN YU, MA HONGAN. FEM study on a double-beveled anvil and its application to synthetic diamonds[J]. High Pressure Research, 2009,29 (3): 449–456.
    73. HAN QI-GANG, JIA XIAO-PENG, QIN JIE-MING, LI RUI, ZHANG CONG, LI ZHAN-CHANG, TIAN YU, MA HONGAN. Finite-element analysis on performance and shear stress of cemented tungsten carbide anvils used in the China-type cubic-anvil high-pressure apparatus [J]. High Pressure Research, 2009, 29 (3): 457–465.
    74. FORSGREN K. F, DRICKAMER H. G.. Design Variables for a High Pressure Cell with Supported Taper Pistons[J]. Rev. Sci. Instrum 1965, 36:1709.
    75.臧传义.“优质Ib型宝石级金刚石单晶的合成及机理研究”[D].长春:吉林大学超硬材料国家重点实验室,2006.
    76.方啸虎,高为鑫,郑日升,温简杰,柯尊斌,杨益.我国当前超硬材料压机大型化发展的走势及瓶颈和出路[C]. 2007年中国超硬材料行业发展论坛.
    77.左宏森.大腔体合成金刚石技术和装备的历史性进展[N].中国超硬材料网,2009-12-01.
    78. VENKATESWARAN C., ANBUKUMARAN K., VICTOR JAYA N., NATARAJAN S. Design and performance of a belt-type high pressure, high temperature apparatus [J]. Rev. Sci. Instrum, 1987,68 (1):189.
    79. HAN QI-GANG, MA HONG-AN, HUANG GUO-FENG, ZHANG CONG, LI ZHAN-CHANG, JIA XIAO-PENG. Hybrid-anvil: a suitable anvil for large volume cubic high pressure apparatus [J]. Review of Scientific Instruments, 2009, 80:096107.
    80.韩奇钢,马红安,李瑞,张聪,李战厂,贾晓鹏.基于有限元法确立碳化钨顶锤的破裂判据[J].高压物理学报,2010, 24(1):1-5.
    81.贾晓鹏.顶锤钢环:中国, ZL 200420067478.8 [P], 2005.
    82.贾晓鹏.顶锤钢环:中国, ZL 200620200089.7 [P], 2007.
    83.贾晓鹏.顶锤钢环:中国, ZL 200420067766.3 [P], 2005.
    84. HANS J. MUELLER, FRANK R. SCHILLING, JOERN LAUTERJUNG, CHRISTIAN LATHEe. A stand-free pressure calibration using simultaneous XRD and elastic property measurements in a multi-anvil device [J]. Eur. J. Mineral, 2003,15:865-873.
    85.贾晓鹏.六面顶压机顶锤:中国, ZL 200420067479.2 [P],2005.
    86.贾晓鹏.顶锤:中国, ZL 200520200063.8 [P], 2006.
    87.苑执中,彭明生,蒙宇飞.高温高压处理钻石的谱学研究[J ] .矿物学报, 2002 , 22 (4) : 379—382.
    88. CHRISTOPHER P SMITH, GRORGE BOSSHART, JOHANN PONAHLO, et al. GE POL diamonds: before and after [J]. Gems & Gemology, 2000, 36 (3): 192 - 215.
    89. KARL SCHMETZER. Clues to the process used by General Electric to enhance the GE POL diamonds [J]. Gems & Gemology, 1999, 35 (4): 186 - 190.
    90. CHALAIN,J-P FRITSCH E, H A H~NNI. Identification of GE POL diamonds: a second step [J]. J Gemm, 2000, 27 (2): 73-78.
    91. THOMAS M MOSES, JAMES E SHIGLEY, SHANE F MCCLURE, et al. Observations on GE2Processed diamond: A photographic record [J]. Gems & Gemology, 1999, 35 (3): 14 - 22.
    92. WEERDT F DE, ROYEN J VAN. Investigation of seven diamonds. HPHT treated by Nova diamonds [J]. J Gemm, 2000, 27 (4): 201-208.
    93. ILENE M REINITZ, PETER R BUERKI, JAMES E SHIGLEY, et al. Identification of HPHT-treated yellow to green diamonds [J] . Gems & Gemology, 2000, 36 (2): 128 - 137.
    94.苑执中,彭明生,杨志军.高温高压处理改色的黄绿色金刚石[J ].宝石和宝石学杂志, 2000, 2 (2): 29—30.
    95. VINSs V G, KONONOV O V, A model of HPHT color enhancement mechanism in natural gray diamonds [J]. Diamond and Related Materials, 2003, (12): 542 - 545.
    96.方啸虎,温简杰,吕丰农,赵志岩.关于大型六面顶压机工作压力提高到120—125MPa的探讨[J].工业金刚石,2009(2), 9-14.
    97.宋少峰,冯青波.压力利用率与锤耗的关系研究[J].超硬材料工程,2009,21(4), 42-44.
    98.张斌,黄上恒,宋辉辉,李永东.孔口缝合补强对含孔复合材料层板应力集中影响的数值模拟[J].应用力学学报,2009 (4),804-807.
    99.云蓉张应迁唐克伦.压力容器应力场数值模拟及边缘应力初探[J].机械,2009, 36(11), 4-6.
    100.冯青波,宋少峰.压力利用率与锤耗的关系研究[J].民营科技, 2009, 9: 72
    101. BRUNO M. S. and DUN K J. Stress analysis of a beveled diamond anvil [J]. Rev. Sci. Instrum [J]. 1984, 55(6):940.
    102. AHRENS, T J &KATZ, S. An ultrasonic interferometer for high-pressure research. J. Geophys. Res. [J], 1962, 67:2935-2944.
    103. BROWN, J M Nacl pressure standard [J]. J. Appl. Phys., 1999, 86:5801-5808.
    104. GETTING, I C. The practical pressure scale: Fixing fixed points and future prospects [J]. Eos, 1998, 79:830.
    105. KNOCHE R, WEBB, S L, RUBIE,D C. Experimental determination of acoustic wave velocities at Earth mantle conditions using a multianvil press [J]. Phys. Chem. Earth, 1997, 22: 125-130.
    106. KAWAI N, and ENDO S. The generations of ultrahigh hydrostatic pressure by a split sphere apparatus [J]. Rev. Sci. Instrum, 1970, 4: 425-428.
    107. KAWAI N, and TOGAYA M. ONODERA A, PROC. ACAD. 1973, 49: 623.
    108. WANG YANBIN, DURHAM WILLIAM B, GELLTING IVAN C, WEIDNER DONALD J. The deformation-DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa [J]. Rev. Sci. Instrum, 2003, 74:3002.
    109. LIEBERMANN ROBERT C, WANG Y B. High-pressure Research: Application to Earth and Planelary Sciences [C]. Washington D C: AGU, 1992.
    110. TOMOO K, KEN-ICHI F, ALSUSHI K, NORIMASA N, YOSHINORI T, SUEDA Y, TOMOAKI K, WATARU U. A large-volume high-pressure and high-temperature apparatus for in situ X-ray observation.‘SPEED-Mk.II’[J], Phys. Earth Planet. Int. 2004, 143-144:497-506.
    111. REZA A, HENRY Z, CARTER C. High pressure–high temperature growth of diamond crystals using split sphere apparatus [J]. Dia. Relat. Mater, 2005, 14:1916-1919.
    112. FROST D J, POE B T, TRONNES R G, LIEBSKE C, DUBA A, RUBIE D C. A new large-volume multianvil system. Phys. Earth Planet. Int. 2004, 143-144:507-514.
    113. CORDIER P, RUBIE D C. Plastic deformation of minerals under extreme pressure using a multi-anvil apparatus [J]. Mater. Sci. Engineering A, 2001, 309-310:38-43.
    114. WALLKER D. CARPENTER M A, HRRCH C M. Amer. Miner. 1990,75:1020.
    115. WALLKER D. Amer. Miner. 1991, 76: 1092.
    116. OHTANI E, KAGAWA N, SHIMOMURA O, TOGAYA M, SUITO K, ONODERA A, SAWAMOTO H, ITO E, KIKEGAWA T. High‐pressure generation by a multiple anvil system with sintered diamond anvils [J]. Rev. Sci. Instru. 1989, 60:922
    117. ITO E, J. Miner. Petrol. Sci, 2006,101: 118.
    118. IRIFUNE T, KURIO A, SAKAMOTO S, INOUE T, SUMIYA H. Nature.2003, 421: 599.
    119. LI B S,CHEN G G, GWANMESIA G D, LIBERMANN R C. Properties of earth and planetary materials at high pressure and temperature[C]. Washington DC:AGU, 1998: 41.
    120. KNOCHE R, WEBB S L, RUBIE D C. Properties of earth and planetary materials at high pressure and temperature[C]. Washington DC:AGU,1998:119.
    121.王福龙,贺端威,房雷鸣,陈晓芳,李拥军,张伟,张剑,寇自力,彭放.基于铰链式六面顶压机的二级6-8型大腔体静高压装置[J].物理学报,2008, 57(9):5429-5434。
    122.吕世杰,罗建太,苏磊,胡云,袁朝圣,洪时明.滑块式六含八超高压实验装置及其压力温度标定[J].物理学报,2009, 58(10):6852-6857。
    123.陈晓芳贺端威王福龙张剑李拥军房雷鸣雷力寇自力.基于铰链式六面顶压机的二级6-8模超高压大腔体内置加热元件的设计与温度标定[J].高压物理学报,2009, 2: 988-104.
    124.王秦生,赵清国.我国六面顶压机合成金刚石技术的历史性进展[J].新材料产业, 2009, 5: 67-69
    125.王鹏王强蔡冬梅.两面顶模具结构的研究进展[J].人工晶体学报, 2007, 36(3): 711-716
    126.李先容.大腔体两面顶锤工艺[J].工程物理研究院科技年报, 2006, 1:488-489
    127.邓福铭,陈启武,李启泉.试论我国金刚石行业超高压技术的发展道路问题[J].超硬材料工程, 2005, 17(3): 33-36.
    128.柳文明.迎接六面顶的第二个春天《六面—两面顶研究进展》[J].工业金刚石,2005(2): 38-39.
    129.蔡博.一种铰式金刚石压机.中国,CN200520031158.1[P], 2005.
    130.蔡博.六面顶金刚石压机实现两面顶压机工作的方法及其顶锤.中国, CN200310119314.5[P],2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700