用户名: 密码: 验证码:
1.8GHz微波辐射对人晶状体上皮细胞蛋白质表达影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     随着移动通讯设备的大面积普及引用,大众越来越关心生活环境中手机微波辐射可能产生的有害健康的效应。到目前为止,手机微波辐射对晶状体造成损伤的机制以及引发白内障病理过程是眼科学研究讨论的重点之一,也是争论的焦点。近几年手机微波辐射所致蛋白组学改变引起人们的关注。以鸟枪法为代表的新兴蛋白质组学技术在生命科学研究中的广泛应用,使得人们从整体水平研究蛋白质组成和调控活动规律成为可能。如果能从人晶状体上皮细胞的蛋白质组谱中筛选出与微波辐照密切相关的标志性蛋白,将有助于深入研究手机微波辐射所致晶状体损伤的机制。
     目的
     探讨1.8GHz微波辐射对体外培养的人晶状体上皮细胞蛋白表达的影响。
     方法
     体外培养人晶状体上皮细胞(hLECs)置于sXc-1800细胞辐照系统(发射217Hz脉冲调制的1.8GHz微波)内连续辐照2小时,辐照组辐照强度(specific absorption rate, SAR)为4W/kg,假辐照为0 W/kg。辐照后立即提取全蛋白裂解液,经过溶液内酶解所得样本直接进入Ettan多维液相色谱系统进行分离,而后通过LTQ-Orbitrap质谱仪进行质谱分析。运用化学计量法对质谱结果做相对定量分析,比较辐照前后蛋白质表达谱差异,筛选出微波辐照相关标志性蛋白。
     运用实时定量RT-PCR技术在转录组水平进一步对质谱分析的结果进行筛选。
     人晶状体上皮细胞分别接受SAR分别为2,3,4 W/kg的1.8GHz手机频率微波连续辐照2小时,提取总蛋白后用Western blot试验对上述筛选出的标志性蛋白进行验证。
     结果
     鸟枪法蛋白质谱比较分析提示4W/kg的微波辐射组与假辐照组之间人晶状体上皮细胞蛋白质表达谱存在差异。8个差异蛋白经过质谱分析和化学计量法统计,获得初步鉴定。实时定量RT-PCR结果显示VCP,USP35和SRP68的1nRNA表达辐照组与假辐照组之间有明显差异(P<0.05)。Western blot试验显示4W/kg和3W/kg的微波辐射2小时组VCP和USP35蛋白表达明显高于假辐照组(P<0.05),SRP68蛋白表达明显低于假辐照组(P<0.05),但2W/kg辐照组与假辐照组之间这3个蛋白的表达均无明显差异(P>0.05)。
     结论
     鸟枪法蛋白质谱分析是筛选人晶状体上皮细胞微波辐照相关差异蛋白表达的有效方法。微波辐射可导致人晶状体上皮细胞蛋白质表达谱发生改变。经验证的3个蛋白中VCP和USP35可能参与了微波辐照所致人晶状体上皮细胞蛋白质表达质量控制过程,SRP68的改变提示微波辐照对蛋白分泌有影响。
Background
     The widespread use of mobile telecommunications has aroused public concern with potential health risks associated with exposure to microwave eletromagnetic fields from these novel products of mobile phones. Aging is one of the most common causes for cataract, but many other factors are involved. Microwave eletromagnetism radiation has been regard as one of the much more important risk factors. Also there is concern about microwave radiation-induced proteomic changes. The shotgun method, as the representative of emerging proteomic technologies, has been widely used in life science research, which can be expected to show the changes in protein expression profile. The potential molecular targets obtained by proteomic analysis might be applied in further investigations to ascertain the possible alteration of protein expression levels which are related to the biological effects induced by microwave radiation and to understanding the possible pathogenic mechanism of cataract.
     Objective
     To investigate the impact of 1.8GHz microwave radiation on the protein expression of human lens epithelial cells (hLECs) in vitro.
     Methods
     The hLECs were exposed and sham-exposed to 1.8GHz microwave radiation for 2 hours. The specific absorption rate (SAR) was 4 W/kg. After exposure, the proteome extracted from LECs were loaded on the Ettan MDLC system connected to the LTQ-Orbitrap MS. Chemometrics method was used to analyze the differences of MS/MS between exposed- and sham exposed-groups, and to screen the candidate microwave-induced biomarker proteins.
     QRT-PCR was used to screen the candidate biomarkers on mRNA level in hLECs exposed to 1.8GHz microwaves (SAR,4 W/kg) for 2 hours.
     After the hLECs were exposed to 1.8GHz microwaves (SAR,4,3 and 2 W/kg) for 2 hours, the western blot assay was utilized to detect the expression of microwave-induced biomarker proteins.
     Each experiment was repeated at least three times.
     Results
     The results of shotgun proteomic analysis indicated that there were 8 proteins with the differential expression between exposure group and sham-exposure group. The results of qRT-PCR showed that there were the expressional differences of 3 genes (VCP, USP35 and SRP68) between exposure group and sham-exposure group. The results of western blot assay exhibited that the expressional levels of two proteins (VCP and USP35) significantly increased and the expressional level of protein SRP68 significantly decreased in hLECs exposed to 1.8GHz (SAR,4 and 3 W/kg) microwave radiation for 2 hours, as compared with sham groups (P<0.05), but there were no significant expressional differences of VCP, USP35 and SRP68 proteins between the exposure group and sham-exposure group when SAR was 2 W/kg (P>0.05).
     Conclusion
     The shotgun method can be applied to screen the differentially expressed proteins in hLECs exposed to 1.8GHz microwaves, and 3 protein biomarkers associated with microwaves radiation were validated by western blot assay. VCP and USP35 proteins might involve in the protein quality control reaction of hLECs exposed to microwave. The alteration of SRP68 protein indicated that microwave may affect the protein secretion.
引文
Avram S, Pacureanu LM, Seclaman E, Bora A, Kurunczi L.2011. PLS-DA-Docking Optimized Combined Energetic Terms (PLSDA-DOCET) protocol:a brief evaluation. J Chem Inf Model 51(12):3169-79.
    Bensimon A, Heck AJ, Aebersold R.2012. Mass Spectrometry-Based Proteomics and Network Biology. Annu Rev Biochem.
    Brown JD, Hann BC, Medzihradszky KF, Niwa M, Burlingame AL, Walter P.1994. Subunits of the Saccharomyces cerevisiae signal recognition particle required for its functional expression. EMBO J 13(18):4390-400.
    Cutz A.1989. Effects of microwave radiation on the eye:the occupational health perspective. Lens Eye Toxic Res 6(1-2):379-86.
    de Pomerai D, Daniells C, David H, Allan J, Duce I, Mutwakil M, Thomas D, Sewell P, Tattersall J, Jones D and others.2000. Non-thermal heat-shock response to microwaves. Nature 405(6785):417-8.
    Garaj-Vrhovac V, Horvat D, Koren Z.1991. The relationship between colony-forming ability, chromosome aberrations and incidence of micronuclei in V79 Chinese hamster cells exposed to microwave radiation. Mutat Res 263(3):143-9.
    Gilmore JM, Washburn MP.2010. Advances in shotgun proteomics and the analysis of membrane proteomes. J Proteomics 73(11):2078-91.
    Griciuc A, Aron L, Ueffing M.2011. ER stress in retinal degeneration:a target for rational therapy? Trends Mol Med 17(8):442-51.
    Harvey C, French PW.2000. Effects on protein kinase C and gene expression in a human mast cell line, HMC-1, following microwave exposure. Cell Biol Int 23(11):739-48.
    Herz J, Flint N, Stanley K, Frank R, Dobberstein B.1990. The 68 kDa protein of signal recognition particle contains a glycine-rich region also found in certain RNA-binding proteins. FEBS Lett 276(1-2):103-7.
    Hirabayashi M, Inoue K, Tanaka K, Nakadate K, Ohsawa Y, Kamei Y, Popiel AH, Sinohara A, Iwamatsu A, Kimura Y and others.2001. VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration. Cell Death Differ 8(10):977-84.
    Hobro AJ, Kuligowski J, Doll M, Lendl B.2010. Differentiation of walnut wood species and steam treatment using ATR-FTIR and partial least squares discriminant analysis (PLS-DA). Anal Bioanal Chem 398(6):2713-22.
    Iakhiaeva E, Hinck CS, Hinck AP, Zwieb C.2009. Characterization of the SRP68/72 interface of human signal recognition particle by systematic site-directed mutagenesis. Protein Sci 18(10):2183-95.
    Karinen A, Heinavaara S, Nylund R, Leszczynski D.2008. Mobile phone radiation might alter protein expression in human skin. BMC Genomics 9:77.
    Kim KB, Byun HO, Han NK, Ko YG, Choi HD, Kim N, Pack JK, Lee JS.2010. Two-dimensional electrophoretic analysis of radio-frequency radiation-exposed MCF7 breast cancer cells. J Radiat Res (Tokyo) 51(2):205-13.
    Kislinger T, Gramolini AO, MacLennan DH, Emili A.2005. Multidimensional protein identification technology (MudPIT):technical overview of a profiling method optimized for the comprehensive proteomic investigation of normal and diseased heart tissue. J Am Soc Mass Spectrom 16(8):1207-20.
    Kobayashi T, Manno A, Kakizuka A.2007. Involvement of valosin-containing protein (VCP)/p97 in the formation and clearance of abnormal protein aggregates. Genes Cells 12(7):889-901.
    Kondo H, Rabouille C, Newman R, Levine TP, Pappin D, Freemont P, Warren G.1997. p47 is a cofactor for p97-mediated membrane fusion. Nature 388(6637):75-8.
    Kundi M, Mild K, Hardell L, Mattsson MO.2004. Mobile telephones and cancer--a review of epidemiological evidence. J Toxicol Environ Health B Crit Rev 7(5):351-84.
    Leszczynski D.2001. Mobile phones, precautionary principle, and future research. Lancet 358(9294):1733.
    Leszczynski D, Joenvaara S, Reivinen J, Kuokka R.2002. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells:molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation 70(2-3):120-9.
    Li HW, Yao K, Jin HY, Sun LX, Lu DQ, Yu YB.2007. Proteomic analysis of human lens epithelial cells exposed to microwaves. Jpn J Ophthalmol 51(6):412-6.
    Lipman RM, Tripathi BJ, Tripathi RC.1988. Cataracts induced by microwave and ionizing radiation. Surv Ophthalmol 33(3):200-10.
    Livak KJ, Schmittgen TD.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402-8.
    Lixia S, Yao K, Kaijun W, Deqiang L, Huajun H, Xiangwei G, Baohong W, Wei Z, Jianling L, Wei W.2006. Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat Res 602(1-2):135-42.
    Love KR, Catic A, Schlieker C, Ploegh HL.2007. Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat Chem Biol 3(11):697-705.
    Mathews ST, Plaisance EP, Kim T.2009. Imaging systems for westerns: chemiluminescence vs. infrared detection. Methods Mol Biol 536:499-513.
    Mauri P, Scarpa A, Nascimbeni AC, Benazzi L, Parmagnani E, Mafficini A, Della PM, Bassi C, Miyazaki K, Sorio C.2005. Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology:a strategy for identification of novel cancer markers. FASEB J 19(9):1125-7.
    Mbeunkui F, Fodstad O, Pannell LK.2006. Secretory protein enrichment and analysis: an optimized approach applied on cancer cell lines using 2D LC-MS/MS. J Proteome Res 5(4):899-906.
    Meerang M, Ritz D, Paliwal S, Garajova Z, Bosshard M, Mailand N, Janscak P, Hubscher U, Meyer H, Ramadan K.2011. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks. Nat Cell Biol 13(11):1376-82.
    Meyer HH, Shorter JG, Seemann J, Pappin D, Warren G.2000. A complex of mammalian ufdl and np14 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J 19(10):2181-92.
    Monteoliva L, Albar JP.2004. Differential proteomics:an overview of gel and non-gel based approaches. Brief Funct Genomic Proteomic 3(3):220-39.
    Muehlethaler C, Massonnet G, Esseiva P.2011. The application of chemometrics on Infrared and Raman spectra as a tool for the forensic analysis of paints. Forensic Sci Int 209(1-3):173-82.
    Nollen EA, Morimoto RI.2002. Chaperoning signaling pathways:molecular chaperones as stress-sensing 'heat shock' proteins. J Cell Sci 115(Pt 14):2809-16.
    Nylund R, Leszczynski D.2004. Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GSM 900 radiation. Proteomics 4(5):1359-65.
    Ortak H, Cayli S, Tas U, Ocakli S, Sogut E, Demir HD.2012. Expression of p97/VCP and ubiquitin during postnatal development of the degenerating rat retina. J Mol Histol 43(1):17-25.
    Patterson SD, Aebersold RH.2003. Proteomics:the first decade and beyond. Nat Genet 33 Suppl:311-23.
    Paudel D, Jarman R, Limkittikul K, Klungthong C, Chamnanchanunt S, Nisalak A, Gibbons R, Chokejindachai W.2011. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection. N Am J Med Sci 3(10):478-85.
    Pleasure IT, Black MM, Keen JH.1993. Valosin-containing protein, VCP, is a ubiquitous clathrin-binding protein. Nature 365(6445):459-62.
    Politz JC, Yarovoi S, Kilroy SM, Gowda K, Zwieb C, Pederson T.2000. Signal recognition particle components in the nucleolus. Proc Natl Acad Sci U S A 97(1):55-60.
    Rabinovich E, Kerem A, Frohlich KU, Diamant N, Bar-Nun S.2002. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22(2):626-34.
    Rubinsztein DC.2006. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113):780-6.
    Santoro MG.2000. Heat shock factors and the control of the stress response. Biochem Pharmacol 59(1):55-63.
    Saraogi I, Shan SO.2011. Molecular mechanism of co-translational protein targeting by the signal recognition particle. Traffic 12(5):535-42.
    Sardana G, Marshall J, Diamandis EP.2007. Discovery of candidate tumor markers for prostate cancer via proteomic analysis of cell culture-conditioned medium. Clin Chem 53(3):429-37.
    Stumpe B, Engel T, Steinweg B, Marschner B.2012. Application of PC A and SIMCA Statistical Analysis of FT-IR Spectra for the Classification and Identification of Different Slag Types with Environmental Origin. Environ Sci Technol.
    Swanson SK, Washburn MP.2005. The continuing evolution of shotgun proteomics. Drug Discov Today 10(10):719-25.
    Washburn MP.2004. Utilisation of proteomics datasets generated via multidimensional protein identification technology (MudPIT). Brief Funct Genomic Proteomic 3(3):280-6.
    Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I.1995. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis 16(7):1090-4.
    Wilen J, Sandstrom M, Hansson MK.2003. Subjective symptoms among mobile phone users--a consequence of absorption of radiofrequency fields? Bioelectromagnetics 24(3):152-9.
    Yamanaka K, Sasagawa Y, Ogura T.2012. Recent advances in p97/VCP/Cdc48 cellular functions. Biochim Biophys Acta 1823(1):130-7.
    Yamashita R, Fujiwara Y, Ikari K, Hamada K, Otomo A, Yasuda K, Noda M, Kaburagi Y.2007. Extracellular proteome of human hepatoma cell, HepG2 analyzed using two-dimensional liquid chromatography coupled with tandem mass spectrometry. Mol Cell Biochem 298(1-2):83-92.
    Yao K, Wang KJ, Sun ZH, Tan J, Xu W, Zhu LJ, Lu DQ.2004. Low power microwave radiation inhibits the proliferation of rabbit lens epithelial cells by upregulating P27Kipl expression. Mol Vis 10:138-43.
    Yao K, Wu W, Wang K, Ni S, Ye P, Yu Y, Ye J, Sun L.2008. Electromagnetic noise inhibits radiofrequency radiation-induced DNA damage and reactive oxygen species increase in human lens epithelial cells. Mol Vis 14:964-9.
    Ye J, Yao K, Lu D, Wu R, Jiang H.2001. Low power density microwave radiation induced early changes in rabbit lens epithelial cells. Chin Med J (Engl) 114(12):1290-4.
    Ye J, Yao K, Zeng Q, Lu D.2002. Changes in gap junctional intercellular communication in rabbits lens epithelial cells induced by low power density microwave radiation. Chin Med J (Engl) 115(12):1873-6.
    Yu Y, Yao K, Wu W, Wang K, Chen G, Lu D.2008. Effects of exposure to 1.8 GHz radiofrequency field on the expression of Hsps and phosphorylation of MAPKs in human lens epithelial cells. Cell Res 18(12):1233-5.
    Zeng Q, Chen G, Weng Y, Wang L, Chiang H, Lu D, Xu Z.2006. Effects of global system for mobile communications 1800 MHz radiofrequency electromagnetic fields on gene and protein expression in MCF-7 cells. Proteomics 6(17):4732-8.
    Zotti-Martelli L, Peccatori M, Scarpato R, Migliore L.2000. Induction of micronuclei in human lymphocytes exposed in vitro to microwave radiation. Mutat Res 472(1-2):51-8.
    Ahn SM, Simpson R, Lee B.2010. Genomics and proteomics in stem cell research:the road ahead. Anat Cell Biol 43(1):1-14.
    Baginsky S, Hennig L, Zimmermann P, Gruissem W.2010. Gene expression analysis, proteomics, and network discovery. Plant Physiol 152(2):402-10.
    Bensimon A, Heck AJ, Aebersold R.2012. Mass Spectrometry-Based Proteomics and Network Biology. Annu Rev Biochem.
    Choi S, Cheong Y, Shin JH, Lee HJ, Lee GJ, Choi SK, Jin KH, Park HK.2011. Short-term nanostructural effects of high radiofrequency treatment on the skin tissues of rabbits. Lasers Med Sci.
    de Pomerai D, Daniells C, David H, Allan J, Duce I, Mutwakil M, Thomas D, Sewell P, Tattersall J, Jones D and others.2000. Non-thermal heat-shock response to microwaves. Nature 405(6785):417-8.
    Derrick PJ, Patterson SD.2001. Mass spectrometry of proteomics. Proteomics 1(8):925-6.
    Garaj-Vrhovac V, Horvat D, Koren Z.1991. The relationship between colony-forming ability, chromosome aberrations and incidence of micronuclei in V79 Chinese hamster cells exposed to microwave radiation. Mutat Res 263(3):143-9.
    Gerner C, Haudek V, Schandl U, Bayer E, Gundacker N, Hutter HP, Mosgoeller W. 2010. Increased protein synthesis by cells exposed to a 1,800-MHz radio-frequency mobile phone electromagnetic field, detected by proteome profiling. Int Arch Occup Environ Health 83(6):691-702.
    Harvey C, French PW.2000. Effects on protein kinase C and gene expression in a human mast cell line, HMC-1, following microwave exposure. Cell Biol Int 23(11):739-48.
    Higashikubo R, Ragouzis M, Moros EG, Straube WL, Roti RJ.2001. Radiofrequency electromagnetic fields do not alter the cell cycle progression of C3H 10T and U87MG cells. Radiat Res 156(6):786-95.
    Hirose H, Sakuma N, Kaji N, Nakayama K, Inoue K, Sekijima M, Nojima T, Miyakoshi J.2007. Mobile phone base station-emitted radiation does not induce phosphorylation of Hsp27. Bioelectromagnetics 28(2):99-108.
    Huang TQ, Lee MS, Oh EH, Kalinec F, Zhang BT, Seo JS, Park WY.2008. Characterization of biological effect of 1763 MHz radiofrequency exposure on auditory hair cells. Int J Radiat Biol 84(11):909-15.
    Ivaschuk OI, Jones RA, Ishida-Jones T, Haggren W, Adey WR, Phillips JL.1997. Exposure of nerve growth factor-treated PC 12 rat pheochromocytoma cells to a modulated radiofrequency field at 836.55 MHz:effects on c-jun and c-fos expression. Bioelectromagnetics 18(3):223-9.
    Karinen A, Heinavaara S, Nylund R, Leszczynski D.2008. Mobile phone radiation might alter protein expression in human skin. BMC Genomics 9:77.
    Kim KB, Byun HO, Han NK, Ko YG, Choi HD, Kim N, Pack JK, Lee JS.2010. Two-dimensional electrophoretic analysis of radio-frequency radiation-exposed MCF7 breast cancer cells. J Radiat Res (Tokyo) 51(2):205-13.
    Kundi M, Mild K, Hardell L, Mattsson MO.2004. Mobile telephones and cancer--a review of epidemiological evidence. J Toxicol Environ Health B Crit Rev 7(5):351-84.
    Lee JS, Huang TQ, Kim TH, Kim JY, Kim HJ, Pack JK, Seo JS.2006. Radiofrequency radiation does not induce stress response in human T-lymphocytes and rat primary astrocytes. Bioelectromagnetics 27(7):578-88.
    Lee JS, Huang TQ, Lee JJ, Pack JK, Jang JJ, Seo JS.2005. Subchronic exposure of hsp70.1-deficient mice to radiofrequency radiation. Int J Radiat Biol 81(10):781-92.
    Lee S, Johnson D, Dunbar K, Dong H, Ge X, Kim YC, Wing C, Jayathilaka N, Emmanuel N, Zhou CQ and others.2005.2.45 GHz radiofrequency fields alter gene expression in cultured human cells. FEBS Lett 579(21):4829-36.
    Leszczynski D.2001. Mobile phones, precautionary principle, and future research. Lancet 358(9294):1733.
    Leszczynski D, Joenvaara S, Reivinen J, Kuokka R.2002. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells:molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation 70(2-3):120-9.
    Li HW, Yao K, Jin HY, Sun LX, Lu DQ, Yu YB.2007. Proteomic analysis of human lens epithelial cells exposed to microwaves. Jpn J Ophthalmol 51(6):412-6.
    Lim HB, Cook GG, Barker AT, Coulton LA.2005. Effect of 900 MHz electromagnetic fields on nonthermal induction of heat-shock proteins in human leukocytes. Radiat Res 163(1):45-52.
    Lin TY, Chang JT, Wang HM, Chan SH, Chiu CC, Lin CY, Fan KH, Liao CT, Chen IH, Liu TZ and others.2010. Proteomics of the radioresistant phenotype in head-and-neck cancer:Gp96 as a novel prediction marker and sensitizing target for radiotherapy. Int J Radiat Oncol Biol Phys 78(1):246-56.
    Lixia S, Yao K, Kaijun W, Deqiang L, Huajun H, Xiangwei G, Baohong W, Wei Z, Jianling L, Wei W.2006. Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat Res 602(1-2):135-42.
    McIntosh RL, Deppeler L, Oliva M, Parente J, Tambuwala F, Turner S, Winship D, Wood AW.2010. Comparison of radiofrequency exposure of a mouse dam and foetuses at 900 MHz. Phys Med Biol 55(4):N111-22.
    Miyakoshi J, Takemasa K, Takashima Y, Ding GR, Hirose H, Koyama S.2005. Effects of exposure to a 1950 MHz radio frequency field on expression of Hsp70 and Hsp27 in human glioma cells. Bioelectromagnetics 26(4):251-7.
    Nylund R, Kuster N, Leszczynski D.2010. Analysis of proteome response to the mobile phone radiation in two types of human primary endothelial cells. Proteome Sci 8:52.
    Nylund R, Leszczynski D.2004. Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GSM 900 radiation. Proteomics 4(5):1359-65.
    Patterson SD.2003. Proteomics:evolution of the technology. Biotechniques 35(3):440-4.
    Patterson SD, Aebersold RH.2003. Proteomics:the first decade and beyond. Nat Genet 33 Suppl:311-23.
    Prisco MG, Nasta F, Rosado MM, Lovisolo GA, Marino C, Pioli C.2008. Effects of GSM-modulated radiofrequency electromagnetic fields on mouse bone marrow cells. Radiat Res 170(6):803-10.
    Sakuma N, Komatsubara Y, Takeda H, Hirose H, Sekijima M, Nojima T, Miyakoshi J. 2006. DNA strand breaks are not induced in human cells exposed to 2.1425 GHz band CW and W-CDMA modulated radiofrequency fields allocated to mobile radio base stations. Bioelectromagnetics 27(1):51-7.
    Simko M, Hartwig C, Lantow M, Lupke M, Mattsson MO, Rahman Q, Rollwitz J. 2006a. Hsp70 expression and free radical release after exposure to non-thermal radio-frequency electromagnetic fields and ultrafine particles in human Mono Mac 6 cells. Toxicol Lett 161(1):73-82.
    Simko M, Hartwig C, Lantow M, Lupke M, Mattsson MO, Rahman Q, Rollwitz J. 2006b. Hsp70 expression and free radical release after exposure to non-thermal radio-frequency electromagnetic fields and ultrafine particles in human Mono Mac 6 cells. Toxicol Lett 161(1):73-82.
    Takashima Y, Hirose H, Koyama S, Suzuki Y, Taki M, Miyakoshi J.2006. Effects of continuous and intermittent exposure to RF fields with a wide range of S ARs on cell growth, survival, and cell cycle distribution. Bioelectromagnetics 27(5):392-400.
    Trosic I, Pavicic I, Milkovic-Kraus S, Mladinic M, Zeljezic D.2011. Effect of electromagnetic radiofrequency radiation on the rats' brain, liver and kidney cells measured by comet assay. Coll Antropol 35(4):1259-64.
    Vanderwaal RP, Cha B, Moros EG; Roti RJ.2006. HSP27 phosphorylation increases after 45 degrees C or 41 degrees C heat shocks but not after non-thermal TDMA or GSM exposures. Int J Hyperthermia 22(6):507-19.
    Verschaeve L, Juutilainen J, Lagroye I, Miyakoshi J, Saunders R, de Seze R, Tenforde T, van Rongen E, Veyret B, Xu Z.2010. In vitro and in vivo genotoxicity of radiofrequency fields. Mutat Res 705(3):252-68.
    Vijayalaxmi, Obe G.2004. Controversial cytogenetic observations in mammalian somatic cells exposed to radiofrequency radiation. Radiat Res 162(5):481-96.
    Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I.1995. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis 16(7):1090-4.
    Whitehead TD, Brownstein BH, Parry JJ, Thompson D, Cha BA, Moros EG, Rogers BE, Roti RJ.2005. Expression of the proto-oncogene Fos after exposure to radiofrequency radiation relevant to wireless communications. Radiat Res 164(4 Pt 1):420-30.
    Wilen J, Sandstrom M, Hansson MK.2003. Subjective symptoms among mobile phone users--a consequence of absorption of radiofrequency fields? Bioelectromagnetics 24(3):152-9.
    Zeng Q, Chen G, Weng Y, Wang L, Chiang H, Lu D, Xu Z.2006. Effects of global system for mobile communications 1800 MHz radiofrequency electromagnetic fields on gene and protein expression in MCF-7 cells. Proteomics 6(17):4732-8.
    Zotti-Martelli L, Peccatori M, Scarpato R, Migliore L.2000. Induction of micronuclei in human lymphocytes exposed in vitro to microwave radiation. Mutat Res 472(1-2):51-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700