用户名: 密码: 验证码:
基于AFM的纳米结构精确测量的方法学和标准化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文重点研究应用原子力显微镜(AFM)对纳米结构(纳米颗粒/纳米材料/单个生物分子等)的形貌进行精确检测的方法学,其目标是发展与AFM针尖形貌精确测量相关的方法学、发展适用于纳米结构的形貌校正/重构模型和适用于AFM的图像处理新技术,进而有助于发展、建立并制定标准化的检测方法和过程,提高对纳米结构的测量分辨率和测量精度。
     纳米结构的测量标准化是当前国际纳米科技领域的重点研究内容之一。作为纳米检测技术的基本工具之一,AFM已经在研究纳米尺度物质的结构和特性方面取得了显著的进展,但在规范统一并可溯源性的标准化测量方面还处在起步的探索阶段.。当前实现基于AFM的精确测量存在许多困难和挑战,影响对样品纳米结构的定量表征,其中包括:1)AFM实验得到的图像是针尖形貌与样品结构的卷积/膨胀结果,目前还缺乏有效的方法精确标定针尖本身的形貌;2)针尖样品间相互作用的复杂性直接影响AFM的实验测量结果,当前还无法判断并单一区分这些相互作用;3)对于柔软的纳米结构,当前的针尖样品卷积模型还没有将形变考虑在内;4)此外,AFM仪器本身的特性(扫描管的非线性漂移、噪声等)以及针尖的安装方式等都会以不同的程度和方式影响测量结果。
     针对这些问题,本论文的主要研究内容包括两方面:1)基于新发展的有望成为一种标准物质的Tip Characterizer (Tip-C),从组装过程对Tip-C成功制备的影响、Tip-C作为标准样品的可行性以及测量误差分析及优化等方面研究利用Tip-C精确测量针尖形貌的方法;2)基于精确测量的针尖形貌,对几种纳米结构(纳米金颗粒、碳纳米管和DNA分子)进行测量校正,研究校正模型的可行性及修正方案,以实现对纳米结构的精确测量。
     针对应用Tip-C开展AFM针尖精确测量的主要研究结果包括:
     1)新发展的Tip-C可用于无损测量有效针尖形貌,有望进一步发展成为表征针尖形貌的标准样品;2)提出动态模式下AFM针尖的倾斜振动因作为一个影响因子耦合在卷积模型中,由此建立了动态模式下针尖-样品的卷积物理模型;3)对探针-Tip C相互作用主要参数(成像力、表面结构、反馈等)进行了系统分析,研究了相应参数下测量到的针尖形貌的规律性变化,提出可把相位作为标准样品测量评判的关键参数之一;4)结合Tip-C的特殊结构设计和测量变化规律,提出量化实验误差的实验性判据;5)建立了针尖倾斜振动方式下测得的振幅-相位-距离曲线的振动空间和表面拓扑结构之间的关系,并用于定量分析针尖-样品相互作用变化;5)由针尖稳态振动方程、针尖-样品相互作用DMT模型和已知针尖-样品平均力方程,建立了独立的悬臂参数组和样品参数组之间的近似关系,理论研究了Asp的优化条件,建立的量化关系有助于在固定样品情况下指导多种悬臂的优化参数设置与调节。
     针对典型纳米结构精确测量的主要研究结果包括:
     1)对Au和DNA的形貌校正表明,去卷积操作能极大地提高测量的可靠度,但是由于纳米结构的形变等因素,需要针对性进行测量方法和测量条件的优化;2)针对截面为类弧形的柔软纳米结构,提出基于接触点的修正Garcia校正模型,基于此模型校正后的CNT的形貌特征与TEM的检测结果具有可比性。结合其他AFM技术,有可能表征出包含内壁层数在内的CNT完整结构信息;3)提出基于VSPFM技术和Tip-C的柔软纳米结构精确测量的普适方案,并有针对性地将图像处理中的配准和叠加算法应用于该方案面临的漂移和噪声问题,提示图像处理算法可能对AFM精确测量起到重要作用。
     应用AFM实现纳米结构的精确测量及其标准化是一项多因素影响的系统性工作,目前还缺乏相关的基础性标准,还处在探索研究阶段。本论文的研究内容和发展的方法不仅为从事AFM测量的研究者所关注,Tip-C的部分工作也已包含在相关国际标准化组织和机构(ISO等)研究和制定纳米标准的工作计划中。希望通过进一步的国际合作和深入研究,加速AFM精确测量纳米结构的标准化研究,及早发展并制定出与AFM相关的检测技术标准,从而规范有效地提高对纳米结构的研究、开发、应用和风险控制的水平。
The thesis focuses on methodology developments of precise morphology measurement of nanostructures, which including single nano-particles, nano-materials, single biomolecules in this thesis, by atomic force microscope (AFM). The main goals of our research are listed here as : 1) developing the precise measurement methodologies and processes for characterizing probe shape; 2) developing correction/reconstruction model applicable for nanostructures; 3) developing suitable image process techniques for applying AFM in single bio-molecules. Furthermore, the study helps to develop and establish the standardized measurement procedure, improving the measurement resolution and precision of nanostructures.
     Metrology standardization of nanostructures is one of the most essential facets in nano-science and nanotechnology. As one of the basic and popular measurement tools at nano-scale, AFM has been widely used in characterizing nanostructures’morphology and other Physical Chemistry properties. However, AFM is still in the initial stage for realizing traceable and standardized measurement. There are still many unsolved problems and challenges in realizing precise measurement by AFM, including: 1) AFM image is the convolution/dilation result of probe shape and sample geometry, and there is no effective way to characterize accurate probe shape now; 2) the complex tip-sample interaction directly influence the final measurement, and how to discriminate these interactions are still very difficult; 3) the deformation in measuring soft nanostructures not only calls for new measurement technique but also for new ideas about convolution model; 4) measurement is also affected by scanner’s thermal drift, noise, cantilever’s installation and others.
     For the above problems, the main topics of this thesis includes two aspects: 1) based on a new developed tip characterizer (Tip-C) which might be made as a kind of certified reference materials (CRMs), exploring the measurement methodology for obtaining precise probe shape from the fabrication effect to Tip-C preparation, feasibility of Tip-C as a CRM and measurement uncertainty analysis and optimization; 2) based on precisely characterized probe shape, correcting several nanostructures’(Au, CNT and CNT) morphology, analyzing the reliability of correction/reconstruction model and proposing the solutions for realizing precise measurement of nanostructures by AFM.
     The study results focused on the precise characterization of probe shape by Tip-C includes: 1) New developed Tip-C can characterize effective probe shape without any damage, thus making it feasible for becoming a potential CRMs; 2) establishing the convolution model in dynamic mode by additionally introducing the probe’s tilt oscillation behavior; 3) systematically exploring the tendency change of probe shape under some main factors, including image force, structure, feedback and so on, that might affect probe-Tip C interaction, and proposing the phase should be one of the critical estimation parameters for imaging quality; 4) suggesting the experimental criterion for estimation the measurement error based on the special designed structure in Tip-C and known measurement change; 5) establishing the relative position relationship between amplitude-phase-distance curve and surface topography by considering the tilted oscillation, and applying it to the analysis of different tip-sample interaction from the structure; 5)establishing the approximation relationship between separated experimental set parameters of cantilever and sample parameters, and suggesting the optimized Asp setting based on the relationship. The study also helps establish guidance of optimizing parameter setting of various types of cantilevers.
     The results focusing on the precise measurement of nanostructures includes:
     1) The morphology correction of Au and DNA shows that deconvolution operation can improve measurement reliability, especially for rigid sample. However, further methodology should be considered due to the deformation; 2) establishing the modified Garcia model applicable for nanostructures having arc cross section,and corrected morphology of CNT based on this model is comparable to TEM observation. Combing with other AFM technique, it is possible to characterize complete structure information including inner layers; 3) Proposing general reconstruction solution to soft nanostructures based on VSPFM technique and Tip-C based probe shape characterization. Image registration and time averaging algorithms were applied in reducing the drift and noise problems in the solution, indicating that image processing might be crucial to AFM based precise measurement.
     The standardization of precise morphology measurement by AFM is a systematic work affected by multi-factors, and now there are still not basic standards for it, calling for experts to attend the AFM standardization work. The research and developed method in the thesis attracts most of the researchers engaged in it, and partial work on Tip-C was now included in ISO new working items. It is hopeful that through the further international collaboration and researches, standardization work in AFM can be advanced. The establishment of measurement standards helps promote and regulate the study to nanostructures.
引文
[1] The need for measurement and testing in nanotechnology. High Leverl Expert Group on Measurement and Testing under the European Framework Programme for Research and Development.
    [2]江潮.纳米检测技术标准化.中国标准化, 2007, 09 24,58.
    [3]高洁,王孝平, and董宏伟.我国纳米技术标准化概况.中国标准化, 2007, 09 7-9,13.
    [4] M. C.Roco. All natural manmade products and living systems have a nanostructure. http://www.iso.org/iso/hot_topic_nanotech_roco.pdf, 2007.
    [5] Nanoscience and nanotechnologies:opportunities and uncertainties. Nanoscience and nanotechnology, 2004, 1-127.
    [6] R. F. Service. Nanotechnology - Calls rise for more research on toxicology of nanomateriais. Science, 2005, 310 (5754): 1609-1609.
    [7] A. Nel, T. Xia, L. Madler, and N. Li. Toxic potential of materials at the nanolevel. Science, 2006, 311 (5761): 622-627.
    [8] R. Brayner. The toxicological impact of nanoparticles. Nano Today, 2008, 3 (1-2): 48-55.
    [9] J. H. Gao and B. Xu. Applications of nanomaterials inside cells. Nano Today, 2009, 4 (1): 37-51.
    [10] S. F. Hansen. Regulation and Risk Assessment of Nanomaterials -- Too Little, Too Late? Technical University of Denmark Department of Environmental Engineering 2009.
    [11] M. R. Wiesner, G. V. Lowry, P. Alvarez, D. Dionysiou, and P. Biswas. Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol., 2006, 40 (14): 4336-4345.
    [12]中国争夺纳米标准. http://teacher.eol.cn/xin_wen_gong_gao_1114/20060323/t20060323_58260.shtml, 2007.
    [13] I. Linkov, F. K. Satterstrom, and L. M. Corey. Nanotoxicology and nanomedicine: making hard decisions. Nanomed.-Nanotechnol. Biol. Med., 2008, 4 (2): 167-171.
    [14] T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian. Biological applications of quantum dots. Biomaterials, 2007, 28 (31): 4717-4732.
    [15] C. C. You, O. R. Miranda, B. Gider, P. S. Ghosh, I. B. Kim, B. Erdogan, S. A. Krovi, U. H. F. Bunz, and V. M. Rotello. Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors. Nature Nanotechnology, 2007, 2 (5): 318-323.
    [16] J. Wang. Nanomaterial-based amplified transduction of biomolecular interactions. Small, 2005, 1 (11): 1036-1043.
    [17] C. P. Tsai, Y. Hung, Y. H. Chou, D. M. Huang, J. K. Hsiao, C. Chang, Y. C. Chen, and C. Y. Mou. High-contrast paramagnetic fluorescent mesoporous silica nanorods as a multifunctional cell-imaging probe. Small, 2008, 4 (2): 186-191.
    [18] U. Pison, T. Welte, M. Giersig, and D. A. Groneberg. Nanomedicine for respiratory diseases. European Journal of Pharmacology, 2006, 533 (1-3): 341-350.
    [19] N. W. S. Kam, M. O'Connell, J. A. Wisdom, and H. J. Dai. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proceedings of the National Academy of Sciences of the United Statesof America, 2005, 102 (33): 11600-11605.
    [20] L. J. Zhang and T. J. Webster. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today, 2009, 4 (1): 66-80.
    [21] S. Scheuring, D. Fotiadis, C. Moller, S. A. Muller, A. Engel, and D. J. Muller. Single proteins observed by atomic force microscopy. Single Molecules, 2001, 2 (2): 59-67.
    [22] N. Lewinski, V. Colvin, and R. Drezek. Cytotoxicity of nanoparticles. Small, 2008, 4 (1): 26-49.
    [23] R. F. Service. American Chemical Society meeting: Nanomaterials show signs of toxicity. Science, 2003, 300 (5617): 243-243.
    [24] D. H. Lin and B. S. Xing. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol., 2008, 42 (15): 5580-5585.
    [25] G. V. Lowry and E. A. Casman. NANOMATERIAL TRANSPORT, TRANSFORMATION, AND FATE IN THE ENVIRONMENT A Risk-Based Perspective on Research Needs. Nanomaterials: Risks and Benefits, 2009, 125-137.
    [26] K. L. Dreher. Health and environmental impact of nanotechnology: Toxicological assessment of manufactured nanoparticles. Toxicol. Sci., 2004, 77 (1): 3-5.
    [27] Y. Ju-Nam and J. R. Lead. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ., 2008, 400 (1-3): 396-414.
    [28] E. Oberdorster. Manufactured nanomaterials (Fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect., 2004, 112 (10): 1058-1062.
    [29] M. N. Moore. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int., 2006, 32 (8): 967-976.
    [30] Z. Pan, W. Lee, L. Slutsky, R. A. F. Clark, N. Pernodet, and M. H. Rafailovich. Adverse Effects of Titanium Dioxide Nanoparticles on Human Dermal Fibroblasts and How to Protect Cells. Small, 2009, 5 (4): 511-520.
    [31] C. Y. Jin, B. S. Zhu, X. F. Wang, and Q. H. Lu. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem. Res. Toxicol., 2008, 21 (9): 1871-1877.
    [32] P. Spohn, C. Hirsch, F. Hasler, A. Bruinink, H. F. Krug, and P. Wick. C-60 fullerene: A powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Environmental Pollution, 2009, 157 (4): 1134-1139.
    [33] C. C. Chou, H. Y. Hsiao, Q. S. Hong, C. H. Chen, Y. W. Peng, H. W. Chen, and P. C. Yang. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Letters, 2008, 8 (2): 437-445.
    [34] C. W. Lam, J. T. James, R. McCluskey, and R. L. Hunter. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci., 2004, 77 (1): 126-134.
    [35] A. Casey, E. Herzog, F. M. Lyng, H. J. Byrne, G. Chambers, and M. Davoren. Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol. Lett., 2008, 179 (2): 78-84.
    [36] K. Inoue, H. Takano, R. Yanagisawa, E. Koike, and A. Shimada. Size effects of latex nanomaterials on lung inflammation in mice. Toxicol. Appl. Pharmacol., 2009, 234 (1): 68-76.
    [37] S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, and J. R. Lead. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 2008, 27 (9): 1825-1851.
    [38] R. D. Handy, R. Owen, and E. Valsami-Jones. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs.Ecotoxicology, 2008, 17 (5): 315-325.
    [39] S. M. Hussain, K. L. Hess, J. M. Gearhart, K. T. Geiss, and J. J. Schlager. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. Vitro, 2005, 19 (7): 975-983.
    [40] J. Jiang, G. Oberdorster, A. Elder, R. Gelein, P. Mercer, and P. Biswas. Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology, 2008, 2 (1): 33-42.
    [41] Y. Sato, A. Yokoyama, K. Shibata, Y. Akimoto, S. Ogino, Y. Nodasaka, T. Kohgo, K. Tamura, T. Akasaka, M. Uo, K. Motomiya, B. Jeyadevan, M. Ishiguro, R. Hatakeyama, F. Watari, and K. Tohji. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-I in vitro and subcutaneous tissue of rats in vivo. Molecular Biosystems, 2005, 1 (2): 176-182.
    [42] H. Yang, C. Liu, D. F. Yang, H. S. Zhang, and Z. G. Xi. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J. Appl. Toxicol., 2009, 29 (1): 69-78.
    [43] A. Elder, H. Yang, R. Gwiazda, X. Teng, S. Thurston, H. He, and G. Oberdorster. Testing nanomaterials of unknown toxicity: An example based on platinum nanoparticles of different shapes. Adv. Mater., 2007, 19 (20): 3124-+.
    [44] R. D. Handy, F. von der Kammer, J. R. Lead, M. Hassellov, R. Owen, and M. Crane. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, 2008, 17 (4): 287-314.
    [45] H. C. Fischer and W. C. W. Chan. Nanotoxicity: the growing need for in vivo study. Current Opinion in Biotechnology, 2007, 18 (6): 565-571.
    [46] A. A. Shvedova, E. R. Kisin, D. Porter, P. Schulte, V. E. Kagan, B. Fadeel, and V. Castranova. Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus? Pharmacol. Ther., 2009, 121 (2): 192-204.
    [47] G. Oberdorster, E. Oberdorster, and J. Oberdorster. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect., 2005, 113 (7): 823-839.
    [48] M. R. Gwinn and V. Vallyathan. Nanoparticles: Health effects - Pros and cons. Environ. Health Perspect., 2006, 114 (12): 1818-1825.
    [49] M. Scheringer. Nanoecotoxicology - Environmental risks of nanomaterials. Nature Nanotechnology, 2008, 3 (6): 322-323.
    [50] S. T. Stern and S. E. McNeil. Nanotechnology safety concerns revisited. Toxicol. Sci., 2008, 101 (1): 4-21.
    [51] A. Helland, M. Scheringer, M. Siegrist, H. G. Kastenholz, A. Wiek, and R. W. Scholz. Risk assessment of engineered nanomaterials: A survey of industrial approaches. Environ. Sci. Technol., 2008, 42 (2): 640-646.
    [52] R. F. Service. Nanotechnology - Can high-speed tests sort out which nanomaterials are safe? Science, 2008, 321 (5892): 1036-1037.
    [53] A. Helland, H. Kastenholz, A. Thidell, P. Arnfalk, and K. Deppert. Nanoparticulate materials and regulatory policy in Europe: An analysis of stakeholder perspectives. Journal of Nanoparticle Research, 2006, 8 (5): 709-719.
    [54] SCENIHR. opinion on the appropriateness of the risk assessment methodology in accordance with the thchnical guidance documents for new and existing substances for assessing the risks of nanomaterials. Scientific Committee on Emerging and Newly Identified Health Risks, European Commission, 2007.
    [55] R. D. Handy and B. J. Shaw. Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc., 2007, 9 (2): 125-144.
    [56] R. Owen and R. Handy. Formulating the problems for environmental risk assessmentof nanomaterials. Environ Sci Techol, 2007, 41 5582-5588.
    [57] USEPA. Nanotechnology white, external review draft 2nd, Science Policy Council, US Environmental Protection Agency, Washington DC, 2005.
    [58] K. Tiede, M. Hassellov, E. Breitbarth, Q. Chaudhry, and A. B. A. Boxall. Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J. Chromatogr. A, 2009, 1216 (3): 503-509.
    [59] S. F. Hansen, B. H. Larsen, S. I. Olsen, and A. Baun. Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology, 2007, 1 (3): 243-U369.
    [60] A. Elder, I. Lynch, K. Grieger, S. Chan-Remillard, A. Gatti, H. Gnewuch, E. Kenawy, R. Korenstein, T. Kuhlbusch, F. Linker, S. Matias, N. Monteiro-Riviere, V. R. S. Pinto, R. Rudnitsky, K. Savolainen, and A. Shvedova. HUMAN HEALTH RISKS OF ENGINEERED NANOMATERIALS Critical Knowledge Gaps in Nanomaterials Risk Assessment. Nanomaterials: Risks and Benefits, 2009, 3-29.
    [61] M. G. Tyshenko and D. Krewski. A risk management framework for the regulation of nanomaterials. Int. J. Nanotechnol., 2008, 5 (1): 143-160.
    [62] D. L. Plata, P. M. Gschwend, and C. M. Reddy. Industrially synthesized single-walled carbon nanotubes: compositional data for users, environmental risk assessments, and source apportionment. Nanotechnology, 2008, 19 (18).
    [63] http://www.nssf.info/resources/documents/About_Standardization_Map.pdf.
    [64] D. R. Baer. Improving surface-analysis methods for characterization of advanced materials by development of standards, reference data, and interlaboratory comparisons. Surf. Interface Anal., 2007, 39 (4): 283-293.
    [65] D. W. Grainger and D. G. Castner. Nanobiomaterials and nanoanalysis: Opportunities for improving the science to benefit biomedical technologies. Adv. Mater., 2008, 20 (5): 867-877.
    [66] M. A. Dobrovolskaia and S. E. McNeil. Immunological properties of engineered nanomaterials. Nature Nanotechnology, 2007, 2 (8): 469-478.
    [67] B. J. Marquis, S. A. Love, K. L. Braun, and C. L. Haynes. Analytical methods to assess nanoparticle toxicity. Analyst, 2009, 134 (3): 425-439.
    [68] J. K. Jiang, G. Oberdorster, and P. Biswas. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 2009, 11 (1): 77-89.
    [69] A. A. G. Bruzzone, H. L. Costa, P. M. Lonardo, and D. A. Lucca. Advances in engineered surfaces for functional performance. CIRP Ann-Manuf. Technol., 2008, 57 (2): 750-769.
    [70] B. Fadeel, V. Kagan, H. Krug, A. Shvedova, M. Svartengren, L. Tran, and L. Wiklund. There's plenty of room at the forum: Potential risks and safety assessment of engineered nanomaterials. Nanotoxicology, 2007, 1 (2): 73-84.
    [71] Japan Nanotechnology Risk and Standardization Efforts. Asia Pacific nanotech Weekly, 2005, 3 (39).
    [72] Standardization Efforts in Nanotechnology and Nanometrology - a short survey. In http://www.nanospain.org/files/Working%20Groups/Standardization%20efforts%20in%20Nano.pdf.
    [73]国外纳米技术标准化现状.世界标准化与质量管理2005.
    [74]沈电洪等.国际纳米技术标准化动态.中国标准化, 2005.
    [75]张巧玲.“统一语言”:纳米研究当务之急.科学时报, 2007-2-15.
    [76] X. Xiang. Talking about Metrology and Energy on World Metrology Day. China Standarization, 2005, 4 14-17.
    [77]米丽琴.纳米科学技术概述.现代物理知识, 2005.
    [78] H.-U. Danzebrink, Koenders, L., Wilkening, G., . The scanning force microscope as ameasuring tool. Simposio de Metrología 2006, 25, 26 y 27 de octubre.
    [79] M. Berger. 25 years of scanning probe microscopy and no standards yet. Nanowerk LLC 2007.
    [80] General concept and defining characteristics of AFM http://tpg.sysu.edu.cn/new/websource/How%20AFM%20works.htm.
    [81] M. A. Poggi, L. A. Bottomley, and P. T. Lillehei. Scanning Probe Microscopy. Analytical Chemistry, 2002, 74 (12): 2851-2862.
    [82] H. U. Danzebrink, L. Koenders, G. Wilkening, A. Yacoot, and H. Kunzmann. Advances in Scanning Force Microscopy for Dimensional Metrology. CIRP Annals - Manufacturing Technology, 2006, 55 (2): 841-878.
    [83] https://store.nanoscience.com/store/pc/viewPrd.asp?idcategory=43&idproduct=164.
    [84] J. S. Villarrubia. Scanned probe microscope tip characterization without calibrated tip characterizers. Journal of Vacuum Science & Technology B, 1996, 14 (2): 1518-1521.
    [85] J. S. Villarrubia. Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. Journal of Research of the National Institute of Standards and Technology, 1997, 102 (4): 425-454.
    [86] P. Grutter, W. Zimmermannedling, and D. Brodbeck. Tip Artifacts of Microfabricated Force Sensors for Atomic Force Microscopy. Applied Physics Letters, 1992, 60 (22): 2741-2743.
    [87] M. Yasutake, K. Watanabe, S. Wakiyama, and T. Yamaoka. Critical dimension measurement using new scanning mode and aligned carbon nanotube scanning probe microscope tip. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2006, 45 (3B): 1970-1973.
    [88] M. Yasutake, Y. Shirakawabe, T. Okawa, S. Mizooka, and Y. Nakayama. Performance of the carbon nano-tube assembled tip for surface shape characterization. Ultramicroscopy, 2002, 91 (1-4): PII S0304-3991(0302)00082-00087.
    [89] A. Yacoot and L. Koenders. Aspects of scanning force microscope probes and their effects on dimensional measurement. J. Phys. D, Appl. Phys., 2008, 41 (10): 103001 (103046 pp.)-103001 (103046 pp.).
    [90] K. Murayama, S. Gonda, H. Koyanagi, T. Terasawa, and S. Hosaka. Critical-dimension measurement using multi-angle-scanning method in atomic force microscope. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2006, 45 (7): 5928-5932.
    [91] S. S. Sheiko, M. Moller, E. Reuvekamp, and H. W. Zandbergen. Calibration and Evaluation of Scanning-Force-Microscopy Probes. Physical Review B, 1993, 48 (8): 5675-5678.
    [92] D. Tranchida, S. Piccarolo, and R. A. C. Deblieck. Some experimental issues of AFM tip blind estimation: the effect of noise and resolution. Measurement Science & Technology, 2006, 17 (10): 2630-2636.
    [93] L. S. Dongmo, J. S. Villarrubia, S. N. Jones, T. B. Renegar, M. Postek, and J. F. Song. Experimental test of blind tip reconstruction for scanning probe microscopy. Ultramicroscopy, 2000, 85 (3): 141-153.
    [94] L. Montelius and J. O. Tegenfeldt. Direct Observation of the Tip Shape in Scanning Probe Microscopy. Applied Physics Letters, 1993, 62 (21): 2628-2630.
    [95] H. Itoh, T. Fujimoto, and S. Ichimura. Tip characterizer for atomic force microscopy. Review of Scientific Instruments, 2006, 77 (10).
    [96] V. Bykov, A. Gologanov, and V. Shevyakov. Test structure for SPM tip shape deconvolution. Applied Physics a-Materials Science & Processing, 1998, 66 (5): 499-502.
    [97] U. Hubner, W. Morgenroth, H. G. Meyer, T. Sulzbach, B. Brendel, and W. Mirande. Downwards to metrology in nanoscale: determination of the AFM tip shape withwell-known sharp-edged calibration structures. Applied Physics a-Materials Science & Processing, 2003, 76 (6): 913-917.
    [98] M. Kopycinska-Muller, R. H. Geiss, and D. C. Hurley. Contact mechanics and tip shape in AFM-based nanomechanical measurements. Ultramicroscopy, 2006, 106 (6): 466-474.
    [99] J. E. Griffith, D. A. Grigg, M. J. Vasile, P. E. Russell, and E. A. Fitzgerald. Characterization of Scanning Probe Microscope Tips for Linewidth Measurement. J. Vac. Sci. Technol., B, 1991, 9 (6): 3586-3589.
    [100] F. Atamny and A. Baiker. Direct Imaging of the Tip Shape by Afm. Surf. Sci., 1995, 323 (3): L314-L318.
    [101] TGT1. http://www.ntmdt-tips.com/catalog/gratings/afm_cal/products/TGT1.html.
    [102] C. Gerber and H. P. Lang. How the doors to the nanoworld were opened. Nature Nanotechnology, 2006, 1 (1): 3-5.
    [103] D. Fujita, H. Itoh, S. Ichimura, and T. Kurosawa. Global standardization of scanning probe microscopy. Nanotechnology, 2007, 18 (8): 084002(084001-084006).
    [104] H. Z. Wang, H. G. Zhu, D. Li, and X. Wang. In situ electron microscope study on the formation and morphological evolution of carbon aggregates. Carbon, 2002, 40 (12): 2117-2124.
    [105] J. Vesenka, R. Miller, and E. Henderson. Three-dimensional probe reconstruction for atomic force microscopy. Rev. Sci. Instrum., 1994, 65 (7): 2249-2251
    [106] B. Skarman, L. R. Wallenberg, S. N. Jacobsen, U. Helmersson, and C. Thelander. Evaluation of intermittent contact mode AFM probes by HREM and using atomically sharp CeO2 ridges as tip characterizer. Langmuir, 2000, 16 (15): 6267-6277.
    [107] L. Misumi, S. Gonda, T. Kurosawa, Y. Tanimura, N. Ochiai, J. I. Kitta, F. Kubota, M. Yamada, Y. Fujiwara, Y. Nakayama, and K. Takamasu. Submicrometre-pitch intercomparison between optical ditiraction, scanning electron microscope and atomic force microscope. Measurement Science & Technology, 2003, 14 (12): 2065-2074.
    [108] I. Misumi, S. Gonda, T. Kurosawa, Y. Azuma, T. Fujimoto, I. Kojima, T. Sakurai, T. Ohmi, and K. Takamasu. Reliability of parameters of associated base straight line in step height samples: Uncertainty evaluation in step height measurements using nanometrological AFM. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology, 2006, 30 (1): 13-22.
    [109] F. Banhart. Laplacian Growth of Amorphous-Carbon Filaments in a Non-Diffusion-Limited Experiment. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 1995, 52 (5): 5156-5160.
    [110] S. Iijima. Helical microtubules of graphitic carbon Nature, 1991, 354 56-58.
    [111] J. E. Kim, J. K. Park, and C. S. Han. Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: experimental investigation. Nanotechnology, 2006, 17 (12): 2937-2941.
    [112] S. Kuwahara, S. Akita, M. Shirakihara, T. Sugai, Y. Nakayama, and H. Shinohara. Fabrication and characterization of high-resolution AFM tips with high-quality double-wall carbon nanotubes. Chemical Physics Letters, 2006, 429 (4-6): 581-585.
    [113] D. Dietzel, S. Marsaudon, J. P. Aime, C. V. Nguyen, and G. Couturier. Mechanical properties of a carbon nanotube fixed at a tip apex: A frequency-modulated atomic force microscopy study. Physical Review B, 2005, 72 (3): -.
    [114] L. A. Wade, I. R. Shapiro, Z. Y. Ma, S. R. Quake, and C. P. Collier. Correlating AFM probe morphology to image resolution for single-wall carbon nanotube tips. Nano Letters, 2004, 4 (4): 725-731.
    [115] T. Uchihashi, N. Choi, M. Tanigawa, M. Ashino, Y. Sugawara, H. Nishijima, S. Akita, Y. Nakayama, H. Tokumoto, K. Yokoyama, S. Morita, and M. Ishikawa. Carbon-nanotube tip for highly-reproducible imaging of deoxyribonucleic acid helicalturns by noncontact atomic force microscopy. Japanese Journal of Applied Physics Part 2-Letters, 2000, 39 (8B): L887-L889.
    [116] Y. C. Chang, Y. S. Huang, C. S. Chang, D. C. Wang, M. H. Lee, T. F. Wang, M. Y. Wu, T. Y. Fu, and T. T. Tsong. Nanoscale imaging of biomolecules by controlled carbon nanotube probes. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005, 44 (10): 7732-7732.
    [117] G. Janchen, P. Hoffmann, A. Kriele, H. Lorenz, A. J. Kulik, and G. Dietler. Mechanical properties of high-aspect-ratio atomic-force microscope tips. Applied Physics Letters, 2002, 80 (24): 4623-4625.
    [118] S. I. Lee, S. W. Howell, A. Raman, R. Reifenberger, C. V. Nguyen, and M. Meyyappan. Nonlinear tapping dynamics of multi-walled carbon nanotube tipped atomic force microcantilevers. Nanotechnology, 2004, 15 (5): 416-421.
    [119] S. Akita, H. Nishijima, Y. Nakayama, F. Tokumasu, and K. Takeyasu. Carbon nanotube tips for a scanning probe microscope: their fabrication and properties. Journal of Physics D-Applied Physics, 1999, 32 (9): 1044-1048.
    [120] Q. Wang and V. K. Varadan. Stability analysis of carbon nanotube probes for an atomic force microscope via a continuum model. Smart Materials & Structures, 2005, 14 (6): 1196-1203.
    [121] I. R. Shapiro, S. D. Solares, M. J. Esplandiu, L. A. Wade, W. A. Goddard, and C. P. Collier. Influence of elastic deformation on single-wall carbon nanotube atomic force microscopy probe resolution. Journal of Physical Chemistry B, 2004, 108 (36): 13613-13618.
    [122] S. Akita, H. Nishijima, T. Kishida, and Y. Nakayama. Influence of force acting on side face of carbon nanotube in atomic force microscopy. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2000, 39 (6B): 3724-3727.
    [123] M. C. Strus, A. Raman, C. S. Han, and C. V. Nguyen. Imaging artefacts in atomic force microscopy with carbon nanotube tips. Nanotechnology, 2005, 16 (11): 2482-2492.
    [124]李红梅.我国标准物质发展政策法规需求分析及对策建议.中国计量, 2007, 01 23-25.
    [125]何永政.标准样品及其特性.中国纤检, 2007, (6): 22-27.
    [126]陈柏年and徐大军.标准样品的标准化特性.中国标准化, 2005, 02 70-72.
    [127]中国计量科学研究院. JJG 1005-86标准物质常用术语. 1986.
    [128]国家标准物质研究中心. JJF 1005-2005标准物质常用术语和定义. 2005.
    [129]李晓玲,李晓东, and孙亮.系统误差对测量结果的影响及消除方法的探讨.计量技术, 2005, 2.
    [130]余文新,胡小唐, and邹自强.光栅纳米测量中的系统误差修正技术研究.计量学报, 2002, 23 (02): 101-105.
    [131] S. K. Kimothi. Uncertainty of Measurements: Physical and Chemical Metrology: Impact & Analysis. ASQ Quality Press 2002.
    [132] H. J. Butt, B. Cappella, and M. Kappl. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 2005, 59 (1-6): 1-152.
    [133] R. Garcia and R. Perez. Dynamic atomic force microscopy methods. Surface Science Reports, 2002, 47 (6-8): 197-301.
    [134] B. Cappella and G. Dietler. Force-distance curves by atomic force microscopy. Surface Science Reports, 1999, 34 (1-3): 1-+.
    [135] P. Attard. Measurement and interpretation of elastic and viscoelastic properties with the atomic force microscope. J. Phys.-Condes. Matter, 2007, 19 (47).
    [136] Y. Seo and W. Jhe. Atomic force microscopy and spectroscopy. Rep. Prog. Phys., 2008,71 (1).
    [137] J. Tamayo. Energy dissipation in tapping-mode scanning force microscopy with low quality factors. Applied Physics Letters, 1999, 75 (22): 3569-3571.
    [138] O. P. Behrend, L. Odoni, J. L. Loubet, and N. A. Burnham. Phase imaging: Deep or superficial? Applied Physics Letters, 1999, 75 (17): 2551-2553.
    [139] J. P. Cleveland, B. Anczykowski, A. E. Schmid, and V. B. Elings. Energy dissipation in tapping-mode atomic force microscopy. Applied Physics Letters, 1998, 72 (20): 2613-2615.
    [140] J. Tamayo and R. Garcia. Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy. Applied Physics Letters, 1998, 73 (20): 2926-2928.
    [141] N. A. Burnham, O. P. Behrend, F. Oulevey, G. Gremaud, P. J. Gallo, D. Gourdon, E. Dupas, A. J. Kulik, H. M. Pollock, and G. A. D. Briggs. How does a tip tap? Nanotechnology, 1997, 8 (2): 67-75.
    [142] K. Schroeter, A. Petzold, T. Henze, and T. Thurn-Albrecht. Quantitative Analysis of Scanning Force Microscopy Data Using Harmonic Models. Macromolecules, 2009, 42 (4): 1114-1124.
    [143] H. Holscher. Theory of phase-modulation atomic force microscopy with constant-oscillation amplitude. Journal of Applied Physics, 2008, 103 (6).
    [144] D. Platz, E. A. Tholen, D. Pesen, and D. B. Haviland. Intermodulation atomic force microscopy. Applied Physics Letters, 2008, 92 (15).
    [145] R. W. Stark. Dynamics of repulsive dual-frequency atomic force microscopy. Applied Physics Letters, 2009, 94 (6).
    [146] X. Xu, J. Melcher, S. Basak, R. Reifenberger, and A. Raman. Compositional Contrast of Biological Materials in Liquids Using the Momentary Excitation of Higher Eigenmodes in Dynamic Atomic Force Microscopy. Physical Review Letters, 2009, 102 (6).
    [147] R. J. Cannara, M. J. Brukman, and R. W. Carpick. Cantilever tilt compensation for variable-load atomic force microscopy. Review of Scientific Instruments, 2005, 76 (5): -.
    [148] J. L. Hutter. Comment on tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements. Langmuir, 2005, 21 (6): 2630-2632.
    [149] S. A. Edwards, W. A. Ducker, and J. E. Sader. Influence of atomic force microscope cantilever tilt and induced torque on force measurements. Journal of Applied Physics, 2008, 103 (6): -.
    [150] L. O. Heim, M. Kappl, and H. J. Butt. Tilt of atomic force microscope cantilevers: Effect on spring constant and adhesion measurements. Langmuir, 2004, 20 (7): 2760-2764.
    [151] M. J. D'Amato, M. S. Marcus, M. A. Eriksson, and R. W. Carpick. Phase imaging and the lever-sample tilt angle in dynamic atomic force microscopy. Applied Physics Letters, 2004, 85 (20): 4738-4740.
    [152] M. S. Marcus, R. W. Carpick, D. Y. Sasaki, and M. A. Eriksson. Material anisotropy revealed by phase contrast in intermittent contact atomic force microscopy. Physical Review Letters, 2002, 88 (22): 226103/226101-226104.
    [153] H. J. Butt and M. Jaschke. Calculation of Thermal Noise in Atomic-Force Microscopy. Nanotechnology, 1995, 6 (1): 1-7.
    [154] J. E. Sader. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 1998, 84 (1): 64-76.
    [155] R. W. Stark and W. M. Heckl. Fourier transformed atomic force microscopy: tapping mode atomic force microscopy beyond the Hookian approximation. Surface Science,2000, 457 (1-2): 219-228.
    [156] H. J. Butt. Electrostatic Interaction in Atomic Force Microscopy. Biophysical Journal, 1991, 60 (4): 777-785.
    [157] K. L. Johnson and J. A. Greenwood. An adhesion map for the contact of elastic spheres. Journal of Colloid and Interface Science, 1997, 192 (2): 326-333.
    [158] P. Attard and J. L. Parker. Deformation and Adhesion of Elastic Bodies in Contact. Physical Review A, 1992, 46 (12): 7959-7971.
    [159] M. Heuberger, G. Dietler, and L. Schlapbach. Elastic deformations of tip and sample during atomic force microscope measurements. Journal of Vacuum Science & Technology B, 1996, 14 (2): 1250-1254.
    [160] L. W. Chen, X. C. Yu, and D. Wang. Cantilever dynamics and quality factor control in AC mode AFM height measurements. Ultramicroscopy, 2007, 107 (4-5): 275-280.
    [161] V. V. Prokhorov and S. A. Saunin. Probe-surface interaction mapping in amplitude modulation atomic force microscopy by integrating amplitude-distance and amplitude-frequency curves. Applied Physics Letters, 2007, 91 (2).
    [162] R. Garcia, R. Magerle, and R. Perez. Nanoscale compositional mapping with gentle forces. Nature Materials, 2007, 6 (6): 405-411.
    [163] R. Garcia, C. J. Gomez, N. F. Martinez, S. Patil, C. Dietz, and R. Magerle. Identification of nanoscale dissipation processes by dynamic atomic force microscopy. Physical Review Letters, 2006, 97 (1): 016103/016101-016104.
    [164] C. Dietz, M. Zerson, C. Riesch, M. Franke, and R. Magerle. Surface Properties of Elastomeric Polypropylenes Studied with Atomic Force Microscopy. Macromolecules, 2008, 41 (23): 9259-9266.
    [165] E. Sahagun, P. Garcia-Mochales, G. M. Sacha, and J. J. Saenz. Energy dissipation due to capillary interactions: Hydrophobicity maps in force microscopy. Physical Review Letters, 2007, 98 (17).
    [166] O. Sahin and N. Erina. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy. Nanotechnology, 2008, 19 (44).
    [167] M. Kober, E. Sahagun, M. Fuss, F. Briones, M. Luna, and J. J. Saenz. Adhesion hysteresis in dynamic atomic force microscopy. Phys. Status Solidi-Rapid Res. Lett., 2008, 2 (3): 138-140.
    [168] H. Holscher. Quantitative measurement of tip-sample interactions in amplitude modulation atomic force microscopy. Applied Physics Letters, 2006, 89 (12).
    [169] M. Lee and W. Jhe. General theory of amplitude-modulation atomic force microscopy. Physical Review Letters, 2006, 97 (3): 036104/036101-036104.
    [170] J. Hu, X. D. Xiao, D. F. Ogletree, and M. Salmeron. Imaging the Condensation and Evaporation of Molecularly Thin Films of Water with Nanometer Resolution. Science, 1995, 268 (5208): 267-269.
    [171] L. J. Chen, X. H. Gu, M. J. Fasolka, J. W. Martin, and T. Nguyen. Effects of Humidity and Sample Surface Free Energy on AFM Probe-Sample Interactions and Lateral Force Microscopy Image Contrast. Langmuir, 2009, 25 (6): 3494-3503.
    [172] H. Jun, X. Xu-Dong, and M. Salmeron. Scanning polarization force microscopy: A technique for imaging liquids and weakly adsorbed layers. Applied Physics Letters|Applied Physics Letters, 1995, 67 (4): 476-478.
    [173] W. Zhuang, C. Ecker, G. A. Metselaar, A. E. Rowan, R. J. M. Nolte, P. Samori, and J. P. Rabe. SFM characterization of poly(isocyanodipeptide) single polymer chains in controlled environments: Effect of tip adhesion and chain swelling. Macromolecules, 2005, 38 (2): 473-480.
    [174] A. Verdaguer, M. Cardellach, and J. Fraxedas. Thin water films grown at ambient conditions on BaF2(111) studied by scanning polarization force microscopy. Journal of Chemical Physics, 2008, 129 (17): -.
    [175] L. W. Chen, C. L. Cheung, P. D. Ashby, and C. M. Lieber. Single-walled carbon nanotube AFM probes: Optimal imaging resolution of nanoclusters and biomolecules in ambient and fluid environments. Nano Letters, 2004, 4 (9): 1725-1731.
    [176] S. Akita, H. Nishijima, and Y. Nakayama. Influence of stiffness of carbon-nanotube probes in atomic force microscopy. Journal of Physics D-Applied Physics, 2000, 33 (21): 2673-2677.
    [177] F. Z. Fang, Z. W. Xu, and S. Dong. Study on phase images of a carbon nanotube probe in atomic force microscopy. Measurement Science & Technology, 2008, 19 (5): -.
    [178] M. Stark, C. Moller, D. J. Muller, and R. Guckenberger. From images to interactions: High-resolution phase imaging in tapping-mode atomic force microscopy. Biophysical Journal, 2001, 80 (6): 3009-3018.
    [179] C. M. Su, L. Huang, and K. Kjoller. Direct measurement of tapping force with a cantilever deflection force sensor. Ultramicroscopy, 2004, 100 (3-4): 233-239.
    [180] S. C. Fain, K. A. Barry, M. G. Bush, B. Pittenger, and R. N. Louie. Measuring average tip-sample forces in intermittent-contact (tapping) force microscopy in air. Applied Physics Letters, 2000, 76 (7): 930-932.
    [181] M. F. Yu, T. Kowalewski, and R. S. Ruoff. Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force. Physical Review Letters, 2000, 85 (7): 1456-1459.
    [182] X. F. Zhou, H. J. An, Y. C. Guo, J. L. Sun, M. Q. Li, and J. Hu. Direct measurement of compression spring constant of single DNA molecule with AFM. Chinese Science Bulletin, 2005, 50 (10): 954-957.
    [183] X. F. Zhou, H. Xu, C. H. Fan, J. L. Sun, Y. Zhang, M. Q. Li, W. Q. Shen, and J. Hu. Compression of single conjugated-polymer nanoparticles with AFM tips. Chemistry Letters, 2005, 34 (11): 1488-1489.
    [184] S. Dongmo, M. Troyon, P. Vautrot, E. Delain, and N. Bonnet. Blind restoration method of scanning tunneling and atomic force microscopy images. Journal of Vacuum Science & Technology B, 1996, 14 (2): 1552-1556.
    [185] H. Y. Nie, M. J. Walzak, and N. S. McIntyre. Use of biaxially oriented polypropylene film for evaluating and cleaning contaminated atomic force microscopy probe tips: An application to blind tip reconstruction. Review of Scientific Instruments, 2002, 73 (11): 3831-3836.
    [186] Y. Wang and X. Y. Chen. Carbon nanotubes: A promising standard for quantitative evaluation of AFM tip apex geometry. Ultramicroscopy, 2007, 107 (4-5): 293-298.
    [187] V. J. Garcia, L. Martinez, J. M. Briceno-Valero, and C. H. Schilling. Dimensional metrology of nanometric spherical particles using AFM: I, model development. Probe Microscopy, 1997, 1 (1): 107-116.
    [188] K. A. Ramirez-Aguilar and K. L. Rowlen. Tip characterization from AFM images of nanometric spherical particles. Langmuir, 1998, 14 (9): 2562-2566.
    [189] H. Wang, B. E. Layton, and A. M. Sastry. Nerve collagens from diabetic and nondiabetic Sprague-Dawley and biobreeding rats: an atomic force microscopy study. Diabetes Metab Res Rev, 2003, 19 (4): 288-298.
    [190] H. K. Li, J. H. Huang, J. H. Lv, H. J. An, X. D. Zhang, Z. Z. Zhang, C. H. Fan, and J. Hu. Nanoparticle PCR: Nanogold-assisted PCR with enhanced specificity. Angewandte Chemie-International Edition, 2005, 44 (32): 5100-5103.
    [191] J. K. Pan, H. K. Li, X. Y. Cao, J. H. Huang, X. D. Zhang, C. H. Fan, and J. Hu. Nanogold-assisted multi-round polymerase to chain reaction (PCR). J. Nanosci. Nanotechnol., 2007, 7 (12): 4428-4433.
    [192] J. H. Huang, X. D. Zhang, C. M. Wang, L. H. Wang, H. K. Li, X. Y. Cao, A. L. Zhang, X. L. Li, C. H. Fan, and J. Hu. Size and Surface Effect of Gold Nanoparticles (Aunps) in Nanogold-Assisted Pcr. Surface Review and Letters, 2008, 15 (6): 757-762.
    [193] T. W. James and D. Mazia. Surface Films of Desoxyribonucleic Acid. Biochimica Et Biophysica Acta, 1953, 10 (3): 367-370.
    [194] H. G. Hansma, R. L. Sinsheimer, M. Q. Li, and P. K. Hansma. Atomic Force Microscopy of Single-Stranded and Double-Stranded DNA. Nucleic Acids Research, 1992, 20 (14): 3585-3590.
    [195] I. Gossl, L. J. Shu, A. D. Schluter, and J. P. Rabe. Molecular structure of single DNA complexes with positively charged dendronized polymers. Journal of the American Chemical Society, 2002, 124 (24): 6860-6865.
    [196] L. I. Pietrasanta, D. Thrower, W. Hsieh, S. Rao, O. Stemmann, J. Lechner, J. Carbon, and H. Hansma. Probing the Saccharomyces cerevisiae centromeric DNA (CEN DNA) inding factor 3 (CBF3) kinetochore complex by using atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96 (7): 3757-3762.
    [197] A. P. M. Barboza, H. Chacham, and B. R. A. Neves. Universal response of single-wall carbon nanotubes to radial compression. Physical Review Letters, 2009, 102 (2): 025501 (025504 pp.)-025501 (025504 pp.).
    [198] F. Mouchet, P. Landois, E. Flahaut, E. Pinelli, and L. Gauthier. Carbon nanotubes in the environment and their potential ecotoxicity: Context and state of the art. Environnement Risques & Sante, 2009, 8 (1): 47-55.
    [199] Standards and projects under the direct responsibility of TC 229 Secretariat. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=381983.
    [200] T. Hertel, R. E. Walkup, and P. Avouris. Deformation of carbon nanotubes by surface van der Waals forces. Physical Review B, 1998, 58 (20): 13870-13873.
    [201] R. S. Ruoff, J. Tersoff, D. C. Lorents, S. Subramoney, and B. Chan. Radial Deformation of Carbon Nanotubes by Van-Der-Waals Forces. Nature, 1993, 364 (6437): 514-516.
    [202] T. DeBorde, J. C. Joiner, M. R. Leyden, and E. D. Minot. Identifying Individual Single-Walled and Double-Walled Carbon Nanotubes by Atomic Force Microscopy. Nano Letters, 2008, 8 (11): 3568-3571.
    [203] X. J. Li, J. L. Sun, X. F. Zhou, G. Li, P. G. He, Y. Z. Fang, M. Q. Li, and J. Hu. Height measurement of dsDNA and antibodies adsorbed on solid substrates in air by vibrating mode scanning polarization force microscopy. Journal of Vacuum Science & Technology B, 2003, 21 (3): 1070-1073.
    [204] H. B. Wang, X. F. Zhou, H. J. An, Y. C. Guo, J. L. Sun, Y. Zhang, and J. Hu. Effects of substrate hydrophobicity/hydrophilicity on height measurement of individual DNA molecules. Chinese Physics Letters, 2007, 24 (3): 644-647.
    [205] Y. H. Chen, X. J. Li, X. F. Zhou, J. L. Sun, W. H. Huang, and J. Hu. Analysis of vibrating mode scanning polarization force microscope. Review of Scientific Instruments, 2004, 75 (11): 4721-4726.
    [206] C. Yuhang, L. Xiaojun, Z. Xingfei, S. Jielin, H. Wenhao, and H. Jun. Analysis of vibrating mode scanning polarization force microscope. Review of Scientific Instruments, 2004, 75 (11): 4721-4726.
    [207] J. Frank, A. Verschoor, and M. Boublik. Computer Averaging of Electron-Micrographs of 40s Ribosomal-Subunits. Science, 1981, 214 (4527): 1353-1355.
    [208] M. Auer. Three-dimensional electron cryo-microscopy as a powerful structural tool in molecular medicine. Journal of Molecular Medicine-Jmm, 2000, 78 (4): 191-202.
    [209] D. J. Muller and K. Anderson. Biomolecular imaging using atomic force microscopy. Trends in Biotechnology, 2002, 20 (8): S45-S49.
    [210] J. Frank and L. Alali. Signal-to-Noise Ratio of Electron Micrographs Obtained by Cross-Correlation. Nature, 1975, 256 (5516): 376-379.
    [211] P. Penczek, M. Radermacher, and J. Frank. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy, 1992, 40 (1): 33-53.
    [212] J. P. Lewis. {Fast template matching}. Vision Interface, 1995, 95 120-123.
    [213] B. Mokaberi and A. A. G. Requicha. Drift compensation for automatic nanomanipulation with scanning probe microscopes. Ieee Transactions on Automation Science and Engineering, 2006, 3 (3): 199-207.
    [214] B. Mokaberi and A. A. G. Requicha. Towards automatic nanomanipulation: Drift compensation in scanning probe microscopes. 2004 Ieee International Conference on Robotics and Automation, Vols 1- 5, Proceedings, 2004, 416-421 5306.
    [215] R. A. Singer. Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets. Aerospace and Electronic Systems, IEEE Transactions on, 1970, AES-6 (4): 473-483.
    [216] E. Ficarra, L. Benini, E. Macii, and G. Zuccheri. Automated DNA fragments recognition and sizing through AFM image processing. Ieee Transactions on Information Technology in Biomedicine, 2005, 9 (4): 508-517.
    [217] K. R. Lata, P. Penczek, and J. Frank. Automatic Particle Picking from Electron Micrographs. Fifty-Second Annual Meeting - Microscopy Society of America/Twenty-Ninth Annual Meeting - Microbeam Analysis Society, Proceedings, 1994, 122-123 1087.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700