用户名: 密码: 验证码:
新型电化学传感器对土壤和水中甲基对硫磷的检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药是目前世界农业生产活动中最重要的生产资料之一。作为农业增产的重要因素,农药在避免病虫害、减轻劳动强度等方面起到了重要作用。农药的使用给人们创造了巨大的经济效益和社会效益。但是,随着农药的品种和使用量的不断增加,农药残留给生态环境和人类健康也带来了严重威胁。农药进入人体后可抑制血液和组织中的乙酰胆碱酯酶的活性,造成神经递质乙酰胆碱大量蓄积,导致神经麻痹。有些农药虽然急性毒性不高,但在人畜体内有慢性积累性毒性,长期暴露于微量农药下有可能引起慢性中毒。不仅如此,据报道有些农药还有致畸、致癌、致突变的作用。
     随着健康意识和环保意识的增强,农药残留分析技术的研究也受到了高度重视。电化学方法以其成本低廉、操作简单、灵敏度高、快速方便、仪器小巧便携等特点引起了广大研究者的关注。近年来,电化学检测方法已被广泛应用于药物分析、疾病诊断和环境监测等领域。本文构建了四种不同类型的电化学传感器,研究了以甲基对硫磷为模型药物的有机磷农药在传感器上的电化学行为,并对河水和土壤实际样品中的农药残留进行了检测。主要分为以下四个方面:
     (1)以石墨烯-壳聚糖纳米复合物(GR-Chi)为修饰材料,以硼酸功能化的ZnSe量子点(F-ZnSe QDs)为酶固定材料,构建了一种响应快、灵敏度高的安培型生物传感器用于定量检测有机磷农药。传感器构建过程包括:(1)借助于壳聚糖良好的成膜性将GR-Chi固定在玻碳电极的表面;(2)通过静电吸引、氢键等作用将F-ZnSe QDs固定于GR-Chi膜表面;(3)通过硼酸羟基与多糖的特异性结合将乙酰胆碱酯酶(AChE)固定于F-ZnSe QDs表面。GR-Chi良好的导电性可以提高电子传递速率,降低硫代胆碱的氧化电位,生物相容性的ZnSe量子点的高比表面积不仅可以为酶的固定提供更多有效位点,而且可以保持酶的生物活性;二者协同作用不仅能加速电子传导,而且可以同时促进酶催化反应,从而增大电极的检测灵敏度。以甲基对硫磷为模型药物,利用农药对AChE催化活性的抑制作用原理来检测有机磷农药,在0.5nM-0.5μM范围内,酶抑制率与甲基对硫磷浓度呈线性关系,检出限可达0.2nM (S/N=3)。该传感器响应速度快,检测范围宽,稳定性较好。对河水和土壤样品中甲基对硫磷检测的平均回收率在94.5%到108.6%之间
     (2)结合Ellman试剂的电化学还原和酶抑制原理,提出了一种检测农药残留的新方法。首先以多壁碳纳米管-壳聚糖纳米复合物为修饰材料构建了一种乙酰胆碱酯酶生物传感器。多壁碳纳米管良好的导电性可以提高电极界面的电子传递速率,壳聚糖的生物相容性可以保持酶的生物活性,二者的协同作用保证了酶传感器具有良好的电化学响应。同时,Ellman试剂的电化学还原相对容易,受干扰较少,因此可以进一步提高检测的灵敏度。实验优化了应用电位、缓冲溶液pH、酶催化时间和抑制时间等检测条件,在最优条件下,利用Ellman试剂的电化学还原信号,以甲基对硫磷为模型药物对有机磷农药进行了检测。在甲基对硫磷浓度范围5.0×10~(-7)-1.0×10~(-12)M内,Ellman试剂的电化学还原电流变化值与农药浓度呈线性关系。根据信噪比S/N=3得出检出限为7.5×10~(-13)M。该方法具有良好的重现性和稳定性,并且成功实现了土壤和水实际样品中农药的检测。
     (3)以二步沉淀法制备了多壁碳纳米管-二氧化铈-金(MWCNTs-CeO_2-Au)纳米复合物,用红外吸收光谱、扫描电镜和X-射线衍射等手段对其形貌和结构进行了表征。多壁碳纳米管对芳香类化合物具有很强的吸附作用,CeO_2和Au纳米颗粒不仅具有较大的比表面积,而且对电活性物质的氧化还原具有较强的催化活性,结合多壁碳纳米管和纳米粒子的优点于一体,以MWCNTs-CeO_2-Au纳米复合物为修饰材料构建了一种新型的电化学传感器,以甲基对硫磷为模型药物对有机磷农药进行了检测。实验结果表明,MWCNT-CeO_2-Au提高了电极有效表面积,增加了待测溶液中甲基对硫磷的吸附量;同时,该纳米复合物具有良好的导电性,促进了电极表面电子传递和传感器的响应速度,提高了甲基对硫磷在修饰电极上的电流响应,从而提高了检测的灵敏度。在最优条件下利用吸附-溶出伏安法对甲基对硫磷进行了检测,在浓度范围1.0×10~(-10)~1.0×10~(-7)M内,甲基对硫磷的氧化峰电流与浓度对数呈线性关系,检出限达到7.5×10~(-11)M (S/N=3)。该传感器响应速度快,检测范围宽,灵敏度较高,稳定性较好,有望成为一种新型的农药残留检测工具。
     (4)利用超声辅助下水热合成法合成了石墨烯量子点(GQDs),用透射电镜、红外吸收光谱进行了表征。以GQDs为修饰材料制备了GQDs/GCE的玻碳电极,然后将此电极在酸性条件下电聚合了一层聚三聚氰胺(PAM)导电膜,制备了PAM/GODs/GCE用于甲基对硫磷的检测。GQDs大的表面积不仅为三聚氰胺提供了更多的聚合位点,而且还为三聚氰胺的电化学聚合提供了必要的含氧表面;PAM膜含有大量的氨基,可以吸附大量的甲基对硫磷,而且其较好的导电性也为甲基对硫磷的溶出提供了条件;同时,GQDs和PAM对甲基对硫磷的催化还原进一步提高了检测灵敏度。在优化条件下,用示差脉冲伏安法对不同浓度的MP进行了电化学富集-溶出检测。甲基对硫磷还原电流与其浓度在0.1nM到50.0nM范围内呈线性关系,检出限为0.06nM。该传感器响应速度快,检测范围宽,灵敏度较高,稳定性较好。水和土壤样品中的平均加标回收率在94.6%到109.2%之间,表明该传感器可以用于实际样品的检测。
Pesticides play an important role in the high productivity achieved in agriculture throughthe control of pests. However, pesticides are intentionally toxic, and the presence of pesticideresidues in food, water, and soil has become a major issue in environmental chemistry.Worldwide, organophosphorus pesticides (OPs) compounds account for over38%of thetotal pesticides used. Their toxicity is based on the inhibition of acetylcholinesterase (AChE,EC3.1.1.7), which is essential for the functioning of the centralnervous system of humansand insects. This results in the accumulation of the acetylcholine neurotransmitter, whichinterferes with muscular responses and causes respiratory and myocardial malfunctions andeven death. As a result, effective monitoring of OPs in the environment is very desirable.Among many analysis methods, electrochemical analysis has been confirmed as one of themost promising method for pesticide measurement by virtue of its simplicity, rapidity, highsensitivity and versatility. In this paper, four different electrochemical sensors were fabricatedbased on new nanomaterials and their applications in OPs determination were investigated.The main contents could be divided into four aspects as follow:
     (1) A sensitive acetylcholinesterase biosensor was fabricated based on dual-signalamplification. A large amount of enzyme was immobilized on a glassy carbon electrode viaspecific binding between functionalized ZnSe quantum dots and acetylcholinesterase, and agraphene-chitosan nanocomposite was introduced as electrode modifier that improvesresponse. These two factors render the biosensor highly sensitive to acetylthiocholine chloride.Organophosphate pesticides were detected with this biosensor using methyl parathion as amodel enzyme inhibitor. Under optimal conditions, there is a linear relationship between thepercentage of inhibition(I%)and the log of the concentration of methyl parathion in the0.5nM to0.5μM range, with a0.2nM detection limit (at an S/N of3). The biosensor displaysacceptable reproducibility and relatively good storage stability. It was successfully employedto the determination of methyl parathion in spiked water and soil samples.
     (2) A novel method was proposed for ultra-trace detection of pesticides combining electrochemical reduction of Ellman′s reagent (DTNB) with AChE inhibition. Theamperometric biosensor, fabricated by immobilizing AChE on multi-walled carbonnanotubes-chitosan (MWCNTs-Chi) nanocomposites modified glassy carbon electrode,enjoyed high sensitivity owing to the excellent conductivity and favorable biocompatibility ofMWCNTs-Chi nanocomposites. Meanwhile, the sensitivity of the biosensor was furtherenhanced using the electrochemical reduction signal of DTNB for determination. Underoptimum conditions, methyl parathion was detected based on its inhibition effect on AChEactivity and the subsequent change in electrochemical reduction response of DTNB. Goodrelationship was obtained between the reduction current and pesticide concentration in theranges of5.0×10~(-7)-1.0×10~(-12)M with a detection limit of7.5×10~(-13)M (S/N=3). Moreover,the proposed protocol was successfully employed for the determination of methyl parathion inspiked water and soil samples.
     (3) A novel multi-walled carbon nanotubes-CeO_2-Au nanocomposite(MWCNTs-CeO_2-Au) was synthesized by a facile two-step precipitation method and usedfor solid-phase extraction of methyl parathion (MP). The MWCNTs-CeO_2-Aunanocomposite combined the individual properties of MWCNTs (high conductivity andexceptional adsorption affinity) and nanoparticles (high surface area and special catalyticactivity), and realized the efficient enrichment and electrochemical stripping voltammetricdetection of MP. An ultra-low detection limit of7.5×10~(-11)M (S/N=3) for MP wasobtained at MWCNTs-CeO_2-Au nanocomposite modified electrode, suggesting the highsensitivity of the nanocomposite based electrochemical sensor. Moreover, the proposedelectrochemical sensor was successfully employed for the determination of MP in water andsoil samples.
     (4) With the assistance of ultrasound, graphene quantum dots (GQDs) weresuccessfully prepared via cleaving graphene oxide under acid conditions and werecharacterized by TEM and FT-IR. Then, a novel OPs electrochemistry sensor was fabricatedby electro-polymerization melamine film onto GODs modified glassy carbon electrode(PAM/GODs/GCE). A large amount of MP was absorbed on the electrode surface via thestatic electricity and hydrogen bonds between PAM film and MP molecules. GQDs wereintroduced as electrode modifier that improves the electrode response. In addition, sensitivityof the sensor was further enhanced by the catalytic action of PAM and GODs towards theelectrochemistry reduction of MP. Under optimum conditions, good relationship was obtained between the reduction current and pesticide concentration in the ranges of0.1nM to50nm,with a detection limit of0.06nM (S/N=3). Moreover, the proposed protocol wassuccessfully employed for the determination of MP in spiked water and soil samples.
引文
韩熹莱,钱传范,陈馥衡.中国农业百科全书(农药卷).北京:农业出版社,1993,
    季仁东,赵志敏,张林,季雷,张吉华,沈令斌,兰秀风.苹果汁中吡虫啉农药残留荧光检测研究.光谱学与光谱分析,2013,(33):668-671
    李建平,李玉平,魏小平.基于三聚氰胺膜电催化与酶催化放大的分子印迹电化学传感器测定绿麦隆.化学学报,2012,(70):1853-1857
    李颖娇,张荣全,叶非.生物传感器在农药残留分析中的应用.农药科学与管理,2003,(24):11-13
    林强.我国的土壤污染现状及其防治对策.福建水土保持,2004,(16):25-28
    桑宏庆,于天宇.磷钼蓝分光光度法测定果蔬中有机磷农药.饮料工业,2010,39-43
    陶红歌,李学波,赵廷林.我国农药污染现状,存在问题及建议.环境保护,2001,30-32
    王大宁,董益阳,邹明强,2006.农药残留检测与监控技术.化学工业出版社.
    王娇娇,冯苗,詹红兵.石墨烯量子点的制备.化学进展,2013,(25):86-94
    王正元,贾志杰,张增民,徐才录,梁吉and朱绍文.用红外光谱研究硝酸处理对多壁碳纳米管.炭素技术,1999,(005):14-18
    熊艳梅,段云青,王冬,段佳,闵顺耕.近红外光谱技术快速测定农药有效成分的研究.光谱学与光谱分析,2010,1488-1492
    杨志清.农药污染对农业劳动者健康的危害.中国农学通报,2006,(22):331-334
    张大弟,张晓红.农药污染与防治.化学工业出版社,2001
    张宗绵,刘睿,徐敦明,刘景富. Au@SiO2核壳结构-表面增强拉曼光谱原位检测食品中的酸性橙II.化学学报,2012,(70):1686-1689
    仲维科,郝戬,孙梅心,陈雁玲.我国食品的农药污染问题.农药,2000,(39):1-4
    Al-Degs Y.S., Al-Ghouti M.A. and El-Sheikh A.H. Simultaneous determination of pesticidesat trace levels in water using multiwalled carbon nanotubes as solid-phase extractant andmultivariate calibration. J. Hazard. Mater.,2009,(169):128-135
    Anitha K., Mohan S.V. and Reddy S.J. Development of acetylcholinesterase silica sol-gelimmobilized biosenso-an application towards oxydemeton methyl detection. Biosens.Bioelectron.,2004,(20):848-856
    Anson F. Application of Potentiostatic Current Integration to the Study of the Adsorption ofCobalt (III)-(Ethylenedinitrilo (tetraacetate) on Mercury Electrodes. Anal. Chem.,1964a,(36):932-934
    Anson F.C. Application of Potentiostatic Current Integration to the Study of the Adsorption ofCobalt(III)-(Ethylenedinitrilo(tetraacetate) on Mercury Electrodes. Anal. Chem.,1964b,(36):932-934
    Aragay G., Pino F. and Merko i A. Nanomaterials for Sensing and Destroying Pesticides.Chem. Rev.,2012,(112):5317-5338
    Bagheri H., Ayazi Z. and Babanezhad E. A sol-gel-based amino functionalized fiber forimmersed solid-phase microextraction of organophosphorus pesticides fromenvironmental samples. Microchem. J.,2010,(94):1-6
    Barker Z., Venkatchalam V., Martin A.N., Farquar G.R. and Frank M. Detecting tracepesticides in real time using single particle aerosol mass spectrometry. Anal. Chim. Acta,2010,(661):188-194
    Bernabei M., Cremisini C., Mascini M. and Palleschi G. Determination of organophosphorusand carbamic pesticides with a choline and acetylcholine electrochemical biosensor. Anal.Lett.,1991,(24):1317-1331
    Borrás E., Sánchez P., Mu oz A. and Tortajada-Genaro L.A. Development of a gaschromatography–mass spectrometry method for the determination of pesticides ingaseous and particulate phases in the atmosphere. Anal. Chim. Acta,2011,(699):57-65
    Caldas S.S., Costa F.P. and Primel E.G. Validation of method for determination of differentclasses of pesticides in aqueous samples by dispersive liquid–liquid microextraction withliquid chromatography–tandem mass spectrometric detection. Anal. Chim. Acta,2010,(665):55-62
    Chen G., Cao P. and Liu R. A multi-residue method for fast determination of pesticides in teaby ultra performance liquid chromatography–electrospray tandem mass spectrometrycombined with modified QuEChERS sample preparation procedure. Food Chem.,2011,(125):1406-1411
    Deinhammer R.S., Ho M., Anderegg J.W. and Porter M.D. Electrochemical oxidation ofamine-containing compounds: a route to the surface modification of glassy carbonelectrodes. Langmuir,1994,(10):1306-1313
    Du D., Chen S., Song D., Li H. and Chen X. Development of acetylcholinesterase biosensorbased on CdTe quantum dots/gold nanoparticles modified chitosan microspheresinterface. Biosens. Bioelectron.,2008a,(24):475-479
    Du D., Chen W., Zhang W., Liu D., Li H. and Lin Y. Covalent coupling of organophosphorushydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanceddetection of methyl parathion. Biosens. Bioelectron.,2010a,(25):1370-1375
    Du D., Ding J., Tao Y. and Chen X. Application of chemisorption/desorption process ofthiocholine for pesticide detection based on acetylcholinesterase biosensor. Sens.Actuators, B,2008b,(134):908-912
    Du D., Huang X., Cai J. and Zhang A. Amperometric detection of triazophos pesticide usingacetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix. Sens.Actuators, B,2008c,(127):531-535
    Du D., Ye X., Cai J., Liu J. and Zhang A. Acetylcholinesterase biosensor design based oncarbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometricdetection of organophosphates. Biosens. Bioelectron.,2010b,(25):2503-2508
    El-Sheikh A.H., Sweileh J.A., Al-Degs Y.S., Insisi A.A. and Al-Rabady N. Critical evaluationand comparison of enrichment efficiency of multi-walled carbon nanotubes, C18silicaand activated carbon towards some pesticides from environmental waters. Talanta,2008,(74):1675-1680
    Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys.,1959,(82):70-77
    Eremenko A., Dontsova E., Nazarov A., Evtushenko E., Amitonov S., Savilov S., MartynovaL., Lunin V. and Kurochkin I. Manganese Dioxide Nanostructures as a NovelElectrochemical Mediator for Thiol Sensors. Electroanalysis,2012,(24):573-580
    Furtado C., Kim U., Gutierrez H., Pan L., Dickey E. and Eklund P.C. Debundling anddissolution of single-walled carbon nanotubes in amide solvents. J. Am. Chem. Soc.,2004,(126):6095-6105
    Gevao B., Semple K.T. and Jones K.C. Bound pesticide residues in soils: a review. Environ.Pollut.,2000,(108):3-14
    Gong J., Liu T., Song D., Zhang X. and Zhang L. One-step fabrication of three-dimensionalporous calcium carbonate–chitosan composite film as the immobilization matrix ofacetylcholinesterase and its biosensing on pesticide. Electrochem. Commun.,2009a,(11):1873-1876
    Gong J., Miao X., Zhou T. and Zhang L. An enzymeless organophosphate pesticide sensorusing Au nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction.Talanta,2011,(85):1344-1349
    Gong J., Wang L., Miao X. and Zhang L. Efficient stripping voltammetric detection oforganophosphate pesticides using NanoPt intercalated Ni/Al layered double hydroxidesas solid-phase extraction. Electrochem. Commun.,2010,(12):1658-1661
    Gong J., Wang L. and Zhang L. Electrochemical biosensing of methyl parathion pesticidebased on acetylcholinesterase immobilized onto Au-polypyrrole interlaced network-likenanocomposite. Biosens. Bioelectron.,2009b,(24):2285-2288
    Hirata M., Gotou T., Horiuchi S., Fujiwara M. and Ohba M. Thin-film particles of graphiteoxide1: High-yield synthesis and flexibility of the particles. Carbon,2004,(42):2929-2937
    Hrapovic S., Majid E., Liu Y., Male K. and Luong J.H.T. Metallic Nanoparticle CarbonNanotube Composites for Electrochemical Determination of Explosive NitroaromaticCompounds. Anal. Chem.,2006,(78):5504-5512
    Iijima S. Helical microtubules of graphitic carbon. Nature,1991,(354):56-58
    Ivanov A., Younusov R., Evtugyn G., Arduini F., Moscone D. and Palleschi G.Acetylcholinesterase biosensor based on single-walled carbon nanotubes-Cophtalocyanine for organophosphorus pesticides detection. Talanta,2011,(85):216-221
    Ivanov Y., Marinov I., Gabrovska K., Dimcheva N. and Godjevargova T. Amperometricbiosensor based on a site-specific immobilization of acetylcholinesterase via affinitybonds on a nanostructured polymer membrane with integrated multiwall carbonnanotubes. J. Mol. Catal. B: Enzym.,2010,(63):141-148
    Jeanty G. and Marty J. Detection of paraoxon by continuous flow system based enzymesensor. Biosens. Bioelectron.,1998,(13):213-218
    Joshi K.A., Tang J., Haddon R., Wang J., Chen W. and Mulchandani A. A disposablebiosensor for organophosphorus nerve agents based on carbon nanotubes modified thickfilm strip electrode. Electroanalysis,2005a,(17):54-58
    Joshi P.P., Merchant S.A., Wang Y. and Schmidtke D.W. Amperometric biosensors based onredox polymer-carbon nanotube-enzyme composites. Anal. Chem.,2005b,(77):3183-3188
    Jurevi iūt I., Brazd iuvien K., Bernotait L., alkus B. and Malinauskas A.Polyaniline-modified electrode as an amperometric ascorbate sensor. Sens. Actuators, B2005,(107):716-721
    Kalbac M., Green A.A., Hersam M.C. and Kavan L. Tuning of Sorted Double-Walled CarbonNanotubes by Electrochemical Charging. ACS nano,2010,(4):459-469
    Kamin R.A. and Wilson G.S. Rotating ring-disk enzyme electrode for biocatalysis kineticstudies and characterization of the immobilized enzyme layer. Anal. Chem.,1980,(52):1198-1205
    Kang T.-F., Wang F., Lu L.-P., Zhang Y. and Liu T.-S. Methyl parathion sensors based ongold nanoparticles and Nafion film modified glassy carbon electrodes. Sens. Actuators, B,2010,(145):104-109
    Kanungo M., Kumar A. and Contractor A. Microtubule sensors and sensor array based onpolyaniline synthesized in the presence of poly (styrene sulfonate). Anal. Chem.,2003,(75):5673-5679
    LeDoux M. Analytical methods applied to the determination of pesticide residues in foods ofanimal origin. A review of the past two decades. J. Chromatogr. A,2011,(1218):1021-1036
    Li C., Su Y., Lv X., Xia H. and Wang Y. Electrochemical acetylene sensor based onAu/MWCNTs. Sens. Actuators, B,2010,(149):427-431
    Li D., Müller M.B., Gilje S., Kaner R.B. and Wallace G.G. Processable aqueous dispersionsof graphene nanosheets. Nat. Nanotechnol.,2008,(3):101-105
    Li X.H., Xie Z., Min H., Li C., Liu M., Xian Y. and Jin L. Development of quantum dotsmodified acetylcholinesterase biosensor for the detection of trichlorfon. Electroanalysis,2006,(18):2163-2167
    Liang H., Miao X. and Gong J. One-step fabrication of layered double hydroxides/graphenehybrid as solid-phase extraction for stripping voltammetric detection of methyl parathion.Electrochem. Commun.,2012,(20):149-152
    Lim S.H., Wei J. and Lin J. Electrochemical genosensing properties of goldnanoparticle–carbon nanotube hybrid. Chem. Phys. Lett.,2004,(400):578-582
    Lin Y., Lu F. and Wang J. Disposable Carbon Nanotube Modified Screen-Printed Biosensorfor Amperometric Detection of Organophosphorus Pesticides and Nerve Agents.Electroanalysis,2004,(16):145-149
    Liu G. and Lin Y. Electrochemical sensor for organophosphate pesticides and nerve agentsusing zirconia nanoparticles as selective sorbents. Anal. Chem.,2005,(77):5894-5901
    Liu G., Riechers S.L., Mellen M.C. and Lin Y. Sensitive electrochemical detection ofenzymatically generated thiocholine at carbon nanotube modified glassy carbonelectrode. Electrochem. Commun.,2005,(7):1163-1169
    Liu G., Wang S., Liu J. and Song D. An Electrochemical Immunosensor Based on ChemicalAssembly of Vertically Aligned Carbon Nanotubes on Carbon Substrates for DirectDetection of the Pesticide Endosulfan in Environmental Water. Anal. Chem.,2012a,(84):3921-3928
    Liu T., Su H., Qu X., Ju P., Cui L. and Ai S. Acetylcholinesterase biosensor based on3-carboxyphenylboronic acid/reduced graphene oxide-gold nanocomposites modifiedelectrode for amperometric detection of organophosphorus and carbamate pesticides.Sens. Actuators, B,2011a,(161):319-360
    Liu T., Xu M., Yin H., Ai S., Qu X. and Zong S. A glassy carbon electrode modified withgraphene and tyrosinase immobilized on platinum nanoparticles for sensingorganophosphorus pesticides. Microchim. Acta,2011b,(175):129-135
    Liu X., Luo L., Ding Y., Wu Q., Wei Y. and Ye D. A highly sensitive method fordetermination of guanine, adenine and epinephrine using poly-melamine film modifiedglassy carbon electrode. J. Electroanal. Chem.,2012b,(675):47-53
    Liu Y., Wu S., Ju H. and Xu L. Amperometric glucose biosensing of gold nanoparticles andcarbon nanotube multilayer membranes. Electroanalysis,2007,(19):986-992
    Manisankar P., Sundari P.L.A., Sasikumar R. and Palaniappan S.P. Electroanalysis of somecommon pesticides using conducting polymer/multiwalled carbon nanotubes modifiedglassy carbon electrode. Talanta,2008,(76):1022-1028
    Mezcua M., Ferrer C., García-Reyes J.F., Martínez-Bueno M.J., Sigrist M. andFernández-Alba A.R. Analyses of selected non-authorized insecticides in peppers by gaschromatography/mass spectrometry and gas chromatography/tandem mass spectrometry.Food Chem.,2009,(112):221-225
    Mishra R.K., Dominguez R.B., Bhand S., Mu oz R. and Marty J.-L. A novel automatedflow-based biosensor for the determination of organophosphate pesticides in milk.Biosens. Bioelectron.,2012,(32):56-61
    Mondal S. and Sangaranarayanan M. A Novel Non-Enzymatic Sensor for Urea using aPolypyrrole coated Platinum Electrode. Sens. Actuators, B,2012,(177):478-486
    Mulchandani A., Mulchandani P., Chen W., Wang J. and Chen L. Amperometric thick-filmstrip electrodes for monitoring organophosphate nerve agents based on immobilizedorganophosphorus hydrolase. Anal. Chem.,1999,(71):2246-2249
    Nekrassova O., Lawrence N.S. and Compton R.G. Electrochemically Initiated CatalyticOxidation of5-Thio-2-Nitrobenzoic Acid (TNBA) in the Presence of Thiols at a BoronDoped Diamond Electrode: Implications for Total Thiol Detection. Electroanalysis,2003,(15):1655-1660
    Nunes L.C., da Silva G.A., Trevizan L.C., Santos Júnior D., Poppi R.J. and Krug F.J.Simultaneous optimization by neuro-genetic approach for analysis of plant materials bylaser induced breakdown spectroscopy. Spectrochim. Acta, Part B,2009,(64):565-572
    Okamoto M., Fujigaya T. and Nakashima N. Design of an Assembly of Poly (benzimidazole),Carbon Nanotubes, and Pt Nanoparticles for a Fuel‐Cell Electrocatalyst with an IdealInterfacial Nanostructure. Small,2009,(5):735-740
    Palleschi G., Bernabei M., Cremisini C. and Mascini M. Determination of organophosphorusinsecticides with a choline electrochemical biosensor. Sens. Actuators, B,1992,(7):513-517
    Pan D., Ma S., Bo X. and Guo L. Electrochemical behavior of methyl parathion and itssensitive determination at a glassy carbon electrode modified with ordered mesoporouscarbon. Microchim. Acta,2011,(173):215-221
    Parham H. and Rahbar N. Square wave voltammetric determination of methyl parathion usingZrO2nanoparticles modified carbon paste electrode. J. Hazard. Mater.,2010,(177):1077-1084
    Pariente F., Lorenzo E. and Abruna H. Electrocatalysis of NADH oxidation withelectropolymerized films of3,4-dihydroxybenzaldehyde. Anal. Chem.,1994,(66):4337-4344
    Peng X., Luan Z., Ding J., Di Z., Li Y. and Tian B. Ceria nanoparticles supported on carbonnanotubes for the removal of arsenate from water. Mater. Lett.,2005,(59):399-403
    Perez-Aguilar N.V., Mu oz-Sandoval E., Diaz-Flores P.E. and Rangel-Mendez J.R.Adsorption of cadmium and lead onto oxidized nitrogen-doped multiwall carbonnanotubes in aqueous solution: equilibrium and kinetics. J. Nanopart. Res.,2010,(12):467-480
    Pinwattana K., Wang J., Lin C.T., Wu H., Du D., Lin Y. and Chailapakul O. CdSe/ZnSquantum dots based electrochemical immunoassay for the detection of phosphorylatedbovine serum albumin. Biosens. Bioelectron.,2010,(26):1109-1113
    Prieto-Simón B., Campàs M., Andreescu S. and Marty J.L. Trends in flow-based biosensingsystems for pesticide assessment. Sensors,2006,(6):1161-1186
    Pundir C.S. and Chauhan N. Acetylcholinesterase inhibition based biosensors for pesticidesdetermination: A review. Anal. Biochem.,2012,(429):19-31
    Qu Y., Sun Q., Xiao F., Shi G. and Jin L. Layer-by-Layer self-assembledacetylcholinesterase/PAMAM-Au on CNTs modified electrode for sensing pesticides.Bioelectrochemistry,2010,(77):139-144
    Raghu P., Kumara Swamy B., Madhusudana Reddy T., Chandrashekar B. and Reddaiah K.Sol–gel immobilized biosensor for the detection of organophosphorous pesticides: Avoltammetric method. Bioelectrochemistry,2012a,(83):19-24
    Raghu P., Madhusudana Reddy T., Kumara Swamy B.E., Chandrashekar B.N., Reddaiah K.and Sreedhar M. Development of AChE biosensor for the determination of methylparathion and monocrotophos in water and fruit samples: A cyclic voltammetric study. J.Electroanal. Chem.,2012b,(665):76-82
    Rainina E., Efremenco E., Varfolomeyev S., Simonian A. and Wild J. The development of anew biosensor based on recombinant E. coli for the direct detection of organophosphorusneurotoxins. Biosens. Bioelectron.,1996,(11):991-1000
    Raoof J.-B., Ojani R. and Rashid-Nadimi S. Preparation of polypyrrole/ferrocyanide filmsmodified carbon paste electrode and its application on the electrocatalytic determinationof ascorbic acid. Electrochim. Acta2004,(49):271-280
    Ren X., Chen C., Nagatsu M. and Wang X. Carbon nanotubes as adsorbents in environmentalpollution management: A review. Chem. Eng. J.,2011,(170):395-410
    Ruan C., Yang L. and Li Y. Immunobiosensor Chips for Detection of Escherichia coli O157:H7Using Electrochemical Impedance Spectroscopy. Anal. Chem.,2002,(74):4814-4820
    Sassolas A., Prieto-Simón B. and Marty J.L. Biosensors for Pesticide Detection: New Trends.Anal. Chem.,2012,(3):210-232
    Scampicchio M., Lawrence N.S., Arecchi A., Cosio S. and Mannino S. VoltammetricDetection of Free Sulfhydryl Compounds in Food Flours. Electroanalysis,2007a,(19):85-90
    Scampicchio M., Lawrence N.S., Arecchi A. and Mannino S. Electrochemical Reduction ofEllman's Reagent: A Novel Selective Detection Protocol for Thiol Compounds.Electroanalysis,2007b,(19):2437-2443
    Shan C., Yang H., Han D., Zhang Q., Ivaska A. and Niu L. Electrochemical determination ofNADH and ethanol based on ionic liquid-functionalized graphene. Biosens. Bioelectron.,2010,(25):1504-1508
    Shulga O. and Kirchhoff J.R. An acetylcholinesterase enzyme electrode stabilized by anelectrodeposited gold nanoparticle layer. Electrochem. Commun.,2007,(9):935-940
    Sinha R., Ganesana M., Andreescu S. and Stanciu L. AChE biosensor based on zinc oxidesol–gel for the detection of pesticides. Anal. Chim. Acta,2010,(661):195-199
    Snejdarkova M., Svobodova L., Evtugyn G., Budnikov H., Karyakin A., Nikolelis D. andHianik T. Acetylcholinesterase sensors based on gold electrodes modified withdendrimer and polyaniline: A comparative research. Anal. Chim. Acta,2004,(514):79-88
    Soh N., Sonezaki M. and Imato T. Modification of a Thin Gold Film with Boronic AcidMembrane and Its Application to a Saccharide Sensor Based on Surface PlasmonResonance. Electroanalysis,2003,(15):1281-1290
    Solná R., Dock E., Christenson A., Winther-Nielsen M., Carlsson C., Emnéus J., Ruzgas T.and Skládal P. Amperometric screen-printed biosensor arrays with co-immobilisedoxidoreductases and cholinesterases. Anal. Chim. Acta,2005,(528):9-19
    Sotiropoulou S. and Chaniotakis N.A. Lowering the detection limit of the acetylcholinesterasebiosensor using a nanoporous carbon matrix. Anal. Chim. Acta,2005,(530):199-204
    Stankovich S., Dikin D.A., Dommett G.H.B., Kohlhaas K.M., Zimney E.J., Stach E.A., PinerR.D., Nguyen S.B.T. and Ruoff R.S. Graphene-based composite materials. Nature,2006,(442):282-286
    Sun X. and Wang X. Acetylcholinesterase biosensor based on prussian blue-modifiedelectrode for detecting organophosphorous pesticides. Biosens. Bioelectron.,2010,(25):2611-2614
    Tcheumi H.L., Tonle I.K., Ngameni E. and Walcarius A. Electrochemical analysis ofmethylparathion pesticide by a gemini surfactant-intercalated clay-modified electrode.Talanta,2010,(81):972-979
    Valdés-Ramírez G., Cortina M., Ramírez-Silva M.T. and Marty J.L.Acetylcholinesterase-based biosensors for quantification of carbofuran, carbaryl,methylparaoxon, and dichlorvos in5%acetonitrile. Anal. Bioanal.Chem.,2008,(392):699-707
    Viswanathan S., Radecka H. and Radecki J. Electrochemical biosensor for pesticides based onacetylcholinesterase immobilized on polyaniline deposited on vertically assembledcarbon nanotubes wrapped with ssDNA. Biosens. Bioelectron.,2009,(24):2772-2777
    Wang J. and Leung D. Applications of ultra-performance liquid chromatography electrosprayionization quadrupole time-of-flight mass spectrometry on analysis of138pesticides infruit-and vegetable-based infant foods. J. Agric. Food Chem.,2009,(57):2162-2173
    Wang K., Liu Q., Dai L., Yan J., Ju C., Qiu B. and Wu X. A highly sensitive and rapidorganophosphate biosensor based on enhancement of CdS–decorated graphenenanocomposite. Anal. Chim. Acta,2011,(695):84-88
    Wu S., Huang F., Lan X., Wang X., Wang J. and Meng C. Electrochemically reducedgraphene oxide and Nafion nanocomposite for ultralow potential detection oforganophosphate pesticide. Sens. Actuators, B,2013,(177):724-729
    Xiao L., Wildgoose G.G. and Compton R.G. Sensitive electrochemical detection of arsenic(III) using gold nanoparticle modified carbon nanotubes via anodic strippingvoltammetry. Anal. Chim. Acta,2008,(620):44-49
    Xue R., Kang T.-F., Lu L.-P. and Cheng S.-Y. Immobilization of acetylcholinesterase viabiocompatible interface of silk fibroin for detection of organophosphate and carbamatepesticides. Applied Surface Science,2012,(258):6040-6045
    Yang L., Wang G.C., Liu Y.J., An J.J. and Wang M. Development of a stable biosensor basedon a SiO2nanosheet–Nafion–modified glassy carbon electrode for sensitive detection ofpesticides. Anal. Bioanal.Chem.,2013,1-8
    Yang Y., Tu H., Zhang A., Du D. and Lin Y. Preparation and characterization ofAu–ZrO2–SiO2nanocomposite spheres and their application in enrichment anddetection of organophosphorus agents. J. Mate. Chem.,2012,(22):4977-4981
    Yao J., Schachermeyer S., Yin Y. and Zhong W. Cation Exchange in ZnSe Nanocrystals forSignal Amplification in Bioassays. Anal. Chem.,2010,
    Yeap W.S., Tan Y.Y. and Loh K.P. Using Detonation Nanodiamond for the Specific Captureof Glycoproteins. Anal. Chem.,2008,(80):4659-4665
    Yu S., Luo C., Wang L., Peng H. and Zhu Z. Poly (3,4-ethylenedioxythiophene)-modifiedNi/silicon microchannel plate electrode for the simultaneous determination of ascorbicacid, dopamine and uric acid. Analyst,2013,(138):1149-1155
    Zeng Y., Yu D., Yu Y., Zhou T. and Shi G. Differential pulse voltammetric determination ofmethyl parathion based on multiwalled carbon nanotubes–poly (acrylamide)nanocomposite film modified electrode. J. Hazard. Mater.,2012,(217):315-322
    Zeng Y.L., Huang Y.F., Jiang J.H., Zhang X.B., Tang C.R., Shen G.L. and Yu R.Q.Functionalization of multi-walled carbon nanotubes with poly (amidoamine) dendrimerfor mediator-free glucose biosensor. Electrochem. Commun.,2007,(1):185-190
    Zhai D., Liu B., Shi Y., Pan L., Wang Y., Li W., Zhang R. and Yu G. A Highly SensitiveGlucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACSnano,2013,
    Zhang L. and Fang M. Nanomaterials in pollution trace detection and environmentalimprovement. Nano Today,2010,(5):128-142
    Zhang M., Li X.H., Gong Y.D., Zhao N.M. and Zhang X.F. Properties and biocompatibilityof chitosan films modified by blending with PEG. Biomaterials,2002,(23):2641-2648
    Zhang Q., Tang N., Brock J.W.C., Mottaz H.M., Ames J.M., Baynes J.W., Smith R.D. andMetz T.O. Enrichment and Analysis of Nonenzymatically Glycated Peptides: BoronateAffinity Chromatography Coupled with Electron-Transfer Dissociation MassSpectrometry. J. Proteome Res.,2007,(6):2323-2330
    Zheng Z., Zhou Y., Li X., Liu S. and Tang Z. Highly-sensitive organophosphorous pesticidebiosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots.Biosens. Bioelectron.,2011,(26):3081-3085

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700