用户名: 密码: 验证码:
微污染水源扬水曝气强化原位生物脱氮特性与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于污废水大量排放及农业长期大量施用化肥,饮用水源氮源污染日益严重,已引起世界各国的高度重视。三十多年来人们采用各种方法对受污染水源水进行脱氮处理,其中生物脱氮法是目前去除水体氮源污染物最经济、有效的方法。尽管国内外对微污染水体生物脱氮进行了大量研究,但现有地表水源生物脱氮技术主要以异位生物修复为主,其水力停留时间受到限制,对总氮去除效果不理想,且大多需投加电子供体,增加了水处理成本,同时有些基质或其氧化的中间产物对生物有毒害作用。
     本文将扬水曝气与原位生物净化两种技术有机结合,针对微污染水体原位生物脱氮存在的低温、贫营养及好氧问题,采用贫营养脱氮功能菌群及低温贫营养脱氮功能菌群制成微生态菌剂,形成能有效去除水中氮源及有机污染物的原位生物投菌技术和原位生物膜技术,并结合扬水曝气技术,揭示了该组合技术用于微污染水源水生物脱氮的特性及效能。论文成果主要包括以下几方面:
     (1)贫营养好氧反硝化细菌的驯化、筛分及脱氮特性研究。在低营养条件下驯化、筛分出具有较好脱氮性能的贫营养好氧反硝化细菌PY8、DA15和DF7,结合菌株形态、生理生化试验及16S rDNA序列分析,可基本确定菌株PY8属于Rhizobium sp.,菌株DA15属于Arthrobacter sp.,菌株DF7属于Bacillus sp.。在前期已筛分出的高效脱氮菌种FY3、FY5和FY7的基础之上,采用生态位分离策略构建了贫营养脱氮功能菌群Z4(PY8+FY3+FY7),并对其中各功能菌的生长曲线、脱氮特性进行了系统的研究。结果表明,各菌株生长速率较慢,pH、温度、C/N、NaNO3浓度及接种量对各贫营养好氧反硝化细菌的脱氮性能影响有差异,且PY8异养硝化性能明显。周质硝酸盐还原酶亚基基因(napA)PCR扩增结果证实这3株菌具有可在好氧环境中还原硝酸盐的系统,好氧反硝化作用的确是由周质硝酸盐还原酶来催化的。
     (2)低温好氧反硝化细菌的驯化、筛分及脱氮特性研究。通过逐渐降低温度条件驯化、筛分出耐冷脱氮细菌DW3、DW4、D3和D4,经过生理生化鉴定及16S rDNA序列分析,基本确定菌株DW3属于Pseudomonas sp.,菌株DW4、D3和D4均属于Acinetobacter sp.。各耐冷脱氮菌株生长曲线及脱氮特性试验表明,除D3菌株外,其他菌株在培养过程中都存在明显的衰亡期,各菌株的反硝化过程都发生在对数生长期,pH、温度、C/N及接种量对各菌株的脱氮性能有影响,各菌株具有明显的异养硝化性能,且在10℃温度条件下仍能保持一定的脱氢酶活性。选择菌株DW3和D3进行周质硝酸盐还原酶亚基基因(napA)PCR扩增,证实了这2株菌具有周质硝酸盐还原酶,可实现好氧反硝化。采用自适应及菌源生态重组策略构建出在极端环境中具有较好反硝化效果的低温贫营养脱氮功能菌群L1(PY8+DW3+D3)和L2(PY8+DW3+D4)。
     (3)微污染水体原位生物投菌技术脱氮特性与效能研究。小试研究以贫营养脱氮功能菌群Z4作为菌源制成微生态菌剂,采用不同菌剂投量直接投加到水库原水中,菌投量为0.1mg/L时净化效果最好,整个运行期间(32d),硝氮、总氮、CODMn及TOC去除率分别达到72.3%、71.3%、32.3%和34.8%,稳定期的脱氮效果可满足地表水环境Ⅲ类水体的质量标准要求;同时溶解氧、水温、pH及C/N会影响生物菌剂的脱氮性能。将低温贫营养脱氮功能菌群L1用于微污染水原位生物投菌技术中,在低温环境条件下运行36d,该菌剂对原水硝氮及总氮去除率最大可达到46%和53%。
     (4)微污染水体原位生物膜技术脱氮特性与效能研究。选择脱氮性能较稳定的硬性悬浮填料,同时研制出适合于微污染水体原位修复、且可创造适宜微生物生长的不同溶解氧环境的新型多孔悬浮填料作为生物载体,以贫营养脱氮功能菌群Z4作为菌源对载体进行人工强化挂膜,小试研究结果表明,试验运行46d,贫营养原位生物膜技术对原水硝氮及总氮去除率均可达到75%以上,CODMn去除率在25%以上,稳定时期脱氮效果可满足地表水环境Ⅲ类水体的质量标准要求,且温度、填料填充率及C/N比对原位生物膜系统脱氮效果有一定影响。贫营养细菌以较低速率进行生长时,对外界环境具有较大的抗性,是微生物适应贫营养环境的结果,在贫营养条件下,吸附和生物膜形成是微生物的一种生存策略。
     (5)原位生物投菌系统对混合充氧技术的条件要求。DO浓度对贫营养好氧反硝化菌群的脱氮性能有一定影响。当DO浓度大于7mg/L时,反硝化速率很慢,始终保持在较低的水平;当DO浓度低于7mg/L时,反硝化速率随DO值的降低而较大幅度地升高,说明贫营养好氧反硝化菌群的阈值较高,对氧气有较高的耐受能力。DO浓度为3~4mg/L、5~6mg/L和7~8mg/L时,系统运行期间对原水总氮去除率分别为91%、84%和31%。好氧反硝化细菌的反硝化酶系和有氧呼吸系统同时存在,氧不再是抑制反硝化酶活性和反硝化酶生成的直接因素,周质硝酸盐还原酶亚基基因的扩增进一步解释了好氧反硝化菌可以在DO浓度相对较高的条件下进行反硝化作用。
     (6)扬水曝气—原位生物净化组合技术中试研究。在扬水曝气强化混合条件下,进行原位生物净化系统中试研究。以贫营养脱氮功能菌群Z4为菌源,分别构成扬水曝气—贫营养生物膜和扬水曝气—贫营养生物投菌组合技术,在溶解氧浓度为5.0~7.0mg/L,水温范围为10℃~ 23℃、CODMn/TN≈1.56的贫营养条件下,扬水曝气—贫营养生物膜组合系统稳定运行时的氨氮、硝氮、总氮和TOC去除率范围分别为82%~100%、62%~79%、70%~80%和72%~80%,BOD5/CODMn比值可由初始0.476降至0.054,且三维荧光光谱图显示运行期间原水生源性DOM变化较大;扬水曝气—贫营养生物投菌组合系统稳定运行时的氨氮、硝氮、总氮、TOC和CODMn去除率分别为82%~100%、43%~58%、63%~70%、65%~73%和51%~57%。PCR-DGGE图谱分析表明,生物膜上种群演替进程缓慢,α-proteobacterium纲是生物膜中最优势的细菌类群,固定的菌株PY8和FY3成为生物膜上的优势菌群;生物投菌系统中FY3和FY7成为系统中的优势菌群。消毒剂灭活试验、群落结构多样性及小鼠急性经口毒性试验表明,生物菌剂不会对原生态系统产生较大的破坏,且不会对饮用水水质构成威胁。采用低温贫营养脱氮功能菌群L1与扬水曝气技术有机结合,在初期水温不足15℃,CODMn/TN≈1.0的低温、贫营养条件下,稳定运行阶段的硝氮及总氮去除率分别在50%和60%以上,最大硝氮及总氮去除率分别为81%和84%,TOC、CODMn及BOD5月平均去除率分别为63%、49%和62%。上述结果表明,该组合技术用于净化微污染原水是可行的,稳定运行期的脱氮效果均可满足地表水环境Ⅲ类水体的质量标准要求。
Nitrate often contaminated surface water resources due to excessive use of fertilizers and uncontrolled on-land discharges of raw and treated wastewater and can therefore limit the direct use of surface water for drinking water purposes. Many researches on the denitrification of source water had been reported in the last three decades with the increasing nitrogen pollution concerns; biological treatment was the most attractive process to remove nitrogen from surface water sources due to its low cost and high efficient. However, there are still some problems on denitrification of drinking water resources. Firstly, biological nitrogen removal of ectopic widely used in surface water sources has a restriction of biological contact time——an important limiting factor for influencing the removal efficiency of total nitrogen. Secondly, electron donor used to improve the denitrification efficiency can increase water treatment costs and some substrate or its intermediate products of biological oxidation may produce toxic effects on life.
     In this research, a multifunctional device for water lifting and aeration (WLA) was combined with in-situ biological purification technology (ISBP) for the denitrification of surface water. The main objective of this research was to investigate the key issues of nitrate removal of micro-polluted raw water with the combined system under low temperature, oligotrophic and aerobic condition. Oligotrophic denitrifiers and cold-resistant denitrifiers were cultured for microbial agents, which was the important source of bacteria for in-situ biological inoculation or in-situ bio-contact oxidation system. Both ISBPs were combined with WLA in order to obtain a satisfactory performance on nitrogen and organic matter removal. Properties and experiments of enhanced in-situ biological nitrogen removal of micro-polluted raw water were discussed in this paper. The main results and conclusions of this study are as follows:
     (1) Domestication, isolation and denitrification properties of oligotrophic aerobic denitrifiers. Oligotrophic denitrifiers strain PY8, DA15 and DF7 was isolated after the acclimatization with low-nutrient medium in order to remove nitrogen desirably under oligotrophic conditions. According to their physiological, biochemical methods and the sequence analysis of 16S rDNA, strain PY8, DA15, DF7 was identified as Rhizobium sp., Arthrobacter sp. and Bacillus sp., respectively. On the base of the isolated strain FY3, FY5 and FY7, oligotrophic denitrifying functional bacteria populations Z4 (PY8, FY3 and FY7) was formulated by niche separation, and all the functional bacteria were studied for nitrogen removal performance. The results showed that all the strains grew slowly, and pH value, temperature, C/N ratio, NaNO3 concentration and inoculum had different effects on denitrification performance of strain PY8, FY3 and FY7. Also, the strain PY8 had a significantly heterotrophic nitrification performance. It was confirmed that the strain PY8, FY3 and FY7 had the capacity of express periplasm nitrate reductase through the PCR reaction, and periplasmic nitrate reductase played an important role in aerobic gentrification.
     (2) Domestication, isolation and denitrification properties of low-temperature- resistant aerobic denitrifiers. Low-temperature-resistant denitrifying bacteria were isolated by gradually reducing temperature condition, and the strain DW3 was identified as Pseudomonas sp., the strains of DW4, D3 and D4 as Acinetobacter sp., based on biochemical index analysis and 16S rDNA sequence homology analysis. Growth curve and nitrogen removal capacity was investigated for the four strains. The results indicated that in addition to D3 strain, other strains were present a decline phase, and the strains of the denitrification took place in the logarithmic phase. Also, pH value, temperature, C/N ratio and inoculum could influence denitrification performance of low-temperature- resistant denitrifiers. A desirable ammonia removal rate was obtained for the four strains in nitrification medium. D3 and D4 still maintained a certain dehydrogenase activity at 10℃. The results also proved that DW3 and D3 strains had periplasmic nitrate reductase and could realize aerobic denitrification. Low-temperature-resistant and oligotrophic denitrifying functional bacteria groups L1 (PY8, DW3 and D3) and L2 (PY8, DW3 and D4) could were constructed by self-adjustment and eco-recombination for the purpose of denitrification under oligotrophic and low temperature conditions.
     (3) Properties and efficiency of in-situ biological inoculation nitrogen removal of micro-polluted raw water. Oligotrophic denitrifying functional bacteria populations Z4 as bacteria source was used for in situ biological inoculation technology in small scale tests. The showed that a preferable purification could be presented under 0.1 mg/L inoculating dose, and the removal rate of nitrate, total nitrogen, CODMn and TOC during the entire operation (32 days) could reach 72.3%, 71.3%, 32.3% and 34.8%, respectively. Also, nitrogen removal effects in steady running period could meet the requirements of classⅢof surface water quality according to GB3838-2002. DO, temperature, pH and C/N ratio was important influencing factors for denitrification performance of oligotrophic dominant agents. The cold-resistant and oligotrophic denitrifying functional groups L1 showed a high efficiency for nitrogen removal in low temperature, and the optimum removal rates of nitrate and total nitrogen reached 46% and 53% during 36 days operation.
     (4) Properties and efficiency of in-situ biological biofilm nitrogen removal of micro-polluted raw water. A rigid suspended packing and a novel suspended packing chosen as biological carriers was applied to in-situ biofilm system. The novel suspended packing was developed for in-situ remediation and could create an appropriate environment for the growth of aerobic, anaerobic and facultative bacteria. Artificially hanged membrane was formed on both carriers with oligotrophic denitrifiers functional groups Z4. The small test results showed that the removal rates of nitrate, total nitrogen and CODMn could reach over 75%, 75% and 25%, respectively, and nitrogen removal effects in steady running period could meet the requirements of classⅢof surface water quality according to GB3838-2002. Temperature, filling ratio of suspended packing and C/N had a certain influence on nitrogen removal efficiency of in-situ biological biofilm system. Oligotrophic bacteria grown at a lower rate and had a greater resistance to external environment, and these properties could provide a better adaptability to poor nutrition environment for them. The adsorption and microbial biofilm formation was a survival strategy in oligotrophic environment.
     (5) Requirements of mixed aeration technology for in-situ biological inoculation system. Dissolved oxygen concentration could affect denitrification performance of oligotrophic denitrifying functional groups. When the DO concentration greater than 7 mg/L, the denitrification rate was very slow and always maintained a low level. The nitrogen removal rate would increase significantly with the decrease of DO value under condition of DO concentration less than 7 mg/L. These results indicated that aerobic denitrifiers with a higher threshold had a desirable oxygen tolerance. The removal rates of total nitrogen were 91%, 84% and 31% respectively under conditions of DO concentration 3~4 mg/L, 5~6 mg/L and 7~8 mg/L. Both denitrification enzyme and aerobic respiratory system could exist in aerobic denitrifiers, and oxygen was no longer inhibited denitrification enzyme activity and denitrification enzyme generation directly. Periplasmic nitrate reductase subunit gene amplification further explained that aerobic denitrification could occur under high DO concentration condition.
     (6) Pilot research on combined process of WLA and ISBP. Under the condition of enhanced mixing of water-lifting aeration, a pilot research on ISBP was made for the purpose of pretreatment of micro-polluted raw water. Oligotrophic denitrifying functional groups Z4 as bacterial source constituted combined process of WLA and in-situ biofilm and combined process of WLA and in-situ bio-inoculation. For the combined technology of WLA and in oligotrophic biofilm system, the results showed that removal rates of ammonia, nitrate, total nitrogen and TOC in steady running period ranged from 82%~100%, 62%~79%, 70%~80% and 72%~80%, respectively, under conditions of dissolved oxygen 5~7 mg/L, temperature 10℃~23℃and C/N ratio 1.56 for source water, also the ratio of BOD5 to CODMn was changed from 0.476 to 0.054. Three-dimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy showed that the biogenic dissolved organic matter of raw water had experienced an obvious change during the operation period. As for the combined technology of WLA and oligotrophic bio-inoculation system, removal rates of ammonia, nitrate, total nitrogen, TOC and CODMn in steady running period ranged from 82%~100%, 43%~58%, 63%~70%, 65%~73% and 51%~57% respectively under the same conditions. The PCR-DGGE profiles showed that the microbial populations on the biofilm evolved slowly andα-proteobacterium was the largest fraction. In addition, sequences revealed that strains PY8 and FY3 became the dominant bacteria in the combined system WLA and oligotrophic biofilm, and FY3 and FY7 strain became the dominant bacteria in the combined system WLA and oligotrophic bio-inoculation system. Disinfection tests, biological community structure diversity and acute oral toxicity tests in mice showed that biological agents would not pose a threat to original ecosystems and drinking water. Under conditions of initial temperature of less than 15℃and CODMn/TN of 1.0, cold-resistant and oligotrophic denitrifying functional groups L1 combined with WLA could obtain a desirable denitrification effects during the stable period for more than 50% of nitrate removal rate and 60% of total nitrogen removal rate, and the optimum removal rate for nitrate and total nitrogen was 81% and 84%. Also, the monthly average removal efficiency of TOC、CODMn and BOD5 could reach 63%, 49% and 62%. The experiment results showed that the combined technique of WLA and ISBP was feasible for the denitrification of raw water, and nitrogen removal effects in steady running period could meet the requirements of classⅢof surface water quality according to GB3838-2002.
引文
[1]赵其国,骆永明,滕应等.当前国内外环境保护形势及其研究进展[J].土壤学报, 2009, 46(6): 1146-1154.
    [2]苏征耀.我国水资源形势及其应对策略[J].水资源研究, 2007, 28(1): 11-28.
    [3]潘碌亭.中国微污染水源水处理技术研究现状与进展[J].工业水处理, 2006, 26(6): 6-10.
    [4]国家环境保护部. 2008年中国环境状况公报[R].北京:国家环保总局, 2008(6).
    [5]黄玉瑶.内陆水域污染生态学原理与应用[M].北京:科学出版社, 2001.
    [6]陆曦,梅凯.突发性水污染事故的应急处理[J].中国给水排水, 2007, 23(8): 14-18.
    [7] Kim L H, Choi E, Gil K I, et al. Phosphorus release rates from sediments and pollutant characteristics in Han River, Seoul, Korea[J]. Science of the total Environment, 2004, 321(1-3): 115-125.
    [8]张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社, 2002.
    [9] Kim L H, Choi E, Stenstrom M K. Sediment characterics, phosphorus types and phosphorus release rates between river and lake sediments[J]. CHEMOSPHERE, 2003, 50(1): 53-61.
    [10] Rydin E. Potentially Mobile Phosphorus in lake Erken Sediment[J]. Wat. Res., 2000, 34(7): 2037-2042.
    [11] Sondergaard M, Windolf J, Jeppesen E. Phosphorus Fraction and Profiles in the sediment of Shallow Danish Lakes as Related to Phosphorus Load, Sediment Composition and Lake Chemistry[J]. Wat. Res., 1996, 30(4): 992-1002.
    [12] Rivas Z, Medina H L, Gutierrez J, et al. Nitrogen and Phosphorus Levels in Sediments from Tropical Catatumbo River (Venezuela)[J]. Water, Air and Soil Pollution, 2000, 117(1-4): 27-37.
    [13] Beutel M W. Dynamics and control of nutrient, metal and oxygen fluxes at the profundal sediment-water interface of lakes and reservoirs[D]. 2002, 5-8.
    [14] Kim L H, Choi E, Gil K I, et al. Phosphorus release rates from sediments and pollutant characteristics in Han River, Seoul, Korea [J]. Science of the total Environment, 2004, 321(1-3): 115-125.
    [15] Jones G J, Poplawski W. Understanding and management of cyanobacterial bloom in enhanced biological phosphorus removal[J]. Microbiological Reviews, 1994, (15): 137-153.
    [16] Sas H. Lake restoration by reducation of nutrient loading: expectations, experiences, extrapolation[M]. St Augustin: Academic Verlag Richarz, 1989.
    [17] Verstraete W, Philips S. Nitrification-denitrification processes and technologies in new contexts[J]. Environmental Pollution, 1998, 102(1): 717-726.
    [18]朱南文,高廷耀,周增炎.饮用水生物脱氮技术现状[J].水处理技术, 1999, 25(4): 214-219.
    [19] Mizuta K., Matsumoto T., Hatate Y., et al. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal[J]. Bioresource Technology, 2004, 95(3): 255-257.
    [20] Singh B, Sekhon G.S. Nitrate pollution of groundwater from nitrogen fertilizers and animal wastes in the Punjab, India[J]. Agriculture and Environment, 1976, 3(1): 57-67.
    [21] Holas J, Holas M, Chour V. Pollution by phosphorus and nitrogen in water streams feeding the Zelivka drinking water reservoir[J]. Water Science and Technology, 1999, 39(12): 207-214.
    [22] Trimmer M, Nicholls J C, Deflandre B. Anaerobic Ammonium Oxidation Measured in Sediment along the Thames Estuary, United Kingdom[J]. Applied and Environmental microbiology, 2003, 69(11): 6447-6454.
    [23] Zehr J P, Ward B B. Nitrogen Cycling in the Ocean: New Perspectives on Processes and Paradigms[J]. Applied and Environmental microbiology, 2002, 68(3): 1015-1024.
    [24] Wang J L, Yang N. Paetial nitrication under limited dissolved oxygen conditions[J]. Process Biochemistry, 2004, 39(10): 1223-1229.
    [25] Casey R E, Taylor M D, Klaine S J. Localization of denitrification activity in macropores of a riparian wetland[J]. Soil Biol Biochem, 2004, 36(4): 563-569.
    [26] Ito E, Takai A, Kondo F, et al. Comparison of protein phosphatase inhibitory activity and apparent toxicity of microcystins and related compounds[J]. Toxicon, 2002, 40(7): 1017–1025.
    [27] Buttiglieri G., Malpei F., Daverio E., et al. Denitrification of drinking water sources by advanced biological treatment using a membrane bioreactor[J]. Desalination, 2005, 178(1-3): 211-218.
    [28] Weyer P J, Cerhan J, Kross B C, et al. Municipal drinking water nitrate level and cancer risk in older women: the Iowa Women's Health Study[J]. Epidemiology, 2001, 11(3): 327-338.
    [29] Constable M, Charlton M, Jensen F, et al. An ecological risk assessment of ammonia in the aquatic environment[J]. Human and Ecological Risk Assessment, 2003, 9(2): 527-548.
    [30] Fwetrell L. Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion[J]. Environmental Health Perspectives, 2004, 112(14): 1371-1374.
    [31] Mina S, Christine L M, Benaissa A, et al. Drinking water nitrate and prevalence of methemoglobinemia among infants and children aged 1–7 years in Moroccan areas[J]. International Journal of Hygiene and Environmental Health, 2008, 211(5-6): 546-554.
    [32] Yang C Y, Wu D C, Chang C C. Nitrate in drinking water and risk of death from colon cancer in Taiwan[J]. Environment International, 2007, 33(5): 649-653.
    [33] J. M. Caballero Mesa, C. Rubio Armendáriz, A. Hardisson de la Torre. Nitrate intake from drinking water on Tenerife island (Spain)[J]. The Science of The Total Environment, 2003, 302(1-3): 85-92.
    [34]叶辉,许建华.饮用水中的氨氮问题[J].中国给水排水, 2000, 16(11): 31-34.
    [35] Nora’aini Ali, N Syazana A Halim, A Jusoh, et al. The formation and characterisation of an asymmetric nanofiltration membrane for ammonia-nitrogen removal: Effect of shear rate[J]. Bioresource Technology, 2010, 101(5): 1459-1465.
    [36] Wisniewski C., Persin F., Cherif T., et al. Denitrification of drinking water by the association of an electrodialysis process and a membrane bioreactor: feasibility and application[J]. Desalination, 2001, 139, (1-3): 199-205.
    [37] Annouar S., Mountadar M., Soufiane A., et al. Denitrification of underground water by chemical adsorption and by electrodialysis[J]. Desalination, 2004, 168(15): 185.
    [38] Jan Peter van der Hoek, Paul J.M. van der Ven, Abraham Klapwijk. Combined ion exchange/biological denitrification for nitrate removal from ground water under different process conditions[J]. Water Research, 1988, 22(6): 679-684.
    [39] Rizzo L, Belgiorno V, Gallo M, et al. Removal of THM precursors from a high-alkaline surface water by enhanced coagulation and behaviour of THMFP toxicity on D. magna[J]. Desalination, 2005, 176(1-3): 177-188.
    [40] Zhen-Ye Zhao, Ji-Dong Gu, Xiao-Jun Fan, et al. Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments[J]. Journal of Hazardous Materials, 2006, 134(1-3): 60-66.
    [41]江东,王建华译.城市用水: 21世纪的挑战[J].世界科学, 1999, 14(5): 28.
    [42] Philip C. S. Control of disinfection by-products in drinking water[J]. Journal Environmental Engineering, 1994, 120(4-6): 84.
    [43]黄仲杰.我国城市供水现状、问题与对策[J].给水排水, 1998, 24(2): 18-20.
    [44] Rivera-Utrilla J, Sánchez-Polo M, Méndez-Díaz J D, et al. Behavior of two different constituents of natural organic matter in the removal of sodium dodecylbenzenesulfonate by O3 and O3-based advanced oxidation processes[J]. Journal of Colloid and Interface Science, 2008, 325(2): 432-439.
    [45] Gur-Reznik S, Katz I, Dosoretz C G. Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents[J]. Water Research, 2008, 42(6-7): 1595-1605.
    [46] Kitis M, Kilduff J E, Karanfil T. Isolation of dissolved organic matter (dom) from surface waters using reverse osmosis and its impact on the reactivity of dom to formation and speciation of disinfection by-products[J]. Water Research, 2001, 35(9): 2225-2234.
    [47] Tomaszewska M, Mozia S. Removal of organic matter from water by PAC/UF system[J]. Water Research, 2002, 36(16): 4137-4143.
    [48] Siddiqui M, Amy G, Ryan J, et al. Membranes for the control of natural organic matter from surface waters[J]. Water Research, 2000, 34(13): 3355-3370.
    [49] Mijatovi? I, Mato?i? M, ?erneha B H, Bratuli? D. Removal of natural organic matter by ultrafiltration and nanofiltration for drinking water production[J]. Desalination, 2004, 169(3): 223-230.
    [50] Fabbricino M., Pettab L. Drinking water denitrification in membrane bioreactor/membrane contactor systems[J]. Desalination, 2007, 210(1-3): 163-174.
    [51] Singer A, Parnes S, Gross A, et al. A novel approach to denitrification processes in a zero-discharge recirculating system for small-scale urban aquaculture[J]. Aquacultural Engineering, 2008, 39(2-3): 72-77.
    [52] Ciudad G, Rubilar O, Munoz P, et al. Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process[J]. Process Biochemistry, 2005, 40(5): 1715-1719.
    [53] Ovez B, Ozgen S, Yuksel M. Biological denitrification in drinking water using Glycyrrhiza glabra and Arunda donax as the carbon source[J]. Process Biochemistry, 2006, 41(7): 1539-1544.
    [54] Buttiglieri G, Malpei F, Daverio E, et al. Denitrification of drinking water sources by advanced biological treatment using a membrane bioreactor[J]. Desalination, 2005, 178(1-3): 211-218.
    [55] Richard Y R. Operating experience of full scale biological and ion exchange denitrification plant in France[J]. Water and Environment Journal. 1989, 3(2): 154-167.
    [56] Vitor A.P. Martins dos Santos, Johannes Trampera, RenéH. Wijffels. Integrated nitrogen removal in compact systems by immobilized microorganisms: new-generation bioreactors[J]. Biotechnology Annual Review, 1998, 4: 323-394.
    [57] Nilsson I. Immobilized cells in microbial nitrate reduction[J]. Applied Biochemistry and Biotechnology, 1982, 7(1-2): 39-41.
    [58] Aslan S, Cakici H. Biological denitrification of drinking water in a slow sand filter[J]. Journal of Hazardous Materials, 2007, 148(1-2): 253-258.
    [59] Bruce O. Mansell, Edward D. Schroeder. Biological denitrification in a continuous flow membrane reactor[J]. Water Research, 1999, 33(8): 1845-1850.
    [60]ükrüAslan, Ay en Türkman. Simultaneous biological removal of endosulfan (α+β) and nitrates from drinking waters using wheat straw as substrate[J]. Environment International, 2004, 30(4): 449-455.
    [61] Janez Vrtov?ek, Milenko Ro?. Denitrification of groundwater in the biofilm reactor with a specific biomass support material[J]. Acta Chim. Slov., 2006, 53: 396-400.
    [62] Kruithof J C. Nitrate removal from groundwater by sulphur/limestone filtration[J]. Water Supply, 1988, 6(3): 205-217.
    [63] Robert B M. Reduction of nitrate and nitrite in water by immobilized enzymes[J].Nature, 1992, 355: 717-719.
    [64] Ginocchio B. Nitrate levels in drinking water are becoming to high[J]. Water Services, 1987, 88(4): 143-147.
    [65] Kuan-Chun Lee, Bruce E. RittmannApplying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water[J]. Water Research, 2002, 36(8):2040-2052.
    [66] Gros H. Nitrate removal from groundwater by autotrophic microorganisms[J]. Water Supply, 1986, 4: 11-21.
    [67] Rutten P, Schnoor G. Five years’experience of nitrate removal from drinking water[J]. Water Supply, 1997, 10(3): 183-190.
    [68] Heaton T H E, Talma A S, Vogel J C. Origin and history of nitrate in confined groundwater in the western Kalahari[J]. Journal of Hydrology, 1983, 62(1-4): 243-262.
    [69] Wilson G B, Andrews J N, Bath A H. Dissolved gas evidence for denitrification in the Lincolnshire Limestone groundwaters, eastern England[J]. Journal of Hydrology, 1990, 113(1-4): 51-60.
    [70] Mercado A, Libhaber M, Soares M I M. In situ biological groundwater denitrification: Concepts and preliminary field tests[J]. Water Science and Technology, 1988, 20(3): 197-209.
    [71] Braester C, Martinell R. Modelling of flow and transport processes in Vyredox and Nytredox subsurface treatment plants[J]. Water Science and Technology, 1988, 20(3): 165-172.
    [72] Soares M I M. Denitrification of groundwater with elemental sulfur[J]. Water Research, 2002, 36(5): 1392-1395.
    [73] Matěj? V, ?i?inskáS, Krej?íJ, et al. Biological water denitrification-A review[J]. Water Science and Technology, 1988, 20: 197-209.
    [74] Schipper L, Vojvodic-Vukovic M. Nitrate removal from ground water using a denitrification wall amended with sawdust: Field trials[J]. J Environmental Quality, 1998, 27(3): 664-668.
    [75]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社, 1999: 141-142.
    [76]叶辉.臭氧生物活性炭深度处理受污染原水的半生产性试验研究[D].同济大学, 1996.
    [77]刘文君,贺北平,张锡辉等.淮河(蚌埠段)饮用水源水生物接触氧化预处理生产性试验[J].环境科学, 1997, 18(1): 22-24.
    [78]李家就,杨文进,朱建国.受污染珠江水的生物膜法预处理研究[J].中国给水排水, 1999, 15(7): 8-10.
    [79]季民,周菁,任智勇等.两种微污染原水生物预处理方法工艺性能比较[J].给水排水, 2002, 28(10): 26-29.
    [80]耿英慧,张明,徐亚同等.移动床生物膜反应器预处理微污染原水挂膜过程研究[J].北方环境, 2003(1): 51-54.
    [81]周海红,王建龙,赵璇. pH对以PBS为反硝化碳源和生物膜载体去除饮用水源水中硝酸盐的影响[J].环境科学, 2006, 27(2): 290-293.
    [82]张永明,胡一珍,严荣等.用生物膜缺氧修复受污染的城市河道水[J].环境科学, 2009, 30(7): 1920-1924.
    [83]曲久辉,范彬,刘锁祥.固定床-微电解反硝化去除饮用水中的硝酸盐氮[J].环境科学, 2002, 23 (6): 105-107.
    [84]范彬,曲久辉,刘锁祥等.复三维电极—生物膜反应器脱除饮用水中的硝酸盐[J].环境科学学报, 2001, 21(1): 39-43.
    [85]范彬,曲久辉,刘锁祥等.饮用水中硝酸盐的脱除[J] .环境污染治理技术与设备, 2000, 1(3): 45-49.
    [86] Xia Siqing, Zhang Yanhao, Zhong Fohua. A continuous stirred hydrogen-based polyvinyl chloride membrane biofilm reactor for the treatment of nitrate contaminated drinking water[J]. Bioresource Technology, 2009, 100(24): 6223-6228.
    [87] Yan Jiao, Zhao Qingliang, Jin Wenbiao, et al. Bioaugmentation of a biological contact oxidation ditch with indigenous nitrifying bacteria for in situ remediation of nitrogen-rich stream water[J]. Bioresource Technology, In Press, Corrected Proof, Available online 21 September 2010.
    [88]田伟君,郝芳华,翟金波.弹性填料净化受污染入湖河流的现场试验研究[J].环境科学, 2008, 29(5): 1308-1312.
    [89]张美兰,何圣兵,项颖颖等.生物膜技术原位处理有机污染河道研究[J].净水技术, 2009, 28(3): 32-35,56.
    [90]胡一珍,张永明.用生物膜方法修复受污染河道水[J].上海师范大学学报(自然科学版), 2007, 36(6): 91-98.
    [91]赵生成,王绍斌,崔树生.污染水体原位就地修复技术的研究以及在温榆河污染治理上的应用[J].河海水利, 2004(3): 41-43.
    [92]黄廷林,从海兵,周真明等.强化原位生物接触氧化技术改善水源水质的试验研究[J].环境科学学报, 2006, 26(5): 786-790.
    [93]杨京平,卢剑波.生态恢复工程技术[M].北京:化学工业出版社, 2002.
    [94]陈坤,李根保,李敦海等.无根萍、酵母菌和红螺菌的水质净化和抑藻作用[J].生态科学, 2007,26(5): 428-431.
    [95]陈谊,孙宝盛,孙井梅等.投菌法处理微污染河水的试验研究[J].水处理技术, 2009, 35(2): 35-38.
    [96]董慧峪,强志民,李庭刚等.污染河流原位生物修复技术进展[J].环境科学学报, 2010, 30(8): 1577-1582.
    [97] Devaraja T N, Yusoff F M, Shariff M. Changes in bacterial populations and shrimp production in ponds treated with commercial microbial products[J]. Aquaculture, 2002, 206(3-4): 245-256.
    [98]丁吉震. CBS水体修复技术[J].洁净煤技术, 2000, 6(4): 36-38.
    [99] EM情报室.相野谷川水质净化实验[J]. Eeopure, 1997, 19(8): 14-15.
    [100]张宗才,张新申,江涛等. CMF微生物菌剂修复河流污水的动力学分析[J].四川环境, 2004, 23(3): 22-25.
    [101]薛维纳,裴红艳,杨翠云.复合微生物菌剂处理城市污染河流的静态模拟[J].上海师范大学学报, 2005, 34(2): 91-94.
    [102]庞金钊.投加优势菌净化城市湖泊水[J].中国给水排水, 2003, 19(6): 51-53.
    [103]王琳,王迎春,李季.微生物菌剂处理富营养化景观水体的室内试验研究[J].农业环境科学学报, 2007, 26(1): 88-91.
    [104]黄可谈,朱亮,李国平等.模拟河道生物反应器原位修复受污染水源水研究[J].北京师范大学学报, 2009, 45(3): 295-300.
    [105]杨逢乐,金竹静,王伟.滇池流域受污染河流原位处理技术研究[J].环境工程, 2009, 27(3): 17-19.
    [106]李正魁,淮培民.辐射聚合固定化反硝化菌去除污水中硝酸盐[J].江苏农业学报, 2000, 16(l): 37-40.
    [107]刘延恺,陆苏.河道曝气法—适合我国国情的环境污水处理工艺.环境污染与防治, 1994, 16(1): 22-25.
    [108]王诚信.污染河流的纯氧曝气复氧[J].上海环境科学, 1999, 18(9): 411-413.
    [109]王璟,夏文林.某市内河采用曝气辅助治理方案探讨[J].公用工程设计, 2008(10): 57-60.
    [110] Clasen J. Raw water quality management at Wahnbach reservoir[J]. Water supply, 2000, 18(1): 581-585.
    [111] Lindenschmidt K E, Hamblin P F. Hypolimnetic aeratuin in lake Tegel, Berlin[J]. Water Research, 1997, 31(7): 1619-1628.
    [112] Visser P M, Ketelaars H A M. Reduced growth of the cyanobacterium microcystis in an artificially mixed lake and reservioir[J].Water science technology, 1995, 32(4): 53-54.
    [113] Jeremy S. Algal control and destratification at Hanningfield reservoir[J]. Water science technology, 1998, 37(2): 309-316.
    [114]王淑梅,王宝贞,金文标等.城市环境与城市生态城市污染河流水质原位综合净化技术[J].城市环境与城市生态, 2008, 21(4): 1-4.
    [115] Patureau D, Godon J J, Dabert P, et al. Microvirgula aerodenitrificans gen. nov. , sp. nov. , a new gram-negative bacterium exhibiting co-respiration of oxygen and nitrogen oxides up to oxygen-saturated conditions[J]. International Journal of Systematic and Evolutionary Microbiology, 1998, 48: 775-782.
    [116] Robertson L A, Van N E W J, Torremans R A M, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha[J]. Applied Environmental Microbiology, 1988, 54(11): 2812-2818.
    [117] Takaya N, Catalan-sakairi M A B, Sakaguchi Y, et al. Aerobic denitrifying bacteria that produce low levels of nitrous oxide[J]. Applied Environmental Microbiology, 2003, 69(6): 3152-3157.
    [118] Joo H S, Hirai M, Shoda M. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No.4[J]. Journal of Bioscience and Bioengineering, 2005, 100(2): 184-191.
    [119]谢丹平,尹华.混合菌对石油的降解[J].应用与环境生物学报, 2004, 10(2): 210-214.
    [120] Lawrence P W, Neil C B. Environmental biotechnology towards sustainability[J]. Curr Opin Biotechnol, 2000, 11(3): 229-231.
    [121] Pieper D H, Reineke W. Engineering bacteria for bioremediation[J]. Curr Opin Biotechnol, 2000, 11(3): 262-270.
    [122]顾美英,谢玉清,唐琦勇,等.低温污水中耐冷微生物的筛选及多样性分析[J].微生物学通报, 2009, 36(10): 1483-1487.
    [123] Altschul S F, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Res, 1997, 25(17): 3389-3402.
    [124] Kuznetsov S I, Dubinina G A, Lapteva N A. Biology of oligotrophic bacteria[J]. Ann Rev Microbiol, 1979, 33(3): 337-387.
    [125] Poindexter J S. Oligotrophy: Feast and famine existence[J]. Adv Microbiol Ecol, 1981, 5(1): 63-90.
    [126]牛书丽,蒋高明.人工草地在退化草地恢复中的作用及其研究现状[J].应用生态学报, 2004, 15(9): 1662-1666.
    [127] Ohta H, Hattori T. Oligotrophic bacteria on organic debris and plant roots in a paddy field soil[J]. Soil Biol Biochem, 1983, 15 (1): 1-8.
    [128] Yanagita T, Ichikawa T, Tsuji T, et al. Two trophic groups of bacteria, oligotrophs and eutrophs: their distributions in fresh and sea water areas in the central northern Japan[J]. J Gen Appl Microbiol, 1978, 24(1): 59-88.
    [129] Hattori R, Hattori T. Sensitivity to salts and organic compounds of soil bacteria isolated on diluted media[J]. J Gen Appl Microbiol, 1980, 26(1): 1-14.
    [130] Hattori T. Physiology of soil oligotrophic bacteria[J]. Microbiol Sci, 1984, 1(4): 102-104.
    [131] Morita R Y. Bacteria in oligotrophic environments, starvation-survival lifestyle[J]. New York: Chapman & Hall, 1997, 14(2): 10-12.
    [132]张崇邦,黄立南,栾天罡,等.寡营养细菌及其在环境科学中的应用[J].应用生态学报, 2005, 16(4): 773-777.
    [133]叶建锋编著.废水生物脱氮处理新技术[M].北京:化学工业出版社, 2006.
    [134] Robertson L A, Kuenen J G. Thiosphaera pantotropha gen. nov. sp. nov. , a facultatively anaerobic, facultatively autotrophic sulphur bacterium[J]. Journal of General Microbiology, 1983, 129(8): 2847-2855.
    [135] Wainwright M, Barakah F, Turk I, et al. Oligotrophic micro-organisms in industry, medicine and the environment[J]. Science Progress, 1991, 75(2): 313-322.
    [136]魏巍,黄廷林,苏俊峰,等. 1株贫营养好氧反硝化菌的分离鉴定及其脱氮特性[J].生态环境学报, 2010, 19(9): 2166-2171.
    [137] Jetten S M, Hogemann S, Muyzer G, et al. Novel principle in the microbial conversion of nitrogen compounds[J]. Antonie Van Leeuwenhoek, 1997, 71(1-2): 75-93.
    [138]陈熹兮,李宝,李道棠.低温微生物及其在生物修复领域中的应用[J].自然杂志, 2001, 23(3): 163-167.
    [139]朱非,王珊,周培瑾.低温酶冷适应的分子机制及其在生物技术中的应用[J].微生物学报, 2002, 42(5): 640-644.
    [140] Margesin R, Feller G, Gerday C, et al. Cold-adapted microorganisms: adaptation strategies and biotechnological potential. In: The Encyclopedia of Environmental Microbiology (Bitton, G., Ed.), 2002, 871-885. John Wiley&Sons, New York.
    [141] Gounot A M. PsychroPhilic and psychrotrophic microorganisms[J]. ExPerientia, 1986, 42:1192-1197.
    [142] Danovaro R, Serresi M. Density and virus-to-bacterium ratio in deepsea sediment of the eastern Mediterranean. Appl. Envir. Microbiol. 2000, 66(5): 1857-1861.
    [143]刘长青,毕学军,张峰,等.低温对生物脱氮除磷系统影响的试验研究[J].水处理技术, 2006, 32(8): 18-21.
    [144]尹军,王雪峰,王建辉,等.低温对污水生物处理过程的影响及改进措施[J].吉林建筑工程学院学报, 2007, 24(2): 29-33.
    [145]李林宝,文一波,侯巧玲,等.低温生物脱氮法处理污水的研究进展[J].中国资源综合利用, 2007, 25(5): 26-29.
    [146]王丹,吕炳南,赫俊国,等.复合式生物池处理低温污水试验研究[J].低温建筑技术, 2006, (4): 129-131.
    [147]杨天佑,田静,黄新,等. TTC-脱氢酶测定法表征低温真空环境对细菌呼吸活性的影响[J].食品与机械, 2008, 24(6): 32-35.
    [148]陈熹兮,李宝,李道棠.低温微生物及其在生物修复领域中的应用[J].自然杂志, 2001, 23(3): 163-167.
    [149]于鑫.饮用水生物活性滤池工艺与磷的限制作用及其应用[D].北京:清华大学, 2002.
    [150]顾美英,谢玉清,唐琦勇,等.低温污水中耐冷微生物的筛选及多样性分析[J].微生物学通报, 2009, 36(10): 1483-1487.
    [151] Devaraja T N, Yusoff F M, Shariff M. Changes in bacterial populations and shrimp production in ponds treated with commercial microbial products[J]. Aquaculture, 2002, 206(3): 245-256.
    [152] Vidal S, Rocha C, Galv?o H. A comparison of organic and inorganic carbon controls over biological denitrification in aquaria[J]. Chemosphere, 2002, 48(4): 445-451.
    [153]侯树宇,张清敏,多淼,等.微生态复合菌制剂在对虾养殖中的应用研究[J].农业环境科学学报, 2004, 23(5): 904-907.
    [154]陶芳,高尚,陈诚,等.菌剂及酶制剂在特殊有机工业废水处理中的研究及应用进展[J].净水技术, 2009, 28(1): 7-10.
    [155]刘双发,安德荣,张勤福,等.新型微生物菌剂在生活污水处理中的应用研究[J].环境工程学报, 2008, 2(9): 1177-1180.
    [156]王峰慧,智利,魏巍,等.微生态菌剂直投技术原位修复微污染水源水的试验研究[J].给水排水, 2011, 37(1): 143-145.
    [157]龙腾锐,谢朝新,方振东.长期储存水中细菌的行为分析[J].重庆建筑大学学报, 2004, 26(3): 55-58.
    [158] Robertson L A. Nitrogen removal from water. In: Microbial Control of Pollution[M]. Cambridge, United Kingdom: Cambridge University Press, 1992: 227-267.
    [159] AA van de Graaf, A Mulder, P de Bruijn, et al. Anerobic oxidation of ammonium is biologically mediated process[J]. Applied and Environmental Microbiology, 1995, 61(4): 1246-1251.
    [160] Pochana K, Keller J. Study of factors affecting simultaneous nitrification and denitrification[J]. Wat. Sci. Tech, 1995, 36(6): 61-68.
    [161]吕锡武,李丛娜,稻川悠平.溶解氧及活性污泥浓度对同步硝化反硝化的影响[J].城市环境和城市生态. 2001, 14(1): 33-35.
    [162] Zhou S Q, Fang H H. Simultaneous nitrification and denitrification of ammonia organic wastewater treatmen[J]. In: CO-R of 1999 Asian Industrial Technology Congress. Hong Kong, ET-E3-3, 1999, 3: 11-56.
    [163]王阿华,杨小丽,叶峰.南方地区污水处理厂低温生物脱氮对策研究[J].给水排水, 2009, 35(10): 28-33.
    [164]吴成强,杨敏,张昱.低温生物膜和活性污泥的生物活性比较[J].应用与环境生物学报, 2004, 10(5): 647-650.
    [165]赵立军.低温污水生物强化处理技术应用研究[D].哈尔滨工业大学, 2007.
    [166] Weinstein R N, Montiel P O, Johnstone K. Influence of growth temperature on lipid and solubale carbohydrate synthesis by fungi isolated from fellfield in the maritime Antarctic[J]. Mycologia, 2000, 92(2): 222-229.
    [167]田伟君.河流微污染水体的直接生物强化净化机理与实验研究: [D].河海大学, 2005: 55-60.
    [168] Gjaltema A, Tijhuis L, Van Loosdrecht M C M, et al. Detachment biomass from suspended nongrowing spherical biofilms in airlift reactors[J]. Biotechnol Bioeng, 1995, 46(3): 258-269.
    [169] Kimura Y, Nakano Y, Fujiata K, et al. Isolation and characteristics of yeasts able to grow at low concentration of nutirents[J]. Yeast, 1998, 14: 233-238.
    [170]刘科军,吕锡武.跌水曝气生物接触氧化预处理微污染水源水[J].水处理技术, 2008, 34(8): 55-62.
    [171]魏巍,黄廷林,智利,等.新型悬浮填料在原位生物脱氮处理中的应用研究[J].中国给水排水, 2010, 26(9): 13-17.
    [172]汪艳霞.生物接触氧化填料性能试验研究[D].太原理工大学, 2004: 6-9.
    [173]陈世和,陈建华,王土芬.微生物生理学原理[M].上海:同济大学出版社, 1992.
    [174]夏辉.净水贫营养细菌的筛选及其低营养特性的研究[D].武汉:华中农业大学硕士论文, 2006.
    [175] Mashall K C. Adhesion and growth of bacteria at surfaces in oligotrophic habitats[J]. Microbiol, 1988, 34(5): 503-506.
    [176] Delaquis P J, Caldwell D E, Lawrence J R, et al. Detachment of pseudomonas fluorescens from biofilms on glass surfaces in response to nutrient stress[J]. Microbial Ecol, 1989, 18(2): 199-210.
    [177]徐斌,夏四清,高廷耀.应用悬浮填料预处理微污染原水的影响因素探讨[J].上海环境科学, 2002, 21(12): 738-742.
    [178]陈洪斌,梅翔,高廷耀等.受污染源水生物预处理挂膜过程研究[J].水处理技术, 2001, 27(41): 196-199.
    [179]魏巍,黄廷林,苏俊峰,等.贫营养生物膜系统脱氮效果及影响因素实验研究[J].环境工程学报, 2010, 4(10): 2179-2184.
    [180]张东,许建华,刘辉.微污染原水的生物接触氧化预处理研究[J].中国给水排水, 2000, 16(12): 12-16.
    [181] Fry J C, Zia T. A method for estimating viability of aquatic bacteria by slide culture[J]. Appl Bact, 1982, 53(1): 189-198.
    [182] Button D K, Schut F, Quang P, et al. Viability and isolation of marine bacteria by dilution culture: Theory, procedures and initial results[J]. Appl Environ Microbiol, 1993, 59(1): 881-891.
    [183] Arthur L K. Microbial physiology and ecology of slow growth[J]. Microbiol Mol Biol Rev, 1997, 61(3): 305-318.
    [184] Upton A C, Nedwell D B. Nutritional flexibility of oligotrophic and copiotrophic Antarctic bacteria with respect to organic substrates[J]. FEMS Microbiology Ecology, 1989, 62(1): 1-6.
    [185] Ostrowski M, Fegatella F, Wasinger V, et al. Cross-species identification of proteins from proteome profiles of the marine oligotrophic ultramicrobacterium, sphingopyxis alaskensis[J]. Proteomics, 2004, 4: 1779-1788.
    [186] Yoshio Kimura, Yoshinaga Nakano, Kiyoto Fujiata, et al. Isolation and characteristics of yeasts able to grow at low concentration of nutirents[J]. Yeast, 1998, 14: 233-238.
    [187] Kjelleberg S, Albertson N, Flardh K, et al . How do non-differentiating bacteria adapt to starvation[J]? Ant van Leeuwenhoek, 1993, 63(2): 333-341.
    [188] Poindexter, J.S. Oligotrophy: fast and famine existence[J]. Adv. Micro. Ecol.., 1981, 5: 63-89.
    [189]陈世和,陈建华,王土芬.微生物生理学原理[M].上海:同济大学出版社, 1992.
    [190] Raina M Maier, lan L Pepper, Charles P Gerba编著,张甲耀等译.环境微生物学(上册)[M].北京:科学出版社, 2004: 152-180.
    [191]肖羽堂,许建华.生物接触氧化法净化微污染原水的机理研究[J].环境科学, 1999, 20(3): 85-88.
    [192]黄廷林,魏巍,苏俊峰,等.贫营养原位生物接触氧化法对微污染水源水的脱氮试验研究[J].水处理技术, 2010, 36(6): 95-99.
    [193]胡家骏,周群英.环境工程微生物学[M].北京:高等教育出版社, 1988.
    [194]徐斌,夏四清,胡晨燕,等.微污染原水生物预处理中的硝化动力学[J].中国给水排水, 2003, 19(4): 15-18.
    [195] Wilson L P, Bouwer E J. Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review[J]. Journal of Industrial Microbiology and Biotechnology, 1997, 18(2-3): 116-130.
    [196] Korner H, Zumft W G. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri[J]. Applied and Environmental Microbiology, 1989, 55(7): 1670-1676.
    [197] Patureau D, Bernet N, Delgenes J P, et al. Effect of dissolved oxygen and carbon nitrogen loads on denitrification by an aerobic consortium[J]. Applied Microbiology and Biotechnology, 2000, 54(4): 535-542.
    [198] Huang H K, Tseng S K. Nitrate reduction by Citrobacter diversus under aerobic environment[J]. Applied Microbiology and Biotechnology, 2001, 55(1): 90-94.
    [199] Lesley A Robertson, Ed W J VAN Niel, Rob A M Torremans, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha[J]. Applied and Environmental Microbiology, 1988, 54(11): 2812-2818.
    [200] Robertson L A, Kuenen J G. Nitrogen removal from water and waste[A]. In: Microbial Control of Pollution[C]. Cambridge, United Kingdom: Cambridge University Press, 1992: 227-267.
    [201]苏俊峰.异养型同步硝化反硝化脱氮技术及微生物特性研究[D].哈尔滨工业大学博士学位论文, 2007.
    [202] Braker G, Zhou J, Wu L, et al. Nitrite reductase genes (nirK and nirS) as functionalmarkers to investigate diversity of denitrifying bacteria in pacific northwestmarine sediment communities[J]. Applied and Environmental Microbiology, 2000, 66(5): 2096-2104.
    [203] Stouthamer A H, De Boer A P, Van Der Oost J, el al. Emerging principles of inorganic nitrogen metabolism in paracccus denitrificans and related bacteria[J]. Antonie Van Leeuwenhoek, 1997, 71(1-2): 33-41.
    [204] Tcheva E I, Rosell E I, Mauk A G, et al. Side on Copper Nitrosyl Coordination by Nitrite Reductase[J]. Science, 2004, 304(5672): 826-842.
    [205] Moir J W, Baratta D, Richardson D J, et al. The purification of a cd1-type nitrite reductase from, and the absence of copper-type nitrite reductase from, the aerobic denitrifier Thiophaera pantotropha; the role of pseudoazurin as an electron donor[J]. European Journal of Biochemistry, 2003, 212(2): 377-385.
    [206] Farver O, Kroneck P M H, Zumft W G, et al. Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase[J]. PNAS, 2003, 100(13): 7622-7625.
    [207] Zajicek R S, Allen J W, Richardson D J, et al. Paracoccus pantotrophus NapC can reductively activate cytochrome cd1 nitrite reductase[J]. FEBS Letters, 2004, 565(1-3): 48-52.
    [208] Fujiwara T, Fukumori Y. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512. Journal of Bacteriology, 1996, 178(7): 1866-1871.
    [209] Bell L C, Ferguson S J. Nitric and nitrous oxide reductases are active under aerobic conditions in cells of Thiosphaera pantotropha[J]. Biochemical Journal, 1991, 273: 423-427.
    [210] Berks B C, Baratta D, Richardson DJ,et al. Purification and characterization of a nitrous oxide reductase from Thiosphaera pantotropha: Implications for the mechanism of aerobic nitrous oxide reduction[J]. European Journal ofBiochemistry, 1993, 212(2): 467-476.
    [211] Marshall S. Production and decomposition ofnitrous oxide during biological denitrification[J]. Water Environ Res, 1998, 70: 1096-1098.
    [212] Zheng H. Greenhous gas-N2O production during denitrification in wastewater treatment. Wat Sa Tech, 1993, 28(7): 203-207.
    [213]龙腾锐,谢朝新,方振东.长期储存水中细菌的行为分析[J].重庆建筑大学学报, 2004, 26(3): 55-58.
    [214] Ostrowski M, Fegatella F, Wasinger V, et al. Cross-species identification of proteins from proteome profiles of the marine oligotrophic ultramicrobacterium, Sphingopyxis alaskensis[J]. Proteomics, 2004, 4(6): 1779-1788.
    [215]桑军强,王占生. BAF在微污染源水生物预处理中的应用[J].中国给水排水, 2003, 19(2): 21-23.
    [216]张崇邦,黄立南,栾天罡,等.寡营养细菌及其在环境科学中的应用[J].应用生态学报, 2005, 16(4): 773-777.
    [217]刘科军,吕锡武.跌水曝气生物接触氧化预处理微污染水源水[J].水处理技术, 2008, 34(8): 55-62.
    [218]朱维晃,黄廷林,张亚宁.氧化还原条件变化对上覆水体中溶解有机质的三维荧光光谱特征影响[J].光谱学与光谱分析, 2010, 30(12): 3272-3276.
    [219]李伟英.给水生物预处理工艺中生物相变迁规律及作用[J].环境与开发, 2000, 15(2): 6-8.
    [220] Amann R I, Ludwig W, Schlerifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol Rev, 1995, 59: 143-169.
    [221] Kalmbach S, Manz W, Szewzyk U. Isolation of new bacterial species from drinkingwater biofilms and proof of their in situ dominance with highly specific 16S rRNA probes[J]. Appl Environ Microbiol, 1997, 63(11): 4164-4170.
    [222]钦颖英,李道棠,杨虹.给水生物预处理反应器的细菌种群多样性和群落结构[J].应用与环境生物学报, 2007, 13(1): 104-107.
    [223] Wobus A, Bleul C, Maassen S, et al. Microbial diversity and functional characterization of sedi-ments from reservoirs of different trophic state[J]. FEMS Microbiol Ecol, 2003, 46: 331-347.
    [224] Chen C L, Liu W T, Chong M L, et al. Community structure of microbial biofilms associated with membrane-based water purification processes as revealed using a polyphasic approach[J]. Appl Microbiol Biotechnol, 2004, 63: 466-473.
    [225] Kawai M, Matsutera E, Kanda H, et al. 16S ribosomal DNA-based analysis of bacterial diversity in purified water used in pharmaceutical manufacturing processes by PCR and denaturing gradient gelelectrophoresis[J]. Appl Environ Microb, 2002, 68 (2): 699-704.
    [226]李林宝,文一波,侯巧玲,等.低温生物脱氮法处理污水的研究进展[J].中国资源综合利用, 2007, 25(5): 26-29.
    [227]付必谦,张峰,高瑞如.生态学实验原理与方法[M].北京:科学出版社, 2006.
    [228]陈浚,王智晔,蒋轶锋,等.生物转鼓过滤器反硝化去除NO过程中微生物群落结构多样性分析[J].环境科学, 2008, 29(4): 1092-1098.
    [229] Fantroussi S E, Agathos S N. Is bioaugmentation a feasible strategy for pollutant removal and site remediation[J]? Current Opinion in Microbiology, 2005, 8: 268-275.
    [230]陈谦,张新雄,赵海,等.生物有机肥中几种功能微生物的研究及应用概况[J]. 2010, 16(2): 294-300.
    [231]李爽,张晓健,范晓军,等.水源水中不同分子量区间有机物的分布及控制对策[J]. 2003, 23(3): 327-331.
    [232]顾美英,谢玉清,唐琦勇,等.低温污水中耐冷微生物的筛选及多样性分析[J]. 2009, 36(10): 1483-1487.
    [233] Schnoor J L, James L, Nitzschke, R D, et al. Trihalomethane yields as a function of precursor molecular weight[J]. Envir Sci & Technol, 1979, 13(9): 1134-1138.
    [234]周立红,张淑琪,韩飞,等.不同组合净水工艺对水中致突变物的去除[J].环境科学, 1999, 20(1): 43-46.
    [235]董秉直,曹达文,范瑾初,等.混凝和粉末活性炭去除黄浦江水中DOM的效果[J].中国给水排水, 2000, 16(3): 1-4.
    [236] Collins M R, Amy G L, King P H. Removal of Organic Matter in Water Treatment[J]. Jour Envir Engrg, 1985, 111(6): 850-863.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700