用户名: 密码: 验证码:
单端灯丝放电等离子体空间分布及离子注入均匀性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灯丝放电等离子体源具有设备结构简单、可在低气压上产生高密度的等离子体等优点,在真空等离子体工艺中有着广泛的应用。然而等离子体分布的不均匀性一直是制约灯丝放电等离子体继续向前发展的一个重要因素,在现代产业化和工业化的过程中,往往又要求等离子体源能够产生高密度、大面积均匀性好的等离子体,以实现降低产品成本和批量生产的目标。
     本文主要对单端灯丝放电等离子体均匀性进行了系统的研究。采用Langmuir探针对不同阳极形式条件下,灯丝放电产生的等离子体特性进行了诊断,研究了离子密度在轴向和径向分布的均匀性,分析了气压、阳极电流以及挡板对离子密度变化规律的影响。并采用该等离子体源在不锈钢表面进行氮离子注入,对注入后不锈钢表面的摩擦学性能和电化学腐蚀性能进行了评价,分别讨论了工作气压、阳极电流和注入电压对离子注入改性层性能均匀性的影响。
     研究结果表明,灯丝放电产生的等离子体密度均在1×10~(10)cm~(-3)以上,阳极形式对离子密度分布的均匀性有很大的影响。真空室为阳极时,等离子体密度较低,离子密度分布的轴向不均匀度可达65%以上;使用平板阳极可以提高离子密度及其轴向分布的均匀性,但却使离子密度径向分布的均匀性变差;圆弧状阳极既可以提高离子密度和密度轴向分布的均匀性,同时又克服了使用平板阳极时离子密度径向分布的不均匀性,可以获得大面积高密度均匀的等离子体,离子密度分布的轴向和径向不均匀度分别在40%和10%以下。
     利用灯丝放电等离子体源对不锈钢表面进行氮等离子体浸没离子注入,研究表明,处理后的试样,其表面耐磨性得到了很大的提高,但由于离子的轰击导致表面缺陷的增多,氮离子注入后,不锈钢表面的耐腐蚀性能变差。随着工作气压的升高,轴向和径向位置的试样的耐磨、耐蚀性能均匀性逐渐变差。增大阳极电流会使试样的耐磨、耐蚀性能的均匀性变好,而注入电压对不同位的试样耐磨、耐蚀性能的均匀性的影响不大。
Filament discharge plasma source has gained more interests due to easily obtaining high-density plasma at low gas pressure. However, the non-uniformity of the plasma density distribution has been restricting the further development of filament discharge plasma in the process of modern industrialization.
     In this thesis, the uniformity of single filament discharge plasma was systematically studied. The plasma characteristics of filament discharge in different anode shapes were diagnosed by Langmuir probe. The uniformity of ion density in the axial and radial direction was monitored and the influence of the pressure and anode current on plasma behavior has been discussed. Nitrogen plasma ion implantation into stainless steel substrate was performed using this technique. Tribological and electrochemical properties of treated surface were evaluated, respectively. The effects of the pressure, anode current and pulse bias voltage on the uniformity as for surface properties were focused on.
     The results show that the plasma densities induced by filament discharge are all above 1×10~(10) cm~(-3), and anode configuration has an important effect on the uniformity of plasma density distribution. When vacuum chamber acts as anode, the ion density is somewhat low and the uniformity of ion density along axial distribution is poor (non-uniformity is up to 65%). Flat-panel anode can increase ion density and the uniformity of ion density along axial distribution, but the uniformity of ion density along radial distribution is deteriorated. Arc-shaped anode can improve the ion density and uniformity of ion density along axial distribution, but also overcome the shortcoming of flat-panel anode. Thus available large area uniform and high-density plasma is obtained, and the non-uniformity of plasma density along axial and radial is 40% and 10%, respectively.
     The wear resistance of treated stainless steel samples has been greatly improved. But the corrosion resistance decreases because of defects caused by ion bombardment in the process of nitrogen ion implantation.
     With the increase of pressure, the uniformity of tribological properties of the modified layers and electrochemical corrosion properties of samples at the different position gradually decreases. With the increase of anode current, the uniformity of tribological properties of the modified layers and electrochemical corrosion properties of samples at the different position would increase. But implantation voltage does little effect on the uniformity of tribological properties of the modified layers and electrochemical corrosion properties of samples at the different position.
引文
1. N. M. Mott-Smith, I. Langmuir, The theory of collectors in gaseous discharges. Physical Review. 1926, 28(4): 727~763
    2. M. A. Lieberman, A. J. Lichtenberg. Processing of plasma discharges and materials processing. John Wiley & Sons, Inc. USA. 2005
    3.江南.我国低温等离子体研究进展.物理. 2006, 35(2): 130~139
    4. D. Mercs, P. Briois, V. Demange, et al. Influence of the addition of silicon on the structure and properties of chromium nitride coatings deposited by reactive magnetron sputtering assisted by RF plasmas. Surface and Coatings Technology. 2007, (201): 6970~6976
    5. J. L. Wilson, J. B. O. Caughman II, P. L. Nguyen, et al. Measurements of time varying plasma potential, temperature, and density in a 13.56MHz radio-frequency discharge. Journal of Vacuum Science and Technology A. 1989, 7(3): 972~976
    6. M. A. Lieberman, J. P. Booth, P. Chabert, et al. Standing wave and skin effects in large-area, high-frequency capacitive discharges. Plasma Sources, Science and Technology. 2002, (11): 283~293
    7.杨定宇,蒋孟衡.电感耦合等离子体源的研究进展.微细加工技术. 2007, (4): 6~10
    8. D. B. Grave, IEEE Transactions on Plasma Science. 1994, (22): 31~42
    9. W. Z. Collison, T. Q. Ni, M. S. Barnes. Studies of low-pressure inductively-coupled plasma etching for a larger area wafer using plasma modeling and Langmuir probe. Journal of Vacuum Science and Technology A. 1998, 16(1):100-107
    10.刘亮,张贵新,朱志杰,等.微波等离子体设备场分布的仿真和实验.清华大学学报(自然科学版). 2008, 48(1): 28~31
    11. M. Light, I. D. Sudit, F. F. Chen, et al. Axial propagation of helicon waves. Physics of Plasmas. 1995, (2): 4094~41031
    12.郝世明,聂祚仁.钨热阴极发射机制的研究进展.中国钨业. 2007, 22(3): 15~18
    13.金曾孙,姜志刚,白亦真,等.直流热阴极PCVD法制备金刚石厚膜.新型炭材料. 2002, 17(2): 9~12
    14.白亦真,吕宪义,金曾孙,等.影响大电流热阴极辉光放电稳定工作的因素.吉林大学学报(理学版). 2006, 44(1): 89~92
    15.宋建华,苗晋琦,吕反修,等.强电流直流伸展电弧等离子体CVD金刚石沉积均匀性研究.金刚石与磨料磨具工程. 2006, 151(1): 31~35
    16. J. F. Chen, S. L. Fu, X. Q. Lai, et al. Characterization of spatial plasma distribution in a divergence-type ECR-PECVD system. Vacuum. 2006, (81): 49~53
    17.刘明海,菅井秀郎,胡希伟,等.大面积表面波等离子体的特性研究.物理学报. 2006, 55(11): 5905~5908
    18. S. G. Park, Beom-hoan O, M. Sohn, et al. Large area high density plasma source by helical resonator Arrays. Surface and Coatings Technology. 2000, (133~134): 598~601
    19.欧琼荣,梁荣庆.大面积平面表面波等离子体的研究.真空与低温. 2002, 8(1):28~33
    20. Y. J. Lee, H. R. Han, G. Y. Yeom. Characteristics of magnetized inductively coupled plasma source for flat panel display applications. Surface and Coatings Technology. 2000, (133~134): 612~616
    21. M. Hanada, T. Seki, N. Takado. Experimental study on spatial uniformity of H-ion beam in a large negative ion source. Fusion Engineering and Design. 2005, (74): 311~317
    22.杨思泽,张谷令,王久丽,等.管型材料离子注入内表面研究进展.科学技术与工程, 2003, 3(6): 594~600
    23.张谷令,王久丽,陈光良,等.金属管件内壁栅极增强等离子体源离子注入的轴向特性研究.物理学报. 2007, 56(3): 1461~1466
    24. J. R. Conrad, J. L. Radtke, R. A. Dodd, et al. Plasma source ion-implantation technique for surface modification of materials. Applied Physics. 1987, 62(11): 4591~4596
    25. W. Ensinger. Modification of mechanical and chemical surface properties of metals by plasma immersion ion implantation. Surface and Coatings Technology. 1998, (100-101): 341~352
    26.汤宝寅.等离子体源离子注入(I).物理. 1994, (01): 41~45
    27. R. W. Thomate. Plasma-imersion ion implantation. Nuclear Instruments andMethods in Physics Research B. 1998, (139): 37~42
    28.雷明凯.等离子体基低能离子注入技术的研究与进展.真空科学与技术学报. 1999, 19(04): 265~272
    29. Z. Fan, P. K. Chu, C. Chan, et al. Sample stage induced dose and energy nonuniformity in plasma immersion ion implantation of silicon. Applied Physics Letters. 1998, 73(2): 202~204
    30. E. Stamate, K. Ohe. Response to“Comment on‘on the surface condition of Langmuir probes in reactive plasma’”. Applied Physics Letters. 2001, 79(16): 2663~2665
    31. X. B. Tian, P. K. Chu. Multiple ion-focusing effects in plasma immersion ion implantation. Applied Physics Letters. 2002, 81(20): 3744~3746
    32. E. Stamate, N. Holtzer, H. Sugai. Improvement of the dose uniformity in plasma immersed ion implantation by introducing a vertical biased ring. Thin Solid Films. 2006, 506~507: 571~574
    33. K. Yukimura, X. X. Ma, M. Kumagai, et al. Preparation of TiN film on the inner surface of a pipe by plasma-based ion implantation and deposition. Surface and Coatings Technology. 2003, (174~175): 694~697
    34.张谷令,王久丽,杨武保,等.内表面栅极等离子体源离子注入TiN薄膜及其特性研究.物理学报. 2003, 52(9): 2213~2218
    35.江炳尧,郑望,王曦.等离子体浸没式离子注入圆形薄片均匀性研究.功能材料与器件学报.2002, 8(1): 69~72
    36. Zhaoming Zeng, Ricky K.Y. Fu, Xiubo Tian, et al. Plasma immersion ion implantation of industrial gears. Surface and Coatings Technology. 2004, 186: 260~264
    37. D.J. Ball. Plasma diagnostics and energy transport of a dc discharge used for sputtering. Journal of Applied Physics. 1972, (43): 3047~3057
    38. G. K. Muralidhar, G. Mohan Rao, A. G. Menon, et al. Plasma diagnostics of the high pressure oxygen-sputtering process. Thin Solid Films. 1993, (224): 137~140
    39.齐燕文,王存池,任兆杏.空间等离子体源与测试系统设计.航天器环境工程. 2006, 23(5): 253~256
    40.傅思祖,孙玉琴,黄秀光,等.“神光-Ⅱ”装置靶面均匀辐照系统的优化设计.中国激光. 2003, 30(2): 129~133
    41. C. Corbella, E. Pascual, M. A. Gomez, et al. Characterization of diamond-like carbon thin films produced by pulsed-DC low pressure plasma monitored by a Langmuir probe in time-resolved mode. Diamond and Related Materials. 2005, (14): 1062~1066
    42. P. Spatenka, J. Vlcek, J. Blazek. Langmuir probe measurements of plasma parameters in a planar magnetron with additional plasma confinement. Vacuum. 1999, (55):165~170
    43. C. Muratore, J. J. Moore, J. A. Rees. Electrostatic quadrupole plasma mass spectrometer and Langmuir probe measurements of mid-frequency pulsed DC magnetron discharges. Surface and Coatings Technology. 2003 , (163~164): 12~18
    44.王嶙,余欧明,杭凌侠.磁控溅射镀膜中工作气压对沉积速率的影响.真空. 2004, 41(1): 9-12
    45. N. Tenno, K. Yukimura, S. Masamune. Ion current analysis in pulsed RF plasma as a fundamental research of plasma-based ion implantation. Surface and Coatings Technology. 2001, (136): 127~131
    46. A. Molinari, G. Straffelini, B. Tesi, et al. Dry Sliding Wear Mechanisms of the Ti6Al4V Alloy. Wear. 1997, 208(1~2): 105~112
    47. E. P. Bouden. The Friction and Lubrication of Solids, Part II. Oxford University Press, London. 1964: 145
    48. S. Satitas, M. Procter, A. Grant. The use of ion implantation to modify the tribological properties of Ti6Al4V alloy. Materials Science and Engineering. 1987, (90): 297~306
    49. D. Sansom, J. L. Viviente, F. Alonso. Ion implantation of TiN films with carbon or nitrogen for improved tribomechanical properties. Surface and Coatings Technology. 1996, (84): 519~523
    50. R. Lopez-Callejas, R. Valencia A , A. E. Munoz-Castro, et al. Enhancement of wear and corrosion resistance of nitrogen implanted dental tools. Vacuum. 2008, (xx): 1~3
    51. C. Anandan, V. K. William Grips, V. Ezhil Selvi, et al. Electrochemical studies of stainless steel implanted with nitrogen and oxygen by plasma immersion ion implantation. Surface and Coatings Technology. 2007, (201): 7873~7879
    52.廖家轩,田忠,许江,等.等离子体基离子注入电压对碳薄膜结构及磨擦学性能的影响.哈尔滨工业大学学报. 2006, (38): 91~94
    53. F.Alonso, M. rinner, A. Loinaz, et al. Characterization of Ti6Al4V Modified by Nitrogen Plasma Immersion Ion Implantation. Surface and Coatings Technology. 1997, 93(2~3): 305~308
    54. P. Saravanan, V. S. Raja, S. Mukherjee. Effect of plasma immersion ion implantation of nitrogen on the wear and corrosion behavior of 316LVM stainless steel. Surface and Coatings Technology 2007, (201): 8131~8135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700