用户名: 密码: 验证码:
冈底斯成矿带东段三大斑岩型矿床地质特征及区域控岩控矿模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以西藏冈底斯成矿带东段三大类斑岩型铜(钼)多金属矿为研究对象,通过对三个典型矿床地质特征、区域构造岩浆演化和矿床地球化学特征的研究,初步探讨了矿床类型、控矿条件、成矿规律,建立了区域构造-岩浆控矿模式。
     西藏冈底斯火山-岩浆弧展布于雅鲁藏布江碰撞结合带的北侧,是一个在晚古生代-中生代时期受多次雅鲁藏布江洋壳向冈底斯陆块俯冲作用的影响而发展起来的复合火山-岩浆弧带,该复合火山-岩浆弧带构成了西藏最重要乃至我国最重要的成矿带,通过近十多年的地质矿产勘查工作,该成矿带已经成为我国最重要的资源基地之一。
     通过研究认为雄村铜金矿代表了雅江洋俯冲阶段形成的斑岩型铜金矿,但后期存在多期的叠加成矿,其证据为:1)对雄村铜金矿的控矿构造的研究,认为具脆韧性性质的“二断二褶”控制着矿体的分布。2)矿石特征、成因矿物学研究表明雄村铜金矿的矿石具有异常复杂的金属矿物组合(发现闪锌矿可与14种金属矿物,黄铜矿可与16种金属矿物)、同种矿物多种产出状态、同种矿物不同标型、同种标型组合复杂等特点。显示存在多期次叠加成矿作用。3)单矿物稀土地球化学表明4个世代的石英稀土总量(∑REE=0.596706~5.423752(×10-6))大于磁黄铁矿、黄铁矿的稀土总量((∑REE=0.126854~0.883578(×10-6)),早世代到晚世代的石英稀土总量有增加的趋势、轻稀土富集程度有减弱趋势、重稀土亏损程度有递减趋势、硫化物重稀土比硅化石英重稀土偏高。显示叠加矿化的矿液来源于基性岩浆,成矿流体高氧逸度等特点。4)单矿物微量元素地球化学特征反映金属硫化物形成与中基性岩浆作用关系密切,但形成不同期次矿物的成矿热液的性质存在明显差异。5)同位素地球化学特征也具有多期次叠加成矿的特征。矿物铅同位素地球化学特征显示成矿背景在造山带与洋岛叠合区域,岩浆源区的形成及岩浆侵位,与俯冲作用和造山作用具有一定关系,成矿金属物质源区在上地壳与地幔之间,并偏地幔一侧。硫源具有岩浆硫/深源硫特征。氢氧同位素地球化学特征表明流体以岩浆水为主,地层成分水混入较少,在成矿溶液大规模活动,矿液混入地层水较少,而强度较小规模有限的前锋部位,地层水混入就较多。6)单矿物Pb-Pb模式年龄、石英的HAESRDQ年龄显示有52.7~70.4Ma的成矿作用。显示存在多期次叠加成矿作用。
     沙让钼矿代表的是碰撞过程中的斑岩型钼矿,研究表明:1)通过矿床地质特征、勘查地球化学特征、勘查地球物理特征的研究表明,沙让钼矿属于斑岩型钼矿,其勘查的指示元素是W-Bi-Mo-Re、Zn。矿化强烈区具有低阻、中高极化的特征(视极化率可达12%)。2)通过蚀变填图,建立了矿床蚀变模式,显示沙让钼矿的地表仅仅出现粘土化-绢英岩化带,剥蚀程度总体很低。3)岩石地球化学成果表明沙让钼矿含矿岩体为典型的I型花岗岩,从钙碱性到高钾钙碱性到钾玄质系列。各种岩石均富集轻稀土元素和大离子亲石元素Rb,Th,Pb,P亏损Ba,Sr和高场强元素Nb,Ta,成矿的花岗斑岩强烈亏损Ti。4)岩石的LA-ICPMS锆石U-Pb定年结果表明成矿期岩石的成岩年龄52.9±0.5Ma-52.3±0.4Ma~51.6±0.4Ma,辉钼矿Re-Os同位素定年52.01±0.20Ma,MSWD=0.58。5)岩浆源区落于角闪岩相熔融的区域,而非加厚地壳形成的榴辉岩区域,中新世的花岗闪长斑岩是形成闪长岩的源区再次发生部分熔融形成,成矿后的岩石可能与富集地幔部分熔融。
     驱龙铜多金属矿是碰撞过程中伸展背景的产物,研究表明:1)通过驱龙铜多金属矿岩浆岩岩石学、岩石化学特征研究,确定矿区发育有石英闪长岩、花岗闪长岩、黑云母二长花岗岩、花岗闪长斑岩、二长花岗斑岩以及辉绿玢岩、闪长玢岩、石英斑岩、安山玢岩、花岗岩等呈小岩株、岩枝、岩脉,构成一个复杂的火山岩浆复杂系统。2)驱龙矿区岩浆岩源于新生下地壳的部分熔融,晚期岩浆源区古老富集物质贡献增强。3)通过矿体地质、蚀变分带、勘查地球物理、勘查地球化学特征、遥感地质特征研究,总结了驱龙式铜多金属矿的找矿标志,建立了成矿模式。
     综上所述,冈底斯成矿带主要斑岩型矿床的铜钼具有幔源的特点,而钼具有更多的下地壳源因子,铅主要来源于稳定的克拉通化地壳,即Pb、Zn源于地壳。矿床空间分布上东西段存在不均衡性,并指出冈底斯北带、中带、南带三分的合理性,其中中带的找矿潜力最大。
     根据获得的中酸性侵入岩锆石LA-ICP-MS U-Pb年龄资料,大致可以把冈底斯斑岩成矿带岩浆作用分为三大旋回:200~80Ma、60~45Ma、25~10Ma,随之发生的成矿作用集中在三个主要成矿阶段:180~160Ma、65~40Ma、20~12Ma,从而形成代表岛弧背景的雄村斑岩型铜金矿,代表大陆内部碰撞背景的沙让斑岩型钼矿,代表后碰撞伸展背景的驱龙斑岩型铜(钼)矿等典型矿床。
     由此,根据区域构造演化规律的总结,建立了古新世-始新世雅鲁藏布江结合带花状推覆构造扇构造-岩浆控矿模式、冈底斯中带推覆滑覆构造系-岩浆控矿模式、冈底斯成矿带北带的推覆扇扇-岩浆控矿模式。
     本论文的创新点:
     1)提出了雄村铜金矿具有多期叠合成矿作用。
     2)建立了古新世-始新世雅鲁藏布江结合带花状推覆构造扇构造-岩浆控矿模式、冈底斯中带推覆滑覆构造系-岩浆控矿模式、冈底斯成矿带北带的推覆扇扇-岩浆控矿模式。
     3)提出了冈底斯三大斑岩矿床的成矿地质背景是雅江洋从俯冲到碰撞全过程的响应。
This paper focused on three categories of porphyry-type Cu, Mo polymetallicdeposits, which situated on the eastern of Gandise metallogenic belt, Tibet. Study ongeologic feature, magmatic activities related to the regional tectonic evolution,geochemical characteristics of three typical deposits, according to discuss deposit’stype, ore-controlling conditions and metallogenic regularities, to established regionalstructural-ore controlling model.
     Gandise volcanic-magmatic island arc was distributed on the northern YarlungZangbo River Collision belt. From Late Paleozoic Era to the Mesozoic Era, island arcunder plate subduction, to formed composite volcano-magmatic arc belt. It becomesone of the most important metallogenic belt and even the whole country. Throughgeologic&mineral resource prospecting work, it already become one of mostimportant resource base in China.
     From the author’s view, during the phase of oceanic crust subduction, Xiongcuncopper-gold deposit stand for Porphyry copper gold formation, with late-stagesuperimposed mineralization. There are:1)study on ore-controlling structure inXiongcun copper-gold deposit,“two fault with one fold” ductile-brittle property tocontrol the distribution of ore body.2) study on the ore characteristics, geneticmineralogy indicated that Xiongcun copper-gold deposit own the metal mineralcombinatorial complexity.(sphalerite combined with14kinds of metal minerals,chalcopyrite with16s), same mineral with multiple occurrence status, same mineralwith different typomorphic-type, same typomorphic with complexity combination, et,al.these phenomenon shows it exist multi-periods, and superposition mineralization.3)monomineral REE geochemistry shown the total content of quartz rare earth elementswith four generation(∑REE=0.596706~5.423752(×10-6))greater than totalcontent of pyrrhotite, pyrite((∑REE=0.126854~0.883578(×10-6)), from earlygeneration to late generation, total content of quartz REE has a growing tendency,LREE enrichment degree has a decreasing tendency, HREE loss degree has decreasingtendency, HREE of sulfide higher than Chloride quartz. It turns out ore-fluidsuperposed mineralization derived from basic magma, and high oxygen fugacity, et,al. 4)geochemical characteristics of trace monomineral trace elements show that metalsulfides related to basic and neutral magmatism, hydrothermal properties of multistagemineral varies markedly.5) Isotope geochemical characteristics shows multistageSuperposition metallogenic. Both mineralization backgrounds of Pb isotope shows thatthe composite area oforogenic belt&ocean island, and magma source area&magmaticemplacement had a certain relationship with underthrusting&orogenesis. ore-formingmetal material in source area between upper crust and mantle, even more with mantle.Source area of sulfide comes form magmas/deep source. Oxyhydrogen isotopegeochemistry mainly magmatic water, with few formation water. However, fewformation water in ore-forming activities, more formation water at the front part.6)monomineral Pb-Pb model age&quartz HAESRDQ52.7~70.4Ma., which showsmultistage superposition mineralization.
     In the collision background, Sharang molybdenum deposit belongs to Porphyrymolybdenum deposits, study shows that:1)study on deposit geology, explorationgeochemistry characteristics and exploration geophysical characteristics, Porphyrymolybdenum deposits belongs to collision background, indicator element W-Bi-Mo-Re、Zn. Highly mineralization area has lower resistance, medium-high polarizationfeatures(Polarimetric can reach12%).2) Through alteration mapping, establishdeposits alteration model, show the earth’s surface of Sharang molybdenum depositmerely formed in clayiztion-sericitization belt, and overall denudation level very low.3)lithogeochemistry results suggests that ore-bearing rock mass belongs to Volcanic-typegranite, from calc-alkalic to high-K calc-alkalic to K-shoshonitic series. All rocks wasenriched by LREE&LILE(Rb,Th,Pb,P), deficiency in Ba,Sr&HFSE(Nb,Ta),granite porphyry of metallogenic deficiency in Ti.4) LA-ICPMS zircon U-Pb datingindicated that matallogenic rock age52.9±0.5Ma~52.3±0.4Ma-51.6±0.4Ma, Re-Osisotope dating of molybdenite52.01±0.20Ma,MSWD=0.58.5) Magma source areasituated in the area of damphibolite melting, eclogite area hardly consists of thickencrust. Miocene granodiorite-porphyry formation was partial melting in source region ofdiorite, mineralization rocks has partial melting with EMII.
     Qulong Cu polymetallic deposits was product in the stretch background andcollision process, indicated that:1) study on petrology of magmatic rocks,petrochemical characteristics, to ensure quartzdiorite, granodiorite, biotite adamellite,granodiorite-porphyry, adamellite porphyry, allgovite, diorite porphyrite, quartzporphyry, Ansan porphyrite and granite appear in the form of stocks, apophysis anddike, to constitute a complex volcanic-magma system.2) magma of Qulong mine areaderived from partial melting of new lower crust. In the late stage, increasing ancientmaterial from magma source area.3) study on orebody geological, alteration zoning,geophysical exploration, geochemistry characteristics exploration and remote sensingcharacteristics, to summarized deposits guiding, to establish the model of deposits.
     To sum up,Cu-Mo features in the main porphyry deposit of Gandise metallogenic belt belongs to mantle, Mo own the lower crust features, Pb mainly derived from stablecratonic crust-Pb,Zn derived from crust. Deposit space distribution exists somedisparities, and point out: prospecting potential of mesozone is maximum in theGandise mineralization belt.
     According the zircon LA-ICP-MS U-Pb age of intermediate-acidic intrusive rocks,roughly divided the magmatism of Gandise porphyry metallogenic into three phase:200~80Ma、60~45Ma、25~10Ma, the consequence mineralization concentratedin three phase:180~160Ma、65~40Ma、20~12Ma, thus formed island arcbackground of Xiongcun porphyry copper gold deposits, continental interiors collisionbackground of Sharang porphyry molybdenum deposits, collision-extensionalbackground of Qulong porphyry Cu(Mo) deposits,et,al.
     Thus, according to regional tectonic evolution, established tectonic-magmaticore-control model of Paleocene-Eocene flower-like nappe structure fan in the YarlungZangbo suture zone, thrust-gliding model of Gandise mesozone, thrust fan-magmaticcontrol model of northern Gangdise metallogenic belt.
     Innovations of this paper:
     1)Set up multistage composite mineralization of Gandise Cu(Au) deposits.
     2) Establish tectonic-magmatic deposits control model of Paleocene-Eoceneflower-like nappe structure fan in the Yarlung Zangbo suture zone, thrust-glidingdeposits control model of Gandise mesozone, thrust fan-magmatic deposits controlmodel of northern Gangdise metallogenic belt.
     3)Bring up ore-forming geological settings was the response from Yajiangthrusting to collision.
引文
陈毓川,朱裕生.1995.中国矿床成矿模式[M].北京:地质出版社,1-367.
    费光春,温春齐,王成松,等.2010.冈底斯东段洞中拉辉绿玢岩锆石SHRIMP U-Pb定年及意义[J].地质通报,29(8):1138-1142.
    多吉,张金树,钟康惠,等.2012.冈底斯成矿带东段铜金多金属矿成矿特征与资源评价研究[M].北京:地质出版社,1-341.
    耿全如,潘桂棠,王立全,等.2006.西藏冈底斯带叶巴组火山岩同位素地质年代[J].沉积与特提斯地质,26(1):1-7.
    耿全如,潘桂堂,金振民,等.2005.西藏冈底斯带叶巴组火山岩地球化学及成因.地球科学-中国地质大学学报,30(6):747-760.
    侯增谦,孟祥金,曲晓明,等.2005.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束,矿床地质,24,2:108-121.
    侯增谦,莫宣学,高永丰,等.2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩-以西藏和智利斑岩铜矿为例.矿床地质,22(1):l-l2.
    侯增谦,曲晓明,黄卫,等.2001.冈底斯斑岩铜矿带有望成为西藏第二条“玉龙”铜矿带,中国地质,28(10):27-29.
    侯增谦,曲晓明,王淑贤,等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学(D辑),33:609-618.2003.
    侯增谦,杨竹森,徐文艺,等.青藏高原碰撞造山带: I.主碰撞造山成矿作用.矿床地质,25(4):337-458.2006.
    纪伟强,吴福元,锺孙霖,等.2009.西藏南部冈底斯岩基花岗岩时代与岩石成因[J].中国科学(D辑),39(7):849-871.
    郎兴海,陈毓川,唐菊兴,等.2010.西藏谢通门县雄村斑岩型铜金矿床成因讨论——来自元素的空间分布特征的证据[J].地质论评,56(3):384-402.
    李丹,温春齐.2010.冈底斯铜矿带含矿斑岩的锶同位素特征[J].矿床地质,29(Sup):456-457.
    李光明,刘波,屈文俊,等.2005西藏冈底斯成矿带的斑岩—矽卡岩成矿系统:—来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据[J].大地构造与成矿学,29(4):482-492..
    李光明,秦克章,丁奎首,等.2006.冈底斯东段南部第三纪矽卡岩型Cu-Au±Mo矿床地质特征、矿物组合及其深部找矿意义.地质学报,80(9):1407-1421.
    李光明,芮宗瑶.2004.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄[J].大地构造与成矿学,28(2):165-170.
    李光明,芮宗瑶,王高明,等.2005.西藏冈底斯成矿带甲玛和知不拉铜多金属矿床的Re-Os同位素年龄及其意义.矿床地质,24(5):481-489.
    李金祥,秦克章,李光明.2006.富金斑岩铜矿的基本特征、成矿物质来源与成矿高氧化岩浆-流体演化.岩石学报,22(3):678-688.
    李金祥,秦克章,李光明,等.2007.冈底斯中段尼木斑岩铜矿田的K-Ar、40Ar/39Ar年龄对岩浆-热液系统演化和成矿构造背景的制约.岩石学报.23(5):954-966.
    李振清,杨志明,朱祥坤,等.2009.西藏驱龙斑岩铜矿铜同位素研究[J].地质学报,83(12):1985-1996.
    连玉.2008.西藏冈底斯典型铜多金属矿床成矿流体研究[D].北京:中国地质科学院.
    刘鸿飞.1993.拉萨地区林子宗火山岩系的划分和时代归属.西藏地质,(2):15-24.
    刘云从等编.1985.矿床学参考书.北京:地质出版社,1-293.
    卢焕章,范宏瑞,倪培等.2004.流体包裹体.北京:科学出版社,p487.
    孟祥金.2004.西藏碰撞造山带冈底斯中新世斑岩铜矿成矿作用研究[D].北京:中国地质科学院.
    孟祥金,侯增谦,高永丰,等.2003a.西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义[J].地质论评,46(6):660-666.
    孟祥金,侯增谦,高永丰,等.2003b.西藏冈底斯东段斑岩铜钼铅锌成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re-Os年龄证据[J].矿床地质,22(3):246-252.
    孟祥金,侯增谦,李振清.2005.西藏冈底斯三处斑岩铜矿床流体包裹体及成矿作用研究[J].矿床地质,24(4):398-408.
    孟祥金,侯增谦,李振清.2006.西藏驱龙斑岩铜矿S、Pb同位素组成:对含矿斑岩与成矿物质来源的指示,地质学报,80(4):554-560.
    莫宣学,董国臣,赵志丹,等.2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,11(3):281-290.
    莫宣学,赵志丹,邓晋福,等.2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘,10(3):135-148.
    潘桂棠,莫宣学,侯增谦,等.2006.冈底斯造山带的时空结构及演化.岩石学报,22(3):521-533.
    秦克章,李光明,赵俊兴,等.2008.西藏首例独立钼矿-冈底斯沙让大型斑岩钼矿的发现及其意义,中国地质,35,6:1101-1112.
    曲晓明,侯增谦,李佑国.2002. S-Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示[J].地质通报,21(11):768-776.
    曲晓明,侯增谦,李振清.2003.冈底斯铜矿带含矿斑岩的40Ar/39Ar年龄及地质意义[J].地质学报,77(2):245-252.
    曲晓明,辛洪波,徐文艺.2007a.三个锆石U-Pb SHRIMP年龄对雄村特大型铜金矿床容矿火成岩时代的重新厘定[J].矿床地质,26(5):512-518.
    曲晓明,辛洪波,徐文艺.2007b.西藏雄村特大型铜金矿床容矿火山岩的成因及其对成矿的贡献[J].地质学报,81(7):964-971.
    芮宗瑶,侯增谦,李光明,等.冈底斯斑岩铜矿成矿模式[J].地质论评,52(4):469-466.2006.
    芮宗瑶,侯增谦,曲晓明,等.冈底斯斑岩铜矿时代及青藏高原隆升[J].矿床地质,22(3):217-225.2003.
    芮宗瑶,李光明,王龙生.2004.青藏高原的金属矿产资源[J].地质通报,23(1):20-23.
    芮宗瑶,李光明,张立生,等.2004.西藏斑岩铜矿对重大地质事件的响应[J].地学前缘,11(1):145-152.
    唐菊兴,陈毓川,王登红,等.2009.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇[J].地质学报,83(5):698-704.
    唐菊兴,黎风佶,李志军,等.2010.西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据[J].矿床地质,29(3):461-475.
    唐菊兴,张丽,黄勇,等.2009.西藏谢通门县雄村铜金矿主要地质体的40Ar/39Ar年龄及地质意义[J].矿床地质,28(6):759-769.
    唐勇.2009.西藏谢通门县雄村铜金矿矿床地球化学特征[D].成都:成都理工大学.
    王亮亮,莫宣学,李冰,等.2006.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学[J].岩石学报,22(4):1001-1008.
    西藏巨龙铜业有限公司.2008.西藏自治区墨竹工卡县驱龙矿区铜多金属矿勘探报告.
    肖波,秦克章,李光明,等.2009.西藏驱龙巨型斑岩Cu_Mo矿床的富S、高氧化性含矿岩浆-来自岩浆成因硬石膏的证据.地质学报,83(12):1860-1869.
    徐文炘.1991.矿物包裹体中水溶气体成分的物理化学参数图解[J].矿产与地质,5(3):200-206.
    徐文艺,曲晓明,侯增谦,等.2006.西藏冈底斯中段雄村铜金矿床成矿流体特征与成因探讨[J].矿床地质,25(3):243-251.
    徐文艺,曲晓明,侯增谦,等.2005.西藏冈底斯中段雄村铜金矿床流体包裹体研究[J].岩石矿物学杂志,24(4):301-310.
    杨志明,侯增谦,李振清,等.2008a.西藏驱龙斑岩铜钼矿床中UST石英的发现—初始岩浆流体的直接记录[J].矿床地质,27(2):188-199.
    杨志明,侯增谦,夏代详,等.2008b.西藏驱龙铜矿西部斑岩与成矿关系的厘定:对矿床未来勘探方向的重要启示,矿床地质,27,1:28-36.
    杨志明,侯增谦.2009.西藏驱龙超大型斑岩铜矿的成因——流体包裹体及H-O同位素证据[J].地质学报,83(12):1838-1859.
    杨志明,谢玉玲,李光明,等.2006.西藏冈底斯斑岩铜矿带成矿流体的扫描电镜(能谱)约束——以驱龙和厅宫矿床为例[J].矿床地质,25(2):1147-154.
    杨志明,谢玉玲,李光明,等.2005.西藏冈底斯斑岩铜矿带驱龙铜矿成矿流体特征及其演化[J].地质与勘探,41(2):21-26.
    张刚阳,郑有业,龚福志,等.2008.西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束[J].岩石学报,24(3):473-479.
    张绮玲,曲晓明,徐文艺,等.2003.西藏南木斑岩铜钼矿床的流体包裹体研究[J].岩石学报,19(2):251-259.
    张万平,莫宣学,朱弟成,等.2009.西藏冈底斯带南部雄村铜金矿成因探讨——来自锆石U-Pb年龄的证据[J].岩石矿物学杂志,28(3):235-242.
    张文淮,张志坚,伍刚.1996.成矿流体及成矿机制[J].地学前缘,3(3-4):245-252.
    赵俊兴,秦克章,李光明,等.2009.冈底斯沙让钼矿的成矿年代学和岩石地球化学与青藏高原主碰撞期成矿作用.矿物学报,增刊:197-198.
    周玉,温春齐,周雄,等.2010.西藏斑岩铜矿带含矿斑岩微量元素特征及构造环境——以邦铺、多不杂矿床为例[J].矿床地质,29(S1):557-558.
    朱弟成,潘桂堂,王立全,等.2008.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报,27(9):1535-1550.
    朱永峰.1998.硫在岩浆熔体中的溶解行为综述.地质科技情报,17(2):35-38.
    Bouzari F and Clark A H.2006. Prograde evolution and geothermal affinities of a major porphyrycopper deposit: The Cerro Colorado hypogene protore, I Regin, Northern Chile. EconomicGeology,101:95-l34.
    Burnham C W.1997.Magma and hydrothermal fluids. In: Barnes, H.L.(Ed.), Geochemistry ofHydrothermal Ore Deposits,(3rded.) Wiley, New York,, pp.71-136.
    Candela P A.1997.A review of shallow, ore-related granites: textures, volatiles, and oremetals.Journal of Petrology,38:1619-1633.
    Carroll M R, Rutherford M J.1985.Sulfide and sulfate saturation in hydrous silicatemelts.Proc.15thLunar Planet. Sci. Conf., J. Geophys. Res.,90:601-612.
    Carroll M R, Rutherford M J.1987.The stability of igneous anhydrite: experimental results andimplications for sulfur behavior in the1982El Chichón trachyandesite and other evolvedmagmas. J. Petrol.,28:781-801.
    Carroll M R and Rutherford M J.1988.Sulfur speciation in hydrous experimental glasses ofvarying oxidation state: results from measured wave length shifts of sulfur X-rays. Am.Mineral.,73:845-849.
    Carten R B, White W, Hand Stein, H J.1993.High-grade granite-related molybdenum systems:classification and origin: in Kirkham, R.V., Sinclair, W.D., Thorpe, R.I., and Duke, J.M., eds.,Mineral Deposit Modeling: Geological Association of Canada, Special, Paper40, p521-554.
    Cathelineau M.1988.Cation site occupancy in chlorites and illites as a function of temperature.Clay Minerals,23:471-485.
    Chiu H Y,Chung S L,Wu F Y, et al.2009.Zircon U-Pb and Hf isotopic constraints from easternTrans-hima lay an batholiths on the precollis ional magmatic and tectonic evolution insouthern Tibet. Tectonophysics,447,3-19.
    Chu M F, Chung S L, Song B, et al.2006.Zircon U-P band Hf isotope constraint son the Mesozoictectonics and crustal evolution of southern Tibet. Geology,34,9:745-748.
    Chung S L, Chu M F, Ji J Q, et al.2009.The nature and timing of crustal thickening in SouthernTibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites,Tectonophysics,477,36-48.
    Chung S L, Chu M F, Zhang Y Q, et al.2005.Tibet an tectonic evolution inferred from spatial andtemporal variations in post-collisional magmatism. Earth Sci.Rev.68,173-196.
    Chung S L, Liu D Y, Ji J, et al.2003.Adakites from continental collis ion zones: melting ofthickened lower crust beneath southern Tibet. Geology,31,1021-1024.
    Clark A H.1993.Are outsize porphyry copper deposit seethe ran atomically or environ mentallydistinctive? Society of Economic Geologist Special Publication,2:213-283.
    Clemente B, Scaillet B, Pichavant M, et al.2004.The solubility of sulfur in hydrous rhyoliticmelts. J. Petrol.,45,2171-2196.
    Cline J S and Bodnar R J.1991.Can economic porphyry copper mineralization be generated byatypical calc-alkaline melt? Journal of Geophysical Research,96,8113-8126.
    Cline J S, Bodnar R J.1994. Direct evolution of abrine from a crystallizing silicic melt at theQuesta, NewMexico, molybdenum deposit. Economic Geology,89,1780-1802.
    Cloos M.2001.Bubbling magma chambers, cupolas, and porphyry copper deposits. InternationalGeology Review,43:285-311.
    Condie K C.2005.TTGs and adakites: are they both slab melts? Lithos,80,33-44.
    Cooke D R, Hollings P, and Walshe J L.2005.Giant Porphyry Deposits: Characteristicsdistribution, and tectonic controls. Econ. Geol.,100:801-818.
    Coulon C, Maluski H, Bollinger C, et al.1986.Mesozoic and Cenozoic volcanic rocks fromcentral and southern Tibet:40Ar/39Ardating, petrological characteristics and geodynamicalsignificance. Earth Planet. Sci. Lett.79,281-302.
    Czamanski G K, Force E R and Moore W J.1981.Some geologic and potential resource aspects ofrutile in porphyry copper deposits[J].Economic Geology,76,2240-2256.
    Dawson K M. Geology of the Endako mine: Unpublished Ph.D. thesis, Vancouver, University ofBritish Columbia,1972,337p.
    Debon F, LeFort P, Sheppard S M, et al.1986.The four plutonic belts of theTranshimalaya-Himalaya: A chemical, mineralogical, isotopic, and chronological synthesisalong a Tibet-Nepal section. J. Petrol,27:219-250.
    Defant M J, Xu J F, Kepezhinskas P, et al.2002.Adakites: some variations on a theme. ActaPetrologica Sinica,18,129-142.
    Defant M J and Drummond M S.1990.Derivation of some modern arc magmas by melting ofyoung subducted lithosphere. Nature,347,662-665.
    Defant M J and Kepezhinskas P. Adakites:2001.A review of slab melting over the past decadeand the case for as lab-melt component in arcs: EOS. Transactions, v.82, p.65,68-69.
    Dilles J H.1987.Petrology of the Yerington Batholith, Nevada: Evidence for evolution ofporphyry copper ore fluids. Economic Geology,82:1754-1789.
    Einsele G, Liu B, Durr S, et al.1994.The Xigaze fore-arc basin: Evolution and faciesarchitecture(Cretaceous, Tibet). SediGeol,90:1-32.
    England P, Houseman G.1989.Extension during continental convergence, with application to theTibetan Plateau. Journal of Geophysical Research,94,561-579.
    Field C W, Zhang L, Dilles J H, et al.2005.Sulfur and oxygen isotopic record in sulfate andsulfide minerals of early, deep, pre-Main Stage porphyry Cu–Mo and late, shallow MainStage base-metal mineral deposits, Butte district, Montana. Chem. Geol.215,61-93
    Fournier R O.1999.Hydrothermal processes related to movement of fluid from plastic into brittlerock in the magmatic-hydrothermal environment. Econ. Geol.94,1193-1212.
    Frost B R,2000.Chamberlain K R and Schuhmacher J C. Sphene (titanite): Phase relations androle as ageochronometer.Chemical Geology,172:131-148
    Gao Y F,Hou Z Q, Kamber B S, et al.2007.Adakite-like porphyries from the southern Tibetancontinental collision zones: evidence for slab melt metasomatism. Contrib Mineral Petrol,153:105-120.
    Giggenbach W F.1997.The origin and evolution of fluids in magmatic-hydrothermal systems. In:Barnes, H.L.(Ed.), Geochemistry of Hydrothermal Ore Deposits,3rded. Wiley, New York,pp.737-796.
    Guo Z F, Wilson M, Liu J Q.2007.Post-collis ion aladakites in south Tibet: Products of partialmelting of subduction-modified lower crust. Lithos,96:205-224.
    Gustafson L B, Hunt J P.1975.The porphyry copper deposit at El Salvador, Chile. EconomicGeology,70,857-912.
    Guynn J H, Kapp P, Pullen A, et al.2006.Tibetan basement rocks near Amdo reveal “missing”Mesozoic tectonism along the Bangong suture, central Tibet. Geology,34:505–508.
    Hall D E, Sterner S M and Bodnar R J.1988.Freezing point depression of NaCl-KCl-H2Osolutions. Econ. Geol.,83,197-202.
    Hamlyn P R, Keays R R, Cameron W E, et al.1985.Precious metals in magnesian low-Ti lavas:Implications for metallogenesis and sulfur sat uration in primary magmas: Geochimica etCosmochimica Acta, v,49, p.1797-1811.
    Harris N B W, Xu R, Lewis C L, et al.1988.Isotope geochemistry of the1985Tibet Geotraverse,Lhasa to Golmud. PhilTrans. R. Soc. Lond, A327:263-285
    He S, Kapp P, DeCelles P G, et al.2007.Cretaceous-Tertiary geology of the Gangdese ArcintheLinzhou area, southern Tibet. Tectonophysics,433,15-37.
    Hedenquist J W and Lowenstern J B.1994.The role of magmas in the formation of hydrothermalof deposits. Nature,370:519-527.
    Hedenquist J W and Richards J P. The influence of geochemical techniques on the development ofgenetic models for porphyry copper deposits: Reviews in Economic Geology,1998,10:235-256.
    Hollister V F, Potter R R and Barker A L.1974.Porphyry-typedepos its of the Appalachia norogen.Econ. Geol.,69:618-630.
    Honegger K H, Dietrich V, Frank W,1982. Magmatism and metamorphism in the LadakhHimalayas.EarthPlanet.Sci.Lett.60,253-292.
    Hou Z Q, Gao Y F, Qu X M, et al.2004.Origin of adakitic intrusives generated duringmid-Miocene east-west extension in southern Tibet. Earth Planet. Sci. Lett.220,139-155.
    Imai A.2002.Metallogenes is of porphyry Cu deposits of the western Luzon arc, Philippines: K-Arages, SO3contents of microphenocrystic apatite and significance of intrusive rocks. ResourceGeology,52(2):147-161.
    Imai A.2004.Variation of Cl and SO3contents of microphenocrystic apatite in intermediate tosilicic igneous rocks of Cenozoic Japanese island arcs: Implications for porphyry Cumetallogenesis in the Western Pacific Island arcs. Resource Geology,54(3):357-372.
    Ji W Q, Wu F Y, Chung S L, et al.2009. Zirc on U-Pb geochronological and Hf isotopicconstraints on petrogenesis of the Gangdese batholith in Tibet. Chem. Geol.262,229-245.
    Johnson K, Barnes C G and Miller C A.1997.Petrology, geochemistry, and genesis ofhigh-Altonalite and trondhjemites of the Cornucopia stock, Blue Mountains, NortheasternOregon. Journal of Petrology,38,1585-1611.
    Jowett E C.1991.Fitting iron and magnesium into the hydrothermal chlorite geothermometer.GAC/SEG Joint Annual Meeting, Toronto, Program with Abstracts,16, A62.
    JugoP J, RobertW L, JeremyP R.2005.An Experimenta lStudy of the Sulfur Contentin BasalticMelts Saturated with Immiscible Sulfide or Sulfate Liquids at1300C and1.0GPa. Journal ofPetrology,46:783-798.
    Kelemen P B, Johnson K T M, Kinzler R J.1990.High-field-strength element depletions in arcbasalts due to mantle–magma in teraction. Nature,345,521-524.
    Kohn M, Parkinson C D,2002.Petrologic case for Eocenes lab breakoff during the Indo-Asiancollision. Geology,30,591-594.
    Kress V.1997.Magma mix in gas as ource for Pinatubo sulphur. Nature,389,591-593
    Lee H Y, Chung S L, Lo C H et al.2009.Eocene Neotethy an slab breakoff in southern Tibetinferred from the Linzizong volcanic record. Tectonophysics,477:20-35.
    Liang Y H, Chung S L, Liu D Y, et al.2008.Detrital zircon evidence from Burma forreorganization of the eastern Himalayan river system. American Journal of Science,308,618-638.
    Lowell J D and Guilbert J M.1970.Lateral and vertica alteration-mineralization zoning in porphyryore deposits. Economic Geology,65:373-408.
    Luhr J F.1990.Experimental phase relations of water and sulfur-saturated arc magmas and the1982eruptions of El Chichón Volcano. J. Petrol.,31:1071-1114.
    Luhr J F.2008.Primary igneous anhydrite: Progress since its recognition in the1982El Chichóntrachyandesite.J. Volcanol Geotherm Res,175:394-407
    Mahoney J J, Frei R, Tejada M L G, et al.1998. Tracing the Indian Ocean Mantle DomainThrough Time: Isotopic Results from Old West Indian, East Tethyan, and South PacificSeafloor. J. Petrol.,39,1285-1306.
    Mao J W, Xie G Q, Bierlein F, et al.2008.Tectonic implications from Re–Os dating of Mesozoicmolybdenum deposits in the East Qinling–Dabie orogenic belt, Geochimica et CosmochimicaActa,72:4607-4626
    Martin H, Smithies R H, Rapp R, Moyen, et al.2005.An overview of adakite,tonalite-trondhjemite-granodiorite(TTG), and sanukitoid: relationships and some implicationsfor crustal evolution. Lithos,79,1-24.
    Miller C S, chuster R, Klotzli U, et al.1999.Post-Collisional Potassic and UltrapotassicMagmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for MantleSource Characteristics and Petrogenesis.J.Petrol.,40,1399-1424.
    Mo X X, Hou Z Q, Niu Y L, et al.2007.Mantle contributions to crustal thickening duringcontinental collis ion: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos,96,225-242.
    Mo X X, Niu Y L, Dong G C, et al.2008.Contribution of syn-collisional fels ic magmatism tocontinental crust growth: a case study of the Paleogene Linzizong volcanic succession insouthern Tibet. Chemical Geology,250:49-67
    Moyen J F.2009.High Sr/Y and La/Y bratios: The meaning of the “adakitic signature”, Lithos,112:556-574.
    Najman Y.2006.The detrital record of orogenesis: A review of approaches and techniques usedin the Himalay an sedimentary basins. Earth Sci. Rev.74,1-72.
    Nomade S, Renne P R, Mo X, et al.2004.Miocene volcanism in the Lhasa Block, Tibet: spatialtrends and geodynamic implications. Earth Planet. Sci. Lett.221,227-243.
    Ohmoto H.1986.Stable isotope geochemistry of ore deposits. In: Valley J W, Taylor Jr H P,O’Neil J R (Eds.), Stable Isotopes in High Temperature Geological Processes, Rev. Mineral.,vol.16, pp.491-559.
    Othman D B, Polvé M and Allègre C J.1984.Nd-Sr isotopic composition of granulites andconstraints on the evolution of the lower continental crust.Nature,307,510-515.
    Oyarzun R, Márquez A, Lillo J, et al.2001.Giant versus small porphyry copper deposits ofCenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism:Mineralium Deposita, v.36, p.794-798.
    Patzelt A, Li H M, Wang J D, et al.1996.Paleomagnetism of Cretaceous to Tertiary sedimentsfrom southern Tibet: evidence for the extent of the northern margin of India prior to thecollision with Eurasia. Tectonophysics,259,259-284.
    Pearce J A, Parkinson I J.1993.Trace element models for mantle melting; application to volcanicarc petrogenesis. Geol. Soc. Spec. Publ.,76,373-403.
    Petford N and Atherton M.1996.Na-rich partial melts from newly underplated basaltic crust: theCordillera Blanca Batholith, Peru. Journal of Petrology,37,1491-1521.
    Pettke T, Oberli F, Heinrich C A.2010.The magma and metal source of giant porphyry-type oredeposits, based on lead isotope microanalysis of individual fluid inclusions. Earth andPlanetary Science Letters,296(3-4),267-277.
    Polat A, Münker C.2004.Hf-Nd isotope evidence for contemporbaneous subduction processes inthe source of late Archean arc lavas from the Superior Province, Canada. Chemical Geology,213(4),403-429.
    Prendergast K, ClarkeG W, Pearson N J, et al.2005.Genesis of Pyrite-Au-As-Zn-Bi-Te ZonesAssociated with Cu-Au Skarns: Evidence from the Big Gossan and Wanagon Gold Deposits,Ertsberg District, Papua, Indonesia, Economic Geology,100:1021-1050.
    Qin K Z, Ishihara S.1998.On the possibility of porphyry copper mineralization Japanese Islands.International Geology Review,40(6):539-551.
    Qin Ke zhang, Tosdal Richards, Li Guang ming, et al.2005.Formation of the Miocene porphyryCu(-Mo-Au)deposits in the Gangdese arc, southern Tibet, in a transitional tectonic setting. In:Zhao Cai sheng and Guo Bao jian editors: Mineral Deposit Research: Meeting the GlobalChallenge. China land publishing House, Volume3:44-47.
    Qu X M, Hou Z Q, Khin Zaw, et al.2007.Characteristics and genesis of Gangdese porphyrycopper deposits in the southern Tibetan Plateau: Preliminary geochemical andgeochronological results. Ore Geology Review,31:205-223
    Qu X M, Hou Z Q, Li YG,2004.Melt components derived from a subducted slab in late orogenicore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos,74:131-148
    Richards J P.1995.Alkalic-type epithermal gold deposits-a review: Mineralogical Association ofCanada Short Course Series, v.23, p.367-400.
    Richards J P.2003.Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation.Economic Geology,98:1515-1533.
    Richards J P, McCulloch M T, Chappell B W et al.1991.Sources of metals in the Porgera golddeposit, Papua New Guinea: Evidence from alteration, isotope, and noble metal geochemistry:Geochimica et Cosmochimica Acta, v.55, p.565-580.
    Richards J P and Kerrich R.2007.Adakite-like rocks: Their diverse origins and questionable rolein metallogenesis. Economic Geolgoy,102:537-576.
    Roedder E.1992.Fluid inclus ion evidence for immiscibility in magmatic differentiation,Geochimica et Cosmochimica Acta,56:5-20.
    Rollison H R.1993.Using Geochemical Data: evaluation, presentation, interpretation. LongmanScientific Technical, London,352.
    Rusk B G, Reed M H and Dills J H.2008.Fluid inclusion evidence for magmatic-hydrothermalfluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Econ. Geol.,103,307-334.
    Rye R O, Bethke P M, Wasserman M D.1992.The stable isotope geochemistry of acid sulfatealteration. Econ. Geol.87,225-262.
    Sajona F G, Naury R C, Pubellier M. et al.2000.Magmatic source enrichment by slab-derivedmelts in a young post-collision setting, central Mindanao(Philippines). Lithos,54,173-206.
    Sakai H.1968.Isotopic properties of sulfur compounds in hydrothermal processes. Geochem.J.(Japan),2,29-49.
    Sch rer U, Xu R H, Allègre C J.1984. U-Pb geochronology of Gandese (Transhimalaya)plutonism in the Lhasa-Xigaze region Tibet, Earth Planet. Sci. Lett,69,311-320.
    Schwartz G M.1931.Intergrowths of bornite and chalcopyrite [J].Economic Geology,26:186-201.
    Scott K M2005.. Rutile geochemistry as a guide to porphyry Cu–Au mineralization, Northparkes,New SouthWales, Australia-.Geochemistry: Exploration, Environment, Analysis,5:247-253
    Seal IIR R.2006. Reviews in Mineralogy&Geochemistry, Vol.61, pp.633-677.
    Seedorff E, Dilles J H, Proffett J M, et al.2005.Porphyry Deposits: Characteristics And Origin OfHypogene Features: Economic Geology.100thAnniversary Volume, P.251-298.
    Seedorff E and Einaudi M T.2004.Henders on porphyry molybdenum system, Colorado: II.Decoupling of introduction and deposition of metals during geochemical evolution ofhydrothermal fluids. Economic Geology and the Bulletin of the Society of EconomicGeologists,99,39-72.
    Selby D, Nesbitt B E, Muehlenbachs K, et al. Hydrothermal alteration and fluid chemistry of theEndako porphyry molybdenum deposit, British Columbia. Economic Geology,2000,95(1):183-202.
    Selby D, Nesbitt B E, Muehlenbachs K, et al.2000.Hydrothermal Alteration and Fluid Chemistryof the Endako Porphyry Molybdenum Deposit, British Columbia. Economic Geology,95,183-202.
    Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits. Econ. Geol.1972,67:184-197.
    Sillitoe R H. Porphyry Copper Systems. Econ. Geol.,2010,105:3-41.
    Sisson T Y.1994.Hornblende-melt trace-element partitioning measured by ion microprobe.Chemical Geology,117(1-4),331-344.
    Stein H J.1988.Genetictraits of Climax-type granites and molybdenum mineralization, Coloradomineral belt: Canadian Institute of Mining, Metallurgy, and Petroleum Special Volume,39,p.394-401.
    Stern C R, Funk J A, Skewes M A.2007.Magmatic anhydrite in plutonic rocks at the El TenienteCu-Mo deposit, Chile, and the role of sulfur-and copper-rich magmas in its formation.Economic Geology,102:1335-1344.
    Stern C R, Skewes M A.2005.Origin of giant Miocene and Pliocene Cu-Mo deposits in centralChile: Role of ridge subduction, decreased subduction angle, subduction erosion, crustalthickening and long-lived, batholith-sized, open-system magma chambers, in T. M. Porter,ed., Super porphyry copper and gold deposits-a global perspective: Adelaide, Australia,Porter Geoconsultancy Publishing,1:65-82.
    Stolz A J, Jochum K P, Spettel B. et al.1996.Fluid-and melt-related enrichment in the sub arcmantle: evidence from Nb/Ta variations in island-arc basalts. Geology,24,587-590.
    Symonds R B, Rose W I, Bluth G J S, et al.1994.Volcanic-gasstudies: methods, results, andapplications. In: Carroll, M.R., Holloway, J.R.(Eds.), Volatiles in Magmas, Rev. Mineral.,vol.30, pp.1-66.
    Wang Q, Xu J F, Jian P, et al.2006.Petrogenesis of Adakitic Porphyries in an. ExtensionalTectonic Setting, Dexing, South. China: Implications for the Genesis of Porphyry CopperMineralization. Journal of Petrology,47,119-144.
    Wang Q, Zhao Z H, Xu J F, et al..2003.Petrogenesis and metallogenes is of the Yanshanianadakite-like rocks in the Eastern Yangtze Block. Sciencein China, Series D46(supp.),164-176.
    Wen D R., Chung S L, Song B. et al.2008.Late Cretaceous Gangdese intrusions of adakiticgeochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos,105:1-11.
    Williams S A and Cesbron F P,1977.Rutile and Apatite: Useful Prospecting Guides for PorphyryCopper Deposits. Mineralogical Magazine,41:288-292.
    Wu F Y, Ji W Q, Liu, C Z.2010.Detrital zircon U–Pb and Hf isotopic data from the Xigazefore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet.Chemical Geology,271:13-25.
    Xiao B, Qin K Z, Li G M, et al2010.. Highly Oxidized Magma and Fluid Evolution of MioceneQulong Giant Porphyry Cu-Mo Deposit, Southern Tibet, China. Resource Geology,inrevision.
    Yang Z M, Hou Z Q, White N C, et al.2009.Geology of the post collisional porphyrycopper-molybdenum deposit at Qulong, Tibet. Ore Geology Reviews,36,133-159.
    Zhang Z J and Klemperer S.2010.Crustal structure of the Tethyan Himalaya, southern Tibet: newconstraints from old wide-angle seismic data. Geophysical Journal International,181,1247-1260.
    Zhou S, Mo X X, Zhao Z D, et al.2010.40Ar/39Ar geo chronology of post-collis ion alvolcanism inthe middle Gangdese Belt, southern Tibet. Journal of Asian Earth Sciences,37:246-258.
    Zhu D C, Mo X X, Wang L Q, et al.2009.Petro genesis of highly fractionated I-type granites inthe Chayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology,geochemistry and Sr-Nd-Hf isotopes. Sci. China Ser D-Earth Sci.,39,833-848.
    Zhu D C, Mo X X, Niu Y L, et al.2009a.Geochemical investigation of Early Cretaceous igneousrocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. ChemicalGeology,268:298-312.
    Zhu D C, Mo X X, Niu Y L, et al.2009b.Zircon U-Pb dating and in-situ Hf isotopic analysis ofPermian peraluminous granite in the Lhasa terrane, southern Tibet: Implications for Permiancollisional orogeny and paleogeography. Tectono physics,469:48-60.
    Zhu D C, Mo X X, Zhao Z D et al.2010.Presence of Permian extension-and arc-type magmatismin southern Tibet: Paleogeographic implications. Geological Society of Americ a Bulletin,122(7/8):979-993.
    Zhu D C, Pan G T, Chung S L, et al.2008.SHRIMP zircon age and geochemical constraints on theorigin of Early Jurassic volcanic rocks from the Yeba Formation, southern Gangdese in southTibet. Inter Geol Rev,50:442-471.
    Zhu D C, Zhao Z D, Pan G T, et al.2009.Early Cretaceous subduction-related adakite-like rocksin the Gangdese belt, southern Tibet: products of slab melting and subsequent melt-peridotite
    interaction? J Asian Earth Sci.,34:298-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700