用户名: 密码: 验证码:
基于OFDM的GEO卫星移动通信系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
OFDM技术已成为地面无线/移动通信网络的核心传输技术,在下一代卫星移动通信系统中采用OFDM技术既可以提高卫星系统资源的利用效率,又非常有利于卫星系统与地面无线/移动通信网络的紧密融合;而卫星移动通信系统本身采用具有多波束、大口径高增益天线的GEO卫星有着更好的发展前景,因此基于OFDM的GEO卫星移动通信系统具有很好的研究价值,并有望成为未来卫星移动通信系统的发展方向。
     论文针对基于OFDM的GEO卫星移动通信系统中的几个关键问题进行了研究,主要贡献如下:
     1、阐述了基于OFDM的GEO卫星移动通信系统的总体方案,并给出了星上部分各功能模块的基本方案。
     2、针对基于马尔可夫过程的卫星移动信道模型,提出了一种GEO卫星移动信道长期预测方法,该方法充分利用了卫星移动信道衰落的特点,利用信道状态的相关性和信道状态转移概率信息来加权预测未来的信道状态,并依据自回归预测得到信道状态信息输出值,解决了现有无线系统中信道预测方法受限于信道相干时间而不能进行长期预测的瓶颈。采用该方法对卫星移动信道的有效预测对于OFDM卫星移动通信系统的自适应传输、OFDM子载波资源分配具有指导意义。
     3、采用跨层设计思想,提出了一种基于网络效用和动态系统资源的OFDM卫星移动通信系统接纳控制方法,该方法首先根据物理层卫星信道状态变化更新OFDM子载波传输能力,将物理层系统资源的变化反馈到接纳控制层,然后在呼叫接纳控制过程中动态调整分配业务带宽,以整个系统的网络效用最大化为目标进行业务呼叫接纳控制。在系统负载饱和的情况下,该方法具有较高的系统资源利用效率和较好的业务呼叫阻塞性能。
     4、针对OFDM系统中固有的峰均比问题,提出了一种适用于星上的OFDM峰均比抑制方法,该方法将OFDM信号峰均比抑制与下行链路子载波资源分配进行联合优化,在针对每个用户终端和业务进行自适应分配子载波的同时,通过调整业务所占用的子载波位置来抑制峰均比。该方法能够有效抑制OFDM信号的峰均比,而且不会对OFDM信号造成损伤,也不需要传输边带信息。
OFDM has been a core transmission technology for terrestrial wireless and mobilecommunications. In next generation satellite mobile communications, adopting OFDMcan both improve the system resource utilization rate and be very conductive to theintegration of satellite and terrestrial wireless and mobile communications. For thesatellite mobile communication system, adopting GEO satellite with multi-beam andhigh gain antenna has a better perspective. Therefore GEO satellite mobilecommunication system based on OFDM has great research value, and it is expected tobe the development direction of future satellite mobile communication systems.
     This dissertation studies some key problems in GEO satellite mobilecommunication system based on OFDM. And the main contributions of the dissertationare as follows:
     1. An architechture of the OFDM based GEO satellite mobile communicationsystem is illustrated, in which the basic schemes for each on-board functional moduleare provided.
     2. A long term channel prediction method is proposed for the GEO satellite mobilechannel based on Markov process. This method takes full advantage of the fadingcharacteristics of satellite mobile channel. It utilizes the correlation of the channel statesand Markov state transfer probability to predict the future channel state and outputs thechannel prediction value in the long term future according to autoregression prediction.And it solves the problem that the existing channel prediction methods in wirelesssystem are limited to channel coherence time and can not make long term prediction.Using this method to make efficient prediction of the satellite mobile channel hasinstructive meaning to adaptive transmission of OFDM satellite mobile communicationsystem and OFDM subcarrier resource allocation.
     3. Based on cross-layer design, an on-board call admission control scheme basedon network utility and dynamic system resource is proposed for OFDM satellite mobilecommunication system. In the proposed scheme, firstly, the OFDM subcarriertransmission capability is updated according to satellite channel states in physical layerand the variation of physical layer system resources is fed back to call admission control layer. And the allocated service bandwidth is adjusted dynamically in call admissioncontrol process. Then service call admission control is made by maximizing the totalsystem network utility. This scheme has high system resource utilization rateperformance and good call blocking probility performance when system load is heavy.
     4. An on-board suitable PAPR reduction method is proposed for the inherentPAPR problem in OFDM system. This method makes optimization of OFDM signalPAPR reduction and downlink subcarrier allocation jointly. Subcarriers are allocatedadaptively to each user terminal and each service, in the mean time, OFDM signalPAPR can be reduced through adjusting the subcarriers location that each serviceoccupies. The method can reduce the PAPR efficiently. And it would not degrade theOFDM signal and need not transmit side information.
引文
[1]张更新,张杭.卫星移动通信系统.人民邮电出版社,2001年.
    [2]李建东,杨家玮.个人通信.人民邮电出版社,2002年.
    [3]谢智东,边东明. Thuraya和ACeS系统(上),数字通信世界,2007(5):86-88.
    [4]谢智东,边东明. Thuraya和ACeS系统(下),数字通信世界,2007(6):88-89.
    [5] Dayaratna L, Walshak L, Mahdawi T. ACeS communication payload system overview.Proceedings of the18thAIAA International Communications Satellite Systems Conference,Oakland, CA,2000.
    [6] Belanger R, Taylor N, Bertenyi E, et al. MSAT communication payload system overview.Proceedings of the15thAIAA International Communications Satellite Systems Conference,San Diego, CA,1994.
    [7]焦现军,曹桂兴. MSV-ATC卫星移动通信技术研究.航天器工程.2007(5):59-67.
    [8] Dennis S, Ann T, Rodney S, et al. Design, integration, and deployment of the TerreStar18-meter reflector. Proceedings of the28thAIAA International Communications SatelliteSystems Conference, Anaheim, California,2010.
    [9] Guray A, Barry E. Packetised voice communications for air traffic services over the InmarsatSwiftBroadband system. Proceedings of the26thAIAA International CommunicationsSatellite Systems Conference, San Diego, CA,2008.
    [10] James L, Robert T, Jerry I. The next generation mobile user objective system(MUOS).Proceedings of AIAA Defense and Civil Space Programs Conference, Huntsville, AL,1998.
    [11] Sapp A Jr. Mobile user objective system(MUOS): future satellite communications for themobile warfighter. IEEE Military Communications Conference, Los Angeles, CA,2000.
    [12]常江,吕晶.铱系统概况.数字通信世界,2007(11):82-85.
    [13] Pratt S R, Raines R A, Fossa C E, et al. An operational and performance overview of theIridium low earth orbit satellite system. IEEE Communications Surveys&Tutorials,1999,2(2):2-10.
    [14] Dierich F J. The GlobalStar satellite cellar communication system: design and status. IEEEWescon Conference, Santa Clara, CA,1997.
    [15] Dierich F J, Metzen P, Monte P. The GlobalStar cellar satellite system. IEEE Transactions onAntennas and Propagation,1998,46(6):935-942.
    [16] Hara T. Orbcomm low earth orbit mobile satellite communication system. IEEE TacticalCommunication Conference, Fort Wayne, IN,1994.
    [17]魏红,游思琴.移动通信技术与系统应用.人民邮电出版社,2010.
    [18] Ibnkahla M, Rahman Q M, Sulyman A I, et al. High speed satellite mobile communications:technologies and challenges. Proceedings of the IEEE,2004,92(2):312-339.
    [19] Vanelli-Coralli A, Corazza G E, Karagiannidis G K, et al. Satellite communications: Researchtrends and open issues. International Workshop on Satellite and Space Communications,Salzburg, Austria,2007.
    [20] Ajibesin A A, Bankole F O, Odinma A C. A review of next generation satellite networks:Trends and technical issues. Proceedings of IEEE AFERICON, Nairobi, Kenya,2009.
    [21] Kumar R, Taggart D, Monzingo R, et al. Wideband gapfiller satellite (WGS) system.Proceedings of the IEEE Aerospace Conference, EI Segundo, California,2005.
    [22] Brand J. On the use of the wideband gapfiller satellite at Ka-band for communications on themove. IEEE Military Communications Conference, Boston, MA,2003.
    [23] Patterson D P. Teledesic: A global broadband network. IEEE Aerospace Conference, Aspen,CO,1998.
    [24] John F, Ramjee P. IP/ATM移动卫星网络.电子工业出版社,2003.
    [25]伶学俭,罗涛. OFDM移动通信技术原理与应用.人民邮电出版社,2003年.
    [26]王文博,郑侃.宽带无线通信OFDM技术.人民邮电出版社,2003年.
    [27] Gordon L S, John R B, Steve W M, et al. Broadband MIMO-OFDM wireless communication.Proceedings of the IEEE,2004,92(2):271-294.
    [28] European Telecommunication Standard, ETS300744, Digital broadcasting systems fortelevision, sound and data services: Framing structure, channel coding and modulation fordigital terrestrial television.1997.
    [29] IEEE STD.802.11WG..IEEE standard for wireless LAN medium access control (MAC) andphysical layer (PHY) specification.2007.
    [30] IEEE STD.802.16. IEEE standard for Local and Metropolitan Area Networks Part16: AirInterface for Broadband Wireless Access Systems.2009.
    [31]沈嘉.3GPP长期演进(LTE)技术原理与系统设计.人民邮电出版社,2008.
    [32]3GPP TS36.201V8.3.0. LTE physical layer–general description (Release8).2009.03.
    [33]3GPP TS36.213V8.6.0. Physical layer procedures (Release8).2009.03.
    [34]3GPP TR36.913V8.0.1. Evolved Universal Terrestrial Radio Access (E-UTRA)(LTE-Advanced)(Release8).2009.03.
    [35]3GPP TR36.912V9.0.0. Further Advancements for E-UTRA (LTE-Advanced)(Release9).2009.09.
    [36] Hee W K, Tae C H, Kunseok K, et al. A satellite radio interface for IMT-Advanced systemusing OFDM. IEEE International Conference on Information and Communication TechnologyConvergence,2010.
    [37]朱禹涛. IMT-Advanced标准化进展介绍.移动通信,2008,16:10-12.
    [38] Cioni S, Vanelli-Coralli A, Corazza G E, et al. Analysis and performance of MIMO-OFDM inmobile satellite broadcasting systems. IEEE Global Telecommunications Conference, Miami,FL,2010.
    [39] Ann Tai Ho, Boucheret M L, Thomas N, et al. OFDM synchronization scheme for the forwardlink of a fixed broadband satellite system. IEEE9thWorkshop on Signal Processing Advancesin Wireless Communications.2008.
    [40]中华人民共和国广播电影电视行业标准. GY/T220.1-2006,移动多媒体广播第1部分:广播信道帧结构、信道编码和调制.2006.
    [41]薛培元. IPSTAR宽带卫星计划.国际太空,2004,4:20-22.
    [42] Wiemann K. The ACeS digital channelizer-The next generation in regional digital satellitetelephone communications. Proceedings of the19th Digital Avionics Systems Conference,Philadelphia, PA,2000.
    [43]阳志明,周坡,晏坚,曹志刚.一种星载可重构宽带数字信道化交换方法:中国,专利授权号: ZL200810238889.1.2011.03
    [44] DANG Jun-hong, ZHOU Po, CAO Zhi-gang. A novel on-board switch scheme based onOFDM. International Conference on Space Information Technology, Beijing, China, Nov.26-27,2009.
    [45]党军宏,基于OFDM和跨层设计的星载交换研究[博士学位论文].北京.清华大学电子工程系,2009.
    [46]党军宏,晏坚,曹志刚.一种基于OFDM和跨层设计的星载交换方案.宇航学报,2009,30(3):1086-1094.
    [47] Piero Angeletti, Riccardo De Gaudenzi. From “Bent Pipes” to “Software Defined Payloads”:evolution and trends of satellite communications systems. Proceedings of the26thAIAAInternational Communications Satellite Systems Conference, San Diego, CA,2008.
    [48]吕海寰,甘仲民,蔡剑铭,陈九治.卫星通信系统(修订本),人民邮电出版社,1994.
    [49] C Loo. A statistical model for land mobile satellite link. IEEE Transactions on VehicularTechnology,1985,34(3):122-127.
    [50] C Loo, Butterworth J S. Land mobile satellite channel measurements and modeling.Proceedings of the IEEE,1998,86(7):1442-1463.
    [51] Corazza G E, Ferrarelli C, Vatalaro F. A rice-lognormal terrestrial and satellite channel model.3thAnnual International Conference on Universal Personal Communications, San Diego, CA,1998.
    [52] Corazza G E, Vatalaro F. A statistical model for land mobile satellite channels and itsapplication to nonstationary orbit systems. IEEE Transactions on Vehicular Technology,1994,43(3):738-742.
    [53] Fernando P F, Maryan V C, S Buonomo, et al. S-band LMS propagation channel behavior fordifferent environments, degrees of shadowing and elevation angles. IEEE Transactions onBroadcasting,1998,44(1):40-76.
    [54] Fernando P F, Maryan V C, Cabado C E, et al. Statistical modeling of the LMS channel. IEEETransactions on Vehicular Technology,2001,50(6):1549-1567.
    [55] Negi R, Cioffi J. Pilot tone selection for channel estimation in a mobile OFDM system, IEEETransactions on Consumer Electronics,1998,44(3):1122–1128.
    [56] Dong M, Tong L, Sadler B. Optimal pilot placement for channel tracking in OFDM. IEEEMilitary Communications Conference, Anaheim, CA,2002.
    [57] Nilsson R, Edfors O, Sandell M, et al. An analysis of two-dimensional pilot-symbol assistedmodulation for OFDM. IEEE International Conference on Personal Wireless Communications,Mumbai, India,1997.
    [58] Manton J H. Optimal training sequence and pilot tones for OFDM systems. IEEECommunications Letters,2001,5(4):151-153.
    [59] Simeone O, Bar-Ness Y, Spagnolini U. Pilot Based Channel Estimation for OFDM Systemsby tracking the subspace. IEEE Transactions on Wireless Communications,2004,3(1):315-325.
    [60] Morelli M, Mengali U. A comparison of pilot-aided channel estimation methods for OFDMsystems, IEEE Transactions on Signal Processing,2001,49(12):3065-3073.
    [61] Fredrik T, Torleiv M.Pilot assisted channel estimation for OFDM in mobile cellular systems.IEEE Vehicular Technology Conference, Phoenix, AZ,1997.
    [62] Kang S G, Ha Y M, Joo E K. A comparative investigation on channel estimation algorithmsfor OFDM in mobile communications. IEEE Transactions on Broadcasting,2003,49(2):142-149.
    [63] Hsieh M, Wei C. Channel estimation for OFDM systems based on comb-type pilotarrangement in frequency selective fading channels. IEEE Transactions on ConsumerElectronics,1998,44(1):217-225.
    [64] Zhao Y, Huang A. A novel channel estimation method for OFDM mobile communicationsystems based on pilot signals and transform-domain processing, IEEE Vehicular TechnologyConference, Phoenix, AZ,1997.
    [65] Fenrandez-GetinoGareia M J, Paez-Borrallo J M, Zazo S. DFT based channel estimation in2D-Pilot-symbol-aided OFDM wireless systems, IEEE Vehicular Technology Conference,Rhods, Greece,2001.
    [66] Yang B, Letaief K B, Cheng R S, et al. Windowed DFT based Pilot-symbol-aided channelestimation for OFDM systems in multipath fading channels. IEEE Vehicular TechnologyConference, Tokoyo, Japan,2000.
    [67] Heath R W, Giannakis G B. Exploiting input cyclostationarity for blind channel identificationin OFDM system. IEEE Transactions on Signal Processing,1999,47(3):848-856.
    [68] Cai X, Akansu A N. A subspace method for blind channel identification in OFDM systems.IEEE International Conference on Communications,2000.
    [69] Roy S, Li Chengyang. A subspace blind channel estimation method for OFDM systemswithout cyclic prefix. IEEE Transactions on Wireless Communications,2002,1(4):572-579.
    [70] Duel-Hallen A, Hu Sheng-quan, Hallen H. Long-range prediction of fading signals. IEEESignal Processing Magazine,2000,17(3):62-75.
    [71] Duel-Hallen A. Fading channel prediction for mobile radio adaptive transmission systems.Proceedings of the IEEE,95(12):2299-2313.
    [72] Duel-Hallen A, Hans Hallen, Yang T-S. Long range prediction and reduced feedback formobile radio adaptive OFDM systems. IEEE Transactions on Wireless Communications,2006,5(10):2723-2733.
    [73] Ming Chen, Viberg M, Felter S. Adaptive channel prediction based on polynomial phasesignals. IEEE International Conference on Acoustics, Speech, and Signal Processing, LasVegas, Nevada,2008.
    [74] Schafhuber D, Matz G. MMSE and adaptive prediction of time-varying channels for OFDMsystems. IEEE Transactions on Wireless Communications,2005,4(2):593-602
    [75] Satorius E H, Zhong Ye. Adaptive modulation and coding techniques in MUOS fading/scintillation environments. IEEE Military Communication Conference, Anaheim, CA,2002.
    [76] Goldsmith A J, Chua S G. Adaptive coded modulation for fading channels. IEEE Transactionson Communications,1998,46(5):595-602.
    [77] Rohling H, Grunheid R. Adaptive coding and modulation in an OFDM-TDMAcommunication system. IEEE Vehicular Technology Conference, Ottawa, Canada,1998.
    [78] Farrokh A, Krishnamurthy V, Schober R. Optimal adaptive modulation and coding withswitch costs. IEEE Transactions on Communications,2009,57(3):697-706.
    [79] Duong D V, Holter B, Oien G E. Analysis and optimazition of adaptive coded modulationsystems in spatially correlated SIMO Rayleigh fading channels. IEEE Transactions onVehicular Technology,2008,57(3):1929-1934.
    [80] Goldsmith A J, Varaiya P P. Capacity of fading channels with channel side information. IEEETransactions on Information Theory,1997,43(6):1986-1992.
    [81] Goldsmith A J, Soon-Ghee Chua. Variable-rate variable-power MQAM for fading channels.IEEE Transactions on Communications,1997,45(10):1218-1230.
    [82] Canpolat B. Performance analysis for adaptive loading OFDM under Rayleigh fading. IEEETransactions on Vehicular Technology,2004,53(4):1105-1115.
    [83] Keller T, Hanzo L. Adaptive multicarrier modulation: a convenient framework fortime-frequency processing in wireless communications. Proceedings of the IEEE,2000,88(5):611-640.
    [84] Nagaraj S. Symbol-level adaptive modulation for coded OFDM on blocking fading channels.IEEE Transactions on Communications,2009,57(10):2872-2875.
    [85] Fantacci R, Marabissi D, Tarchi D, et al. Adaptive modulation and coding techniques forOFDMA systems. IEEE Transactions on Wireless Communications,2009,8(9):4876-4883.
    [86] Keller T, Hanzo L. Adaptive modulation techniques for duplex OFDM transmission. IEEETransactions on Vehicular Technology,2000,49(5):1893-1906.
    [87] Benvenuto N, Tosato F. On the selection of adaptive modulation and coding modes overOFDM. IEEE Intenational Conference on Communications, Paris, France,2004.
    [88] Proakis J G. Digital Communications,3rdedition. McGraw-Hill International,1995.
    [89] Iera A, Molinaro A, Marano S. Call admission control and resource management issues forreal-time VBR traffic in ATM-satellite networks. IEEE Journal on Selected Areas inCommunications,2000,18(11):2393-2403.
    [90] Schembra G. A resource management strategy for multimedia adaptive-rate traffic in awireless network with TDMA access. IEEE Transactions on Wireless Communications,2005,4(1):65-78.
    [91] Hasib A, Fapojuwo A O. Mobility model for heterogeneous wireless networks and itsapplication in common radio resource management. IET Communications,2008,2(9):1186-1195.
    [92] Ramjee R, Nagarajan R, Towsley D. On optimal call admission control in cellular networks.Proceedings of IEEE INFOCOM, San Francisco, CA,1996.
    [93] Yu O T W, Leung V C M. Adaptive resource allocation for prioritized call admission over anATM-based wireless PCN. IEEE Journal on Selected Areas in Communications,1997,15(7):1208-1225.
    [94] Bozinovski M, Popovski P, Gavrilovska L. Novel strategy for call admission control in mobilecellular networks. IEEE Vehicular Technology Conference, Boston, Ma,2000.
    [95] Fantacci R. Performance evaluation of prioritized handoff schemes in mobile cellularnetworks. IEEE Transactions on Vehicular Technology,2000,49(2):485-493.
    [96] Si Wu, Wong K Y M, Bo Li. A dynamic call admission policy with precision QoS guaranteeusing stochastic control for mobile wireless networks. IEEE/ACM Transactions onNetworking,2002,10(2):257-271.
    [97] Lai Y C, Lin Y D. Fair admission control in QoS capable networks. IEE ProceedingsCommunications.2005,152(1):22-28.
    [98] Tsiropoulos G I, Stratogiannis D G, Cottis P G, et al. Adaptive resource allocation anddynamic call admission control in wireless networks. IEEE GLOBECOM Workshop onMobile Computing and Emerging Communication Networks, Miami, USA,2010.
    [99] Hassanein H, Oliver A, Nasser N, et al. Uplink QoS-aware admission control in WCDMAnetworks with class-based power shareing. International Conference on Quality of Service inHeterogeneous Wired/Wireless Networks, Dallas, Texas,2004.
    [100] Chowdhary T T, Alam M S, Soel M M, et al. A new CAC protocol for optimizing revenue andensuring QoS. International Conference on Computer and Information Technology, Gyeongju,Korea,2007.
    [101] Feng Chen, Rui Ni, XiaoWei Qin, et al. A novel CAC-based network pricing scheme forwireless access networks. IEEE International Conference on Wireless Information Technologyand Systems, Hawai'i, USA,2010.
    [102] Xiaodong Li, Cimini L J Jr. Effects of clipping and filtering on the performance of OFDM.IEEE Communications Letters,1998,2(5):131-133.
    [103] Armstrong J. Peak-to-average power reduction for OFDM by repeated clipping and frequencydomain filtering. Elctronics Letters,2002,38(5):246-247.
    [104] Xianbin Wang, Tjhung T T, Ng C S. Reduction of peak-to-average power ratio of OFDMsytem using a companding technique. IEEE Transactions on Broadcasting.1999,45(3):303-307.
    [105] Xianbin Wang, Tjhung T T, Yiyan Wu. On the SER and spectral analysis of A-law compandedmulticarrier modulation. IEEE Transactions on Vehicular Technology,2003,52(5):1408-1412.
    [106] Chen H, Haimovish M. Iterative estimation and cancellation of clipping Noise for OFDMsignals. IEEE Communications Letters,2003,7(7):305-307.
    [107] Davis J A, Jedwab J. Peak-to-mean power control and error correction for OFDMtransmission using Golay sequences and Reed-Muller codes. Elctronics Letters,1997,33(4):267-268.
    [108] Davis J A, Jedwab J. Peak-to-mean power control in OFDM, Golay complementarysequences, and Reed-Muller codes. IEEE Transactions on Information Theory.1999,45(7):2397-2417.
    [109] Bauml R W, Fisher R F H, Huber J B. Reducing the Peak-to-Average Power Ratio ofMulticarrier Modulation by Selected Mapping. Electronics Letters,1996,32(22):2056-2057.
    [110] Breiling H, Müller-Weinfurtner S H, Huber J B. SLM Peak-Power Reduction without ExplicitSide Information. IEEE Communications Letters,2001,5(6):239-241.
    [111] Müller-Weinfurtner S H, Huber J B. OFDM with reduced peak-to-average power ratio byoptimum combination of partial transmit sequences. Electronics Letters,1997,33(5):368-369.
    [112] Tellambura C. Improved Phase Factor Computation for the PAPR Reduction of an OFDMSignal Using PTS. IEEE Communications Letters,2001,5(4):135-137.
    [113] Seung Hee Han, Jae Hong Lee. PAPR Reduction of OFDM Signals Using a ReducedComplexity PTS Technique. IEEE Signal Processing Letters,2004,11(11):887-890.
    [114] Devlin C A, Zhu A, Brazil T J. Gaussian pulse based tone reservation for reducing PAPR ofOFDM signal. IEEE Vehicular Technology Conference, Dublin, Ireland,2007.
    [115] Wattanasuwakull T, Benjapolakul W. PAPR reduction for OFDM transmission by using amethod of tone reservation and tone insertion. International Conference on Information,Communication and Signal Processing, Bangkok, Thailand,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700