用户名: 密码: 验证码:
分子模拟研究几类重要蛋白质与底物的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是生物信息学研究的一个重要对象,本文利用分子力学和分子动力学方法,研究了三种蛋白质与底物的相互作用,为进一步药物设计奠定了理论基础。主要内容包括:
     1.采用大分子对接方法构建了SSH2与P-cofilin的三维复合物模型,通过对复合物及两个单体蛋白的动力学模拟来揭示蛋白与底物结合的特异性。计算结果表明:复合物的形成使磷酸化丝切蛋白N末端柔性降低,SSH2在结合底物前后有着相似的分子内部运动。自由能分析显示分子力学能对蛋白复合物整体相互作用贡献最大,库仑静电相互作用对结合部位起主导作用。
     2.通过分子动力学模拟方法研究吡唑基吡咯类抑制剂与ERK2的结合特异性及抑制机理。计算结果表明ERK2与三个不同的抑制剂结合,其运动模式的相似性很高,抑制剂对结合位点的空间利用的越好,其抑制效果越强。自由能分析显示库仑静电能是抑制剂对ERK2起作用的最关键因素,ERK2与抑制剂之间形成的氢键数越多,抑制效果越好,并且抑制剂柔性适当提高也有利于抑制活性的提高。
     3.通过对人类8位氧化鸟嘌呤DNA糖基化酶1与DNA底物复合物的分子动力学模拟研究,揭示了底物的结合使hOgg1的内部运动受到一定限制,Ser147和底物碱基上的8位氧原子对Lys249侧链N去质子化起关键作用,Asp268不参与Lys249的氨基去质子化过程。结果为进一步研究hOgg1与损伤DNA的反应机理提供了有力的理论依据。
From the nineties of the 20th century, with the development of computer science as well as the human genome project implementation, bioinformatics has been developed rapidly. Protein is an indispensable research object in bioinformatics, therefore, computer simulation of proteins has become a well-established and important research area. Via molecular modeling can build the three-dimensional model of proteins, to research the structure characteristics of the macromolecules, analyze the interaction between the protein and substrate, describe protein biochemistry functions, thus molecular simulation has already become a powerful tool for biology experiments and drug design. In this thesis, we have carried out molecular simulation technology to study protein-protein, protein-inhibitor and protein-DNA interactions. The computer simulations of the protein and substrate interactions may understand some problems that can not been solved in the experiment. The simulation results can support the further studies on them and direct the design of new inhibitors and drugs. The main results are summarised as follows:
     1. Theoretical study on human slingshot phosphatase 2 interacting with phospho-cofilin.
     Human cofilin is a member of the actin-depolymerizing factor (ADF)/cofilin (A/C) family, which plays an important role in severing and depolymerization of actin filament in cells. Slingshot (SSH) is a kind of dual specificity protein tyrosine phosphatases (DSPs), it can dephosphorylate cofilin at phosphoserine 3 to disrupt actin reorganization. The three dimension structures of the two monomeric proteins have been determined in experiment, but the complex structure of the two proteins has not been reported. Therefore, the interaction specificities between SSH2 and P-confilin are still unknown. In this study, based on experimental data, the complex structure of SSH2 and P-cofilin has been constructed by macromolecular docking method. Then the conformational changes of the two proteins and the binding specificity between SSH2 and P-cofilin are revealed through using molecular dynamics simulation. The results indicate that the formation of the complex combined with the flexibility of N-terminal in P-cofilin being lower. The molecular motions are similar whether SSH2 binds substrate or not. The free energy analysis indicates that the molecular mechanics energy is the largest contribution to the complex interaction on the whole, while the coulomb electrostatic interaction plays a dominant role on the active local. The major interaction mode is through hydrogen bond, salt bridge and hydrophobic interactions. The largest electrostatic attraction take place between residues Arg258, Lys253 and phospho-serine, the strongest electrostatic repulsion happens between Asp221 and Sep3.
     2. Theoretical studies on the interaction between extracelluar signal-regulated protein kinase 2 and pyrazolylpyrrole inhibitors.
     The extracelluar signal-regulated protein kinase 2 (ERK2) is a member of mitogen-activated protein (MAP) kinases, which is expressed to varying extents in all tissues, including terminally differentiated cells. It has been reported that ERK2 plays a key role in the negative growth control of breast cancer cells and hyperexpression of ERK2 in human breast cancer. Therefore, the research about the inhibitors of ERK2 has been developed widely. The pyrazolylpyrrole compounds have been reported previously as effective ATP competitive inhibitors of ERK, but the problem that the different structure of inhibitor affects the structure of receptor is still unknown. In this study, based on the crystal complexes of ERK2-pyrazolylpyrrole as initial structures, the binding specificity and inhibition mechanics are investigated through molecular dynamics simulations. The results indicate that the motional modes among ERK2 with three different inhibitors have good similarity. The more stable the conformation is, the better the inhibition effect is. The result of binding free energy is according with the trend in experiment, showing that coulomb interaction energy plays a key role in the binding interaction between ERK2 and inhibitor. The increasing of the hydrogen bonds number is favorable to the improvement of the inhibitory potency. And the high flexibility of inhibitor is also good for the inhibitory interaction.
     3. Theoretical studies on human 8-oxoguanine glycosylase 1 interacting with 8-oxoguanine lesion DNA.
     The repair of damaged DNA is an important guarantee, which can maintain the accuracy and integrity of genetic information. There are many repair enzymes to achieve this work in organisms. Human 8-oxoguanine glycosylase 1 is a member of HhH-GPD superfamily, which can repair the damaged DNA of 8-oxoG specially. In the first step of hOgg1 repairing the damaged nucleobase, there is problem about the disputation of Lys249 deprotonating. In this study, we constructed the complex of hOgg1 and 8-oxoG DNA based on crystal structure. Then the flexibilities of the protein in the different states are investigated by using molecular dynamics simulation. And the interactions among the key residues are analyzed, which reveal the deprotonating probability of the catalytic residue Lys249 and the role of Asp268 during the simulation. The results show that: a) The residue Asp268 only play a role of capping at the N-terminal end of anαhelix, not take part in the process of deprotonating the Lys249 amine group. b) The residue Lys249 is a key catalytic residue, as a nucleophile, which must be deprotonated firstly. c) The residues Ser147 and the 8-oxygen atom of substrate may be the key residues, which can deprotonate the proton of the side-chain amine group in Lys249.
引文
[1] U.S. Department of Health and Human Services, U.S. Department of Energy. Understanding Our Genetic Inheritance. The U.S. Human Genome Project: The First Five Years [R]. Washington, DC: US Dept of Health and Human Services,1990.
    [2]张春霆.生物信息学的现状与展望[J].世界科技研究与发展, 22:17-20.
    [3] BENTON D. Bioinformatics: Principles and potential of a new multidisciplinary tool [J]. Trends in Biotechnology, 1996, 14:261-272.
    [4] DOOLITTLE R F. Reconstructing history with amino acid sequences [J]. Protein Science, 1992, 1:191-200.
    [5] STRICKLER J E, HUNKAPILLER M W, WILSON K J. Utility of the gas-phase sequencer for both liquid- and solid-phase degradation of proteins and peptides at low picomole levels [J]. Analytical Biochemistry, 1984, 140:553-566.
    [6] WILSON K J. Micro-Level Protein and Peptide Separations [J]. Trends in Biochemical Sciences, 1989, 14:252-255.
    [7] KARGER B L, CHU Y H, FORET F. Capillary Electrophoresis of Proteins and Nucleic-Acids [J]. Annual Review of Biophysics and Biomolecular Structure, 1995, 24:579-610.
    [8] MERRIFIELD B. Solid Phase Synthesis [J]. Science, 1986, 232:341-347.
    [9] REGNIER F E, GOODING K M. High Performance Liquid Chromatography of Proteins [J]. Analytical Biochemistry, 1980, 103:1-25.
    [10] SENKO M W, MCLAFFERTY F W. Mass Spectrometry of Macromolecules: Has Its Time Now Come [J]. Annual Review ofBiophysics and Biomolecular Structure, 1994, 23:763-785.
    [11] HUNKAPILLER M W, STRICKLER J E, WILSON K J. Contemporary methodology for protein structure determination [J]. Science, 1984, 226:304-311.
    [12] OZOLS J. Amino Acid Analysis [J]. Methods in Enzymology, 1990, 182:587-601.
    [13] STELLWAGEN E. Gel Filtration [J]. Methods in Enzymology, 1990, 182:317-328.
    [14] KENT S B H. Chemical Synthesis of Peptides and Proteins [J]. Annual Review of Biochemistry, 1988, 57:957-989.
    [15] SANGER F. Sequences, Sequences, and Sequences [J]. Annual Review of Biochemistry, 1988, 57:1-28.
    [16] MCCAMMON J A, GELIN B R, KARPLUS M. Dynamics of folded proteins [J]. Nature, 1977, 267:585-590.
    [17] WILSON S. Chemistry by Computer [M]. New York: Plenum Press, 1986.
    [18] MULLIKEN R S. Life of a Scientist [M]. Berlin: Springer Verlag, 1989.
    [19] NYLAND L S, PRINS J, YUN R H, et al. Achieving Scalable Parallel Molecular Dynamics Using Dynamic Spatial Domain Decomposition Techniques [J]. Journal of Parallel and Distributed Computing, 1997, 47:125-138.
    [20] BROWN D, CLARKE J H R, OKUDA M, et al. A domain decomposition parallelization strategy for molecular dynamics simulations on distributed memory machines [J]. Computer Physics Communications, 1993, 74:67-80.
    [21] BROWN D, MINOUX H, MAIGRET B. A domain decomposition parallel processing algorithm for molecular dynamics simulations of systems ofarbitrary connectivity [J]. Computer Physics Communications, 1997, 103:170-186.
    [22] ESSELINK K. A comparison of algorithms for long-range interactions [J]. Computer Physics Communications, 1995, 87:375-395.
    [23] BROOKS B R, BRUCCOLERI R E, OLAFSON B D, et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations [J]. Journal of Computational Chemistry, 1983, 4:187-217.
    [24] WEINER P K, KOLLMAN P A. AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions [J]. Journal of Computational Chemistry, 1981, 2:287-303.
    [25] SCOTT W R P, HUNENBERGER P H, TIRONI I G, et al. The GROMOS biomolecular simulation program package [J]. Journal of Physical Chemistry A, 1999, 103:3596-3607.
    [26] VAN DER SPOEL D, LINDAHL E, HESS B, et al. GROMACS: Fast, flexible, and free [J]. Journal of Computational Chemistry, 2005, 26:1701-1718.
    [27] InsightII, version 2000. [CP]. MSI, San Diego.
    [28] Sybyl 7.3, [CP]. Tripos International, Louis, Missouri, USA.
    [29] MOHAMADI F, RICHARDS N G J, GUIDA W C, et al. Macromodel an integrated software system for modeling organic and bioorganic molecules using molecular mechanics [J]. Journal of Computational Chemistry, 1990, 11:440-467.
    [30] Gaussian03, Revision A1. [CP]. Gaussian, Pittsburgh.
    [31] MOPAC 2002 [CP]. Fujitsu Limited, Tokyo, Japan.
    [32] SCHMIDT M W, BALDRIDGE K K, BOATZ J A, et al. General atomic and molecular electronic structure system [J]. Journal of ComputationalChemistry, 1993, 14:1347-1363.
    [33] SAYLE R A, MILNER-WHITE E J. RASMOL: biomolecular graphics for all [J]. Trends in Biochemical Sciences, 1995, 20:374-376.
    [34] HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics [J]. Journal of Molecular Graphics, 1996, 14:33-38.
    [35] NASH J. Computer Software Reviews. ChemWindow Release 3 and 13C Module [J]. Journal of Chemical Information and Computer Sciences, 1994, 34:1338-1339.
    [36] TOWN W. ISIS/Draw for the Macintosh [J]. Journal of Chemical Information and Computer Sciences, 1992, 32:393-393.
    [37] ANDREW R L. Molecular Modelling: Principles and Application [M]. London: Addison Wesley Longman, 1996.
    [38] FRENKEL D, SMIT B. Understanding Molecular Simulation: From Algorithms to Applications [M]. Boston: Academic Press, 1996.
    [39] SADUS R J. Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation [M]. Amsterdam: Elsevier Science, 2002.
    [40] SCHULZ T, PLEISS J, SCHMID R D. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: A quantitative model [J]. Protein Science, 2000, 9:1053-1062.
    [41] BASH P A, SINGH U C, BROWN F K, et al. Calculation of the Relative Change in Binding Free-Energy of a Protein-Inhibitor Complex [J]. Science, 1987, 235:574-576.
    [42] CAMACHO C J, GATCHELL D W, KIMURA S R, et al. Scoring docked conformations generated by rigid-body protein-protein docking [J]. Proteins: Structure, Function, and Genetics, 2000, 40:525-537.
    [43] GUSTIANANDA M, LIGGINS J R, CUMMINS P L, et al. Conformationof prion protein repeat peptides probed by FRET measurements and molecular dynamics simulations [J]. Biophysical Journal, 2004, 86:2467-2483.
    [44] JORGENSEN W L. Revised TIPS for simulations of liquid water and aqueous solutions [J]. The Journal of Chemical Physics, 1982, 77:4156-4163.
    [45] TUCKERMAN M E, MARTYNA G J. Understanding modern molecular dynamics: Techniques and applications [J]. Journal of Physical Chemistry B, 2000, 104:159-178.
    [46] KOSHLAND D E. Application of a Theory of Enzyme Specificity to Protein Synthesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 1958, 44:98-104.
    [47] ALOY P, MOONT G, GABB H A, et al. Modelling repressor proteins docking to DNA [J]. Proteins: Structure Function and Genetics, 1998, 33:535-549.
    [48] MOONT G, GABB H A, STERNBERG M J E. Use of pair potentials across protein interfaces in screening predicted docked complexes [J]. Proteins: Structure Function and Genetics, 1999, 35:364-373.
    [49] EWING T J A, MAKINO S, SKILLMAN A G, et al. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases [J]. Journal of Computer-Aided Molecular Design, 2001, 15:411-428.
    [50] KUNTZ I D, BLANEY J M, OATLEY S J, et al. A Geometric Approach to Macromolecule-Ligand Interactions [J]. Journal of Molecular Biology, 1982, 161:269-288.
    [51] MENG E C, GSCHWEND D A, BLANEY J M, et al. Orientational Sampling and Rigid-Body Minimization in Molecular Docking [J].Proteins: Structure Function and Genetics, 1993, 17:266-278.
    [52] KUNTZ I D. Structure-Based Strategies for Drug Design and Discovery [J]. Science, 1992, 257:1078-1082.
    [53] GOODSELL D S, OLSON A J. Automated Docking of Substrates to Proteins by Simulated Annealing [J]. Proteins: Structure Function and Genetics, 1990, 8:195-202.
    [54] GOODSELL D S, MORRIS G M, OLSON A J. Automated docking of flexible ligands: Applications of AutoDock [J]. Journal of Molecular Recognition, 1996, 9:1-5.
    [55] MORRIS G M, GOODSELL D S, HUEY R, et al. Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4 [J]. Journal of Computer-Aided Molecular Design, 1996, 10:293-304.
    [56] BORN M, OPPENHEIMER R. Zur Quantentheorie der Molekeln [J]. Annalen der Physik, 1927, 389:457-484.
    [57]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社, 1985.
    [58]赵学庄,罗渝然,减雅茹, et al.化学反应动力学原理[M].北京:高等教育出版社, 1990.
    [59] MAITLAND G C, RIGBY M, SMITH E B, et al. Intermolecular Forces [M]. Oxford: Clarendon Press, 1981.
    [60]陈凯先,蒋华良,嵇汝运.计算机辅助药物设计─原理、方法及应用[M].上海:上海科学技术出版社, 2000.
    [61] MACKERELL A D, BASHFORD D, BELLOTT, et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins [J]. The Journal of Physical Chemistry B, 1998, 102:3586-3616.
    [62] MACKERELL A D, WIORKIEWICZ-KUCZERA J, KARPLUS M. Anall-atom empirical energy function for the simulation of nucleic acids [J]. Journal of the American Chemical Society, 1995, 117:11946-11975.
    [63] PAVELITES J J, GAO J, BASH P A, et al. A molecular mechanics force field for NAD+, NADH, and the pyrophosphate groups of nucleotides [J]. Journal of Computational Chemistry, 1997, 18:221-239.
    [64] WEINER S J, KOLLMAN P A, CASE D A, et al. A new force field for molecular mechanical simulation of nucleic acids and proteins [J]. Journal of the American Chemical Society, 1984, 106:765-784.
    [65] CORNELL W D, CIEPLAK P, BAYLY C I, et al. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules [J]. Journal of the American Chemical Society, 1995, 117:5179-5197.
    [66] KOLLMAN P A. Advances and Continuing Challenges in Achieving Realistic and Predictive Simulations of the Properties of Organic and Biological Molecules [J]. Accounts of Chemical Research, 1996, 29:461-469.
    [67] DUAN Y, WU C, CHOWDHURY S, et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations [J]. Journal of Computational Chemistry, 2003, 24:1999-2012.
    [68] SCHULER L D, DAURA X, VAN GUNSTEREN W F. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase [J]. Journal of Computational Chemistry, 2001, 22:1205-1218.
    [69] VAN GUNSTEREN W F, BILLETER S R, EISING A A, et al. Biomolecular Simulation: The GROMOS96 Manual and User Guide [M]. Zürich, Groningen: Hochschulverlag AG an der ETH Zürich and BIOMOSb.v., 1996.
    [70] OTT K-H, MEYER B. Parametrization of GROMOS force field for oligosaccharides and assessment of efficiency of molecular dynamics simulations [J]. Journal of Computational Chemistry, 1996, 17:1068-1084.
    [71] ANDREWS D H. The Relation Between the Raman Spectra and the Structure of Organic Molecules [J]. Physical Review, 1930, 36:544-554.
    [72] HILL T L. On Steric Effects [J]. The Journal of Chemical Physics, 1946, 14:465-465.
    [73] WESTHEIMER F H, MAYER J E. The Theory of the Racemization of Optically Active Derivatives of Diphenyl [J]. The Journal of Chemical Physics, 1946, 14:733-738.
    [74] WESTHEIMER F H. Steric Effect in Organic Chemistry [M]. New York: John Wiley and sons, 1956.
    [75] HENDRICKSON J B. Molecular Geometry. I. Machine Computation of the Common Rings [J]. Journal of the American Chemical Society, 1961, 83:4537-4547.
    [76] ALLINGER N L, MILLER M A, VAN CATLEDGE F A, et al. Conformational analysis. LVII. The calculation of the conformational structures of hydrocarbons by the Westheimer-Hendrickson-Wiberg method [J]. Journal of the American Chemical Society, 1967, 89:4345-4357.
    [77] LIFSON S, WARSHEL A. Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules [J]. The Journal of Chemical Physics, 1968, 49:5116-5129.
    [78] BURKERT U, ALLINGER N L. Molecular Mechanics [M]. Washington D.C: American Chemical Society, 1982.
    [79] LEVITT M, LIFSON S. Refinement of Protein Conformations Using a Macromolecular Energy Minimization Procedure [J]. Journal of Molecular Biology, 1969, 46:269-279.
    [80] FLETCHER R, REEVES C M. Function minimization by conjugate gradients [J]. Comput. J., 1964, 7:149-154.
    [81] FLECHER R. Practical Methods of Optimization [M]. New York: John Wiley & Sons, 1980.
    [82] POWELL M J D. Restart procedures for the conjugate gradient method [J]. Mathematical Programming, 1977, 12:241-254.
    [83] VAN GUNSTEREN W F, KARPLUS M. A method for constrained energy minimization of macromolecules [J]. Journal of Computational Chemistry, 1980, 1:266-274.
    [84] SHANNO D F. Conditioning of quasi-Newton methods for function minimization [J]. Math. Comput., 1970, 24:647-656.
    [85] BROYDEN C G. The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm [J]. J. Int. Math. Appl., 1970, 6:222-231.
    [86] GOLDFARB D A. A family of variable metric methods derived by variational means [J]. Math. Comput., 1970, 24:23-36.
    [87] FLETCHER R. A new approach to variable metric algorithms [J]. The Computer Journal, 1970, 13:317-322.
    [88] ALDER B J, WAINWRIGHT T E. Phase Transition for a Hard Sphere System [J]. The Journal of Chemical Physics, 1957, 27:1208-1209.
    [89] FERMI E. Collected Papers [M]. Chicago: University of Chicago Press, 1965.
    [90] ALDER B J, WAINWRIGHT T E. Studies in Molecular Dynamics. I. General Method [J]. The Journal of Chemical Physics, 1959, 31:459-466.
    [91] RAHMAN A. Correlations in the Motion of Atoms in Liquid Argon [J]. Physical Review, 1964, 136:A405-A411.
    [92] VERLET L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules [J]. Physical Review, 1967, 159:98-103.
    [93] ZHONG Q F, JIANG Q, MOORE P B, et al. Molecular dynamics simulation of a synthetic ion channel [J]. Biophysical Journal, 1998, 74:3-10.
    [94] ZHONG Q, MOORE P B, NEWNS D M, et al. Molecular dynamics study of the LS3 voltage-gated ion channel [J]. Febs Letters, 1998, 427:267-270.
    [95] DUAN Y, KOLLMAN P A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution [J]. Science, 1998, 282:740-744.
    [96] MI H, TUCKERMAN M E, SCHUSTER D I, et al. A molecular dynamics study of HIV-1 protease complexes with C60 and fullerene-based anti-viral agents [J]. Proc.Electrochem. Soc., 1999, 99:256-269.
    [97] ALLEN M P, TILDESLEY D J. Computer Simulation of Liquids [M]. New York: Clarendon Press, 1987.
    [98] GEAR C W. Numerical Initial Value Problems in Ordinary Differential Equations [M]. Englewood Cliffs, NJ: Prentice-Hall, 1971.
    [99] HOCKNEY R W. The potential calculation and some applications [J]. Methods Comput. Phys., 1970, 9:136-211.
    [100] POTTER D. Computational Physics [M]. New Youk: Wiley, 1972.
    [101] SWOPE W C, ANDERSEN H C, BERENS P H, et al. A computersimulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters [J]. J. Chem. Phys., 1982, 76:637-649.
    [102] WOODCOCK L V. Isothermal molecular dynamics calculations for liquid salts [J]. Chemical Physics Letters, 1971, 10:257-261.
    [103] HAILE J M, GUPTA S. Extensions of the molecular dynamics simulation method. II. Isothermal systems [J]. The Journal of Chemical Physics, 1983, 79:3067-3076.
    [104] VAN SWOL F, WOODCOCK L V, CAPE J N. Melting in two dimensions: Determination of phase transition boundaries [J]. The Journal of Chemical Physics, 1980, 73:913-922.
    [105] BROUGHTON J Q, GILMER G H, WEEKS J D. Constant pressure molecular dynamics simulations of the 2D r[sup - 12] system: Comparison with isochores and isotherms [J]. The Journal of Chemical Physics, 1981, 75:5128-5132.
    [106] BROWN D, CLARKE J H R. A comparison of constant energy, constant temperature and constant pressure ensembles in molecular dynamics simulations of atomic liquids [J]. Molecular Physics, 1984, 51:1243-1252.
    [107] ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature [J]. The Journal of Chemical Physics, 1980, 72:2384-2393.
    [108] HAILE J M, GRABEN H W. Molecular dynamics simulations extended to various ensembles. I. Equilibrium properties in the isoenthalpic--isobaric ensemble [J]. The Journal of Chemical Physics, 1980, 73:2412-2419.
    [109] BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath [J]. J. Chem. Phys.,1984, 81:3684-3690.
    [110] BROWN D, CLARKE J H R. Molecular dynamics computer simulation of polymer fiber microstructure [J]. The Journal of Chemical Physics, 1986, 84:2858-2865.
    [111] NOSE S. A unified formulation of the constant temperature molecular dynamics methods [J]. The Journal of Chemical Physics, 1984, 81:511-519.
    [112] HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions [J]. Physical Review A, 1985, 31:1695-1697.
    [113]徐筱杰,侯廷军,乔学斌, et al.计算机辅助药物分子设计[M].北京:化学工业出版社, 2004.
    [114] FIELD M J, BASH P A, KARPLUS M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations [J]. Journal of Computational Chemistry, 1990, 11:700-733.
    [115] GAO J. Hybrid Quantum and Molecular Mechanical Simulations:  An Alternative Avenue to Solvent Effects in Organic Chemistry [J]. Accounts of Chemical Research, 1996, 29:298-305.
    [116] GAO J. Methods and Applications of Combined Quantum Mechanical and Molecular Mechanical Potentials [M]. New York: John Wiley and sons, 2007.
    [117] GAO J, XIA X. A priori evaluation of aqueous polarization effects through Monte Carlo QM-MM simulations [J]. Science, 1992, 258:631-635.
    [118] WARSHEL A, LEVITT M. Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme [J]. Journal of Molecular Biology, 1976, 103:227-249.
    [119] SENN H, THIEL W. QM/MM Methods for Biological Systems [M]. Berlin: Springer Berlin, 2007: 173-290.
    [120] SENN H M, THIEL W. QM/MM studies of enzymes [J]. Current Opinion in Chemical Biology, 2007, 11:182-187.
    [121]莫亦荣, Alhambra C,高加力.量子力学和分子力学组合方法及其应用[J].化学学报, 2000, 58:1504-1510.
    [122]魏凯,刘磊,李晓松, et al.量子力学和分子力学联用方法[J].化学物理学报, 2005, 18:641-650.
    [123] LEVITT M. Energy refinement of hen egg-white lysozyme [J]. Journal of Molecular Biology, 1974, 82:393-420.
    [124] SINGH U C, Kollman P A. A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl + Cl- exchange reaction and gas phase protonation of polyethers [J]. Journal of Computational Chemistry, 1986, 7:718-730.
    [125] MASERAS F, MOROKUMA K. IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states [J]. Journal of Computational Chemistry, 1995, 16:1170-1179.
    [126] HUMBEL S, SIEBER S, MOROKUMA K. The IMOMO method: Integration of different levels of molecular orbital approximations for geometry optimization of large systems: Test for n-butane conformation and SN2 reaction: RCl+Cl - [J]. The Journal of Chemical Physics, 1996, 105:1959-1967.
    [127] SVENSSON M, HUMBEL S, FROESE R D J, et al. ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizationsand Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition [J]. The Journal of Physical Chemistry, 1996, 100:19357-19363.
    [128] MAPLE J R, HWANG M J, STOCKFISCH T P, et al. Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules [J]. Journal of Computational Chemistry, 1994, 15:162-182.
    [129] GAO J, AMARA P, ALHAMBRA C, et al. A Generalized Hybrid Orbital (GHO) Method for the Treatment of Boundary Atoms in Combined QM/MM Calculations [J]. The Journal of Physical Chemistry A, 1998, 102:4714-4721.
    [130] ZHANG Y, LEE T S, YANG W. A pseudobond approach to combining quantum mechanical and molecular mechanical methods [J]. The Journal of Chemical Physics, 1999, 110:46-54.
    [131] CAR R, PARRINELLO M. Unified Approach for Molecular Dynamics and Density-Functional Theory [J]. Physical Review Letters, 1985, 55:2471-2474.
    [132] BUDA F. Density Functional Theory and Car-Parrinello Molecular Dynamics Methods [M]. Netherlands: Springer Netherlands, 2008: 487-499.
    [133] VON LILIENFELD O A, TAVERNELLI I, ROTHLISBERGER U, et al. Optimization of Effective Atom Centered Potentials for London Dispersion Forces in Density Functional Theory [J]. Physical Review Letters, 2004, 93:153004.
    [134] BISWAS P K, GOGONEA V. A regularized and renormalized electrostatic coupling Hamiltonian for hybrid quantum mechanical-molecularmechanical calculations [J]. The Journal of Chemical Physics, 2005, 123:164114-164119.
    [135] LAIO A, VANDEVONDELE J, ROTHLISBERGER U. A Hamiltonian electrostatic coupling scheme for hybrid Car--Parrinello molecular dynamics simulations [J]. The Journal of Chemical Physics, 2002, 116:6941-6947.
    [136] SEARLE M S, WILLIAMS D H, GERHARD U. Partitioning of free energy contributions in the estimation of binding constants: residual motions and consequences for amide-amide hydrogen bond strengths [J]. Journal of the American Chemical Society, 1992, 114:10697-10704.
    [137] WILLIAMS D H, SEARLE M S, MACKAY J P, et al. Toward an estimation of binding constants in aqueous solution: studies of associations of vancomycin group antibiotics [J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90:1172-1178.
    [138] HEAD R D, SMYTHE M L, OPREA T I, et al. VALIDATE: A New Method for the Receptor-Based Prediction of Binding Affinities of Novel Ligands [J]. Journal of the American Chemical Society, 1996, 118:3959-3969.
    [139] KRYSTEK S, STOUCH T, NOVOTNY J. Affinity and Specificity of Serine Endopeptidase-Protein Inhibitor Interactions: Empirical Free Energy Calculations Based on X-ray Crystallographic Structures [J]. Journal of Molecular Biology, 1993, 234:661-679.
    [140] SHOICHET B K, KUNTZ I D. Protein docking and complementarity [J]. Journal of Molecular Biology, 1991, 221:327-346.
    [141] VAN GUNSTEREN W F. The Role of Computer-Simulation Techniques in Protein Engineering [J]. Protein Engineering, 1988, 2:5-13.
    [142] JORGENSEN W L. Free energy calculations: a breakthrough for modeling organic chemistry in solution [J]. Accounts of Chemical Research, 1989, 22:184-189.
    [143] KOLLMAN P. Free energy calculations: Applications to chemical and biochemical phenomena [J]. Chemical Reviews, 1993, 93:2395-2417.
    [144] PEARLMAN D A, KOLLMAN P A. The lag between the Hamiltonian and the system configuration in free energy perturbation calculations [J]. The Journal of Chemical Physics, 1989, 91:7831-7839.
    [145] PEARLMAN D A, KOLLMAN P A. The overlooked bond-stretching contribution in free energy perturbation calculations [J]. The Journal of Chemical Physics, 1991, 94:4532-4545.
    [146] PEARLMAN D A. Free energy derivatives: A new method for probing the convergence problem in free energy calculations [J]. Journal of Computational Chemistry, 1994, 15:105-123.
    [147] RADMER R J, KOLLMAN P A. Free energy calculation methods: A theoretical and empirical comparison of numerical errors and a new method qualitative estimates of free energy changes [J]. Journal of Computational Chemistry, 1997, 18:902-919.
    [148] STJERNSCHANTZ E, MARELIUS J, MEDINA C, et al. Are automated molecular dynamics simulations and binding free energy calculations realistic tools in lead optimization? An evaluation of the linear interaction energy (LIE) method [J]. Journal of Chemical Information and Modeling, 2006, 46:1972-1983.
    [149] WALL I D, LEACH A R, SALT D W, et al. Binding constants of neuraminidase inhibitors: An investigation of the linear interaction energy method [J]. Journal of Medicinal Chemistry, 1999, 42:5142-5152.
    [150] HANSSON T, MARELIUS J, AQVIST J. Ligand binding affinity prediction by linear interaction energy methods [J]. Journal of Computer-Aided Molecular Design, 1998, 12:27-35.
    [151] DE AMORIM H L N, CACERES R A, NETZ P A. Linear Interaction Energy (LIE) Method in Lead Discovery and Optimization [J]. Current Drug Targets, 2008, 9:1100-1105.
    [152] AQVIST J, MARELIUS J. The linear interaction energy method for predicting ligand binding free energies [J]. Combinatorial Chemistry & High Throughput Screening, 2001, 4:613-626.
    [153] WANG W, WANG J, KOLLMAN P A. What determines the van der Waals coefficient beta in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations? [J]. Proteins: Structure Function and Genetics, 1999, 34:395-402.
    [154] SRINIVASAN J, CHEATHAM T E, CIEPLAK P, et al. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA Helices [J]. Journal of the American Chemical Society, 1998, 120:9401-9409.
    [155] VOROBJEV Y N, ALMAGRO J C, HERMANS J. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model [J]. Proteins: Structure, Function, and Genetics, 1998, 32:399-413.
    [156] JAYARAM B, SPROUS D, YOUNG M A, et al. Free Energy Analysis of the Conformational Preferences of A and B Forms of DNA in Solution [J]. Journal of the American Chemical Society, 1998, 120:10629-10633.
    [157]侯廷军,徐筱杰.基于分子动力学模拟和连续介质模型的自由能计算方法[J].化学进展, 2004, 16:153-158.
    [158] HONIG B, NICHOLLS A. Classical electrostatics in biology and chemistry [J]. Science, 1995, 268:1144-1149.
    [159] HECHT J L, HONIG B, SHIN Y K, et al. Electrostatic Potentials near the Surface of DNA: Comparing Theory and Experiment [J]. The Journal of Physical Chemistry, 1995, 99:7782-7786.
    [160] SANNER M F, OLSON A J, SPEHNER J C. Reduced surface: An efficient way to compute molecular surfaces [J]. Biopolymers, 1996, 38:305-320.
    [161] WILSON E B, DECIUS J C, CROSS P C. Molecular Vibrations [M]. New York: McGraw-Hill, 1955.
    [162] TIDOR B, KARPLUS M. The Contribution of Vibrational Entropy to Molecular Association: the Dimerization of Insulin [J]. Journal of Molecular Biology, 1994, 238:405-414.
    [163] ANDRICIOAEI I, KARPLUS M. On the calculation of entropy from covariance matrices of the atomic fluctuations [J]. The Journal of Chemical Physics, 2001, 115:6289-6292.
    [164] GARCIA A E. Large-amplitude nonlinear motions in proteins [J]. Physical Review Letters, 1992, 68:2696-2699.
    [165] AMADEI A, LINSSEN A B M, BERENDSEN H J C. Essential Dynamics of Proteins [J]. Proteins: Structure Function and Genetics, 1993, 17:412-425.
    [166] VAN AALTEN D M F, AMADEI A, LINSSEN A B M, et al. The essential dynamics of thermolysin: Confirmation of the hinge-bending motion and comparison of simulations in vacuum and water [J]. Proteins: Structure, Function, and Genetics, 1995, 22:45-54.
    [167] DE GROOT B L, HAYWARD S, VAN AALTEN D M F, et al. Domain motions in bacteriophage T4 lysozyme: A comparison between moleculardynamics and crystallographic data [J]. Proteins: Structure, Function, and Genetics, 1998, 31:116-127.
    [168] VAN AALTEN D M F, CONN D A, DE GROOT B L, et al. Protein dynamics derived from clusters of crystal structures [J]. Biophysical Journal, 1997, 73:2891-2896.
    [169] ABSEHER R, HORSTINK L, HILBERS C W, et al. Essential spaces defined by NMR structure ensembles and molecular dynamics simulation show significant overlap [J]. Proteins: Structure, Function, and Genetics, 1998, 31:370-382.
    [170] DE GROOT B L, VAN AALTEN D M F, SCHEEK R M, et al. Prediction of protein conformational freedom from distance constraints [J]. Proteins: Structure, Function, and Genetics, 1997, 29:240-251.
    [171] NIWA R, NAGATA-OHASHI K, TAKEICHI M, et al. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin [J]. Cell, 2002, 108:233-246.
    [172] BAMBURG J R. Proteins of the ADF/cofilin family: Essential regulators of actin dynamics [J]. Annual Review of Cell and Developmental Biology, 1999, 15:185-230.
    [173] HUANG T Y, DERMARDIROSSIAN C, BOKOCH G M. Cofilin phosphatases and regulation of actin dynamics [J]. Current Opinion in Cell Biology, 2006, 18:26-31.
    [174] NISHITA M, TOMIZAWA C, YAMAMOTO M, et al. Spatial and temporal regulation of cofilin activity by LIM kinase and Slingshot is critical for directional cell migration [J]. Journal of Cell Biology, 2005, 171:349-359.
    [175] SOOSAIRAJAH J, MAITI S, WIGGAN O, et al. Interplay between components of a novel LIM kinase-slingshot phosphatase complexregulates cofilin [J]. Embo Journal, 2005, 24:473-486.
    [176] GORBATYUK V Y, NOSWORTHY N J, ROBSON S A, et al. Mapping the phosphoinositide-binding site on chick cofilin explains how PIP2 regulates the cofilin-actin interaction [J]. Molecular Cell, 2006, 24:511-522.
    [177] JOVCEVA E, LARSEN M R, WATERFIELD M D, et al. Dynamic cofilin phosphorylation in the control of lamellipodial actin homeostasis [J]. Journal of Cell Science, 2007, 120:1888-1897.
    [178] WEN Z X, HAN L, BAMBURG J R, et al. BMP gradients steer nerve growth cones by a balancing act of LIM kinase and Slingshot phosphatase on ADF/cofilin [J]. Journal of Cell Biology, 2007, 178:107-119.
    [179] POPE B J, GONSIOR S M, YEOH S, et al. Uncoupling actin filament fragmentation by cofilin from increased subunit turnover [J]. Journal of Molecular Biology, 2000, 298:649-661.
    [180] SARMIERE P D, BAMBURG J R. Regulation of the neuronal actin cytoskeleton by ADF/cofilin [J]. J Neurobiol, 2004, 58:103-117.
    [181] JUNG S K, JEONG D G, YOON T S, et al. Crystal structure of human slingshot phosphatase 2 [J]. Proteins-Structure Function and Bioinformatics, 2007, 68:408-412.
    [182] POPE B J, ZIERLER-GOULD K M, KUHNE R, et al. Solution structure of human cofilin: Actin binding, pH sensitivity, and relationship to actin-depolymerizing factor [J]. Journal of Biological Chemistry, 2004, 279:4840-4848.
    [183] FEDOROV A A, LAPPALAINEN P, FEDOROV E V, et al. Structure determination of yeast cofilin [J]. Nat. Struct. Biol., 1997, 4:366-369.
    [184] ANDRIANANTOANDRO E, POLLARD T D. Mechanism of actinfilament turnover by severing and nucleation at different concentrations of ADF/cofilin [J]. Molecular Cell, 2006, 24:13-23.
    [185] CHONG L T, DUAN Y, WANG L, et al. Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7 [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96:14330-14335.
    [186] REYES C M, KOLLMAN P A. Structure and thermodynamics of RNA-protein binding: Using molecular dynamics and free energy analyses to calculate the free energies of binding and conformational change [J]. Journal of Molecular Biology, 2000, 297:1145-1158.
    [187] KORMOS B L, BENITEX Y, BARANGER A M, et al. Affinity and specificity of protein U1A-RNA complex formation based on an additive component free energy model [J]. Journal of Molecular Biology, 2007, 371:1405-1419.
    [188] POSOCCO P, FERRONE M, FERMEGLIA M, et al. Binding at the core. Computational study of structural and ligand binding properties of naphthyridine-based dendrimers [J]. Macromolecules, 2007, 40:2257-2266.
    [189] LAITINEN T, KANKARE J A, PERAKYLA M. Free energy simulations and MM-PBSA analyses on the affinity and specificity of steroid binding to antiestradiol antibody [J]. Proteins-Structure Function and Bioinformatics, 2004, 55:34-43.
    [190] MASSOVA I, KOLLMAN P A. Computational alanine scanning to probe protein-protein interactions: A novel approach to evaluate binding free energies [J]. Journal of the American Chemical Society, 1999, 121:8133-8143.
    [191] LUO C, XU L F, ZHENG S X, et al. Computational analysis of molecularbasis of 1 : 1 interactions of NRG-1 beta wild-type and variants with ErbB3 and ErbB4 [J]. Proteins-Structure Function and Bioinformatics, 2005, 59:742-756.
    [192] DE GRANDIS V, BIZZARRI A R, CANNISTRARO S. Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin [J]. Journal of Molecular Recognition, 2007, 20:215-226.
    [193] GUEX N, PEITSCH M C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling [J]. Electrophoresis, 1997, 18:2714-2723.
    [194] GABB H A, JACKSON R M, STERNBERG M J E. Modelling protein docking using shape complementarity, electrostatics and biochemical information [J]. Journal of Molecular Biology, 1997, 272:106-120.
    [195] BERENDSEN H J C, VAN DER SPOEL D, VAN DRUNEN R. GROMACS: a message-passing parallel molecular dynamics implementation [J]. Comput. Phys. Comm., 1995, 91:43-56.
    [196] LINDAHL E, HESS B, VAN DER SPOEL D. GROMACS 3.0: a package for molecular simulation and trajectory analysis [J]. Journal of Molecular Modeling, 2001, 7:306-317.
    [197] HANSSON T, NORDLUND P, ?QVIST J. Energetics of nucleophile activation in a protein tyrosine phosphatase [J]. Journal of Molecular Biology, 1996, 265:118-127.
    [198] BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Interaction models for water in relation to protein hydration[M]. Dordrecht: Reidel Publishing Company, 1981: 331-342.
    [199] DARDEN T, YORK D, PEDERSEN L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems [J]. J. Chem. Phys., 1993,98:10089-10092.
    [200] ESSMANN U, PERERA L, BERKOWITZ M L, et al. A smooth particle mesh ewald potential [J]. J. Chem. Phys., 1995, 103:8577-8592.
    [201] HESS B, BEKKER H, BERENDSEN H J C, et al. LINCS: a linear constraint solver for molecular simulations [J]. J. Comput. Chem., 1997, 18:1463-1472.
    [202] GANOTH A, FRIEDMAN R, NACHLIEL E, et al. A molecular dynamics study and free energy analysis of complexes between the Mlc1p protein and two IQ motif peptides [J]. Biophysical Journal, 2006, 91:2436-2450.
    [203] BASDEVANT N, WEINSTEIN H, CERUSO M. Thermodynamic basis for promiscuity and selectivity in protein-protein interactions: PDZ domains, a case study [J]. Journal of the American Chemical Society, 2006, 128:12766-12777.
    [204] GOHLKE H, KIEL C, CASE D A. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RaIGDS complexes [J]. Journal of Molecular Biology, 2003, 330:891-913.
    [205] GOHLKE H, CASE D A. Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf [J]. Journal of Computational Chemistry, 2004, 25:238-250.
    [206] BAKER N A, SEPT D, JOSEPH S, et al. Electrostatics of nanosystems: Application to microtubules and the ribosome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98:10037-10041.
    [207] SHARP K A, HONIG B. Electrostatic interactions in macromolecules: theory and applications [J]. Annu. Rev. Biophys. Biohys. Chem., 1990,19:301-332.
    [208] SITKOFF D, SHARP K A, HONIG B. Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models [J]. J. Phys. Chem., 1994, 98:1978-1988.
    [209] SCHAFER H, MARK A E, VAN GUNSTEREN W F. Absolute entropies from molecular dynamics simulation trajectories [J]. J. Chem. Phys., 2000, 113:7809-7817.
    [210] SHEINERMAN F B, HONIG B. On the Role of Electrostatic Interactions in the Design of Protein-Protein Interfaces [J]. Journal of Molecular Biology, 2002, 318:161-177.
    [211] WANG W, KOLLMAN P A. Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model [J]. Journal of Molecular Biology, 2000, 303:567-582.
    [212] WANG W, KOLLMAN P A. Computational study of protein specificity: The molecular basis of HIV-1 protease drug resistance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98:14937-14942.
    [213] HESS B. Similarities between principal components of protein dynamics and random diffusion [J]. Physical Review E, 2000, 62:8438-8448.
    [214] HESS B. Convergence of sampling in protein simulations [J]. Physical Review E, 2002, 65:031910.
    [215] YUVANIYAMA J, DENU J M, DIXON J E, et al. Crystal structure of the dual specificity protein phosphatase VHR [J]. Science, 1996, 272:1328-1331.
    [216] STEWART A E, DOWD S, KEYSE S M, et al. Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulatedactivation [J]. Nature Structural Biology, 1999, 6:174-181.
    [217] GRAY C H, GOOD V M, TONKS N K, et al. The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase [J]. Embo Journal, 2003, 22:3524-3535.
    [218] JEONG D G, KIM S J, KIM J H, et al. Trimeric structure of PRL-1 phosphatase reveals an active enzyme conformation and regulation mechanisms [J]. Journal of Molecular Biology, 2005, 345:401-413.
    [219] BEGLEY M J, TAYLOR G S, KIM S A, et al. Crystal structure of a phosphoinositide phosphatase, MTMR2: Insights into myotubular myopathy and Charcot-Marie-Tooth syndrome [J]. Molecular Cell, 2003, 12:1391-1402.
    [220] WALLACE A C, LASKOWSKI R A, THORNTON J M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions [J]. Protein Eng., 1995, 8:127-134.
    [221] BOULTON T G, NYE S H, ROBBINS D J, et al. ERKs: a Family of Protein-Serine/Threonine Kinases That Are Activated and Tyrosine Phosphorylated in Response to Insulin and NGF [J]. Cell, 1991, 65:663-675.
    [222] BOULTON T G, YANCOPOULOS G D, GREGORY J S, et al. An Insulin-Stimulated Protein-Kinase Similar to Yeast Kinases Involved in Cell-Cycle Control [J]. Science, 1990, 249:64-67.
    [223] CHEN Z, GIBSON T B, ROBINSON F, et al. MAP Kinases [J]. Chem. Rev., 2001, 101:2449-2476.
    [224] ANDERSON N G, MALLER J L, TONKS N K, et al. Requirement for Integration of Signals from 2 Distinct Phosphorylation Pathways for Activation of Map Kinase [J]. Nature, 1990, 343:651-653.
    [225] AHN N G, SEGER R, BRATLIEN R L, et al. Multiple components in an epidermal growth factor-stimulated protein kinase cascade. In vitro activation of a myelin basic protein/microtubule-associated protein 2 kinase [J]. J Biol Chem, 1991, 266:4220-4227.
    [226] CREWS C M, ALESSANDRINI A, ERIKSON R L. The Primary Structure of Mek, a Protein-Kinase That Phosphorylates the Erk Gene-Product [J]. Science, 1992, 258:478-480.
    [227] ROBBINS D J, ZHEN E Z, OWAKI H, et al. Regulation and Properties of Extracellular Signal-Regulated Protein Kinase-1 and Kinase-2 Invitro [J]. Journal of Biological Chemistry, 1993, 268:5097-5106.
    [228] SEGER R, KREBS E G. The Mapk Signaling Cascade [J]. Faseb Journal, 1995, 9:726-735.
    [229] MOODIE S A, WILLUMSEN B M, WEBER M J, et al. Complexes of Ras.Gtp with Raf-1 and Mitogen-Activated Protein-Kinase Kinase [J]. Science, 1993, 260:1658-1661.
    [230] FREY R S, MULDER K M. Involvement of extracellular signal-regulated kinase 2 and stress-activated protein kinase Jun N-terminal kinase activation by transforming growth factor beta in the negative growth control of breast cancer cells [J]. Cancer Research, 1997, 57:628-633.
    [231] SIVARAMAN V S, WANG H Y, NUOVO G J, et al. Hyperexpression of mitogen-activated protein kinase in human breast cancer [J]. Journal of Clinical Investigation, 1997, 99:1478-1483.
    [232] OHORI M, KINOSHITA T, OKUBO M, et al. Identification of a selective ERK inhibitor and structural determination of the inhibitor-ERK2 complex [J]. Biochemical and Biophysical Research Communications, 2005, 336:357-363.
    [233] RICCIARDI M R, SCERPA M C, CIUFFREDA L, et al. Effective targeting of MEK/ERK signalling at nanomolar concentrations by the novel small molecule inhibitor PD0325901 in hematopoietic and solid tumors [J]. Blood, 2005, 106:942A-942A.
    [234] ZELIVIANSKI S, SPELLMAN M, KELLERMAN M, et al. Erk inhibitor PD98059 enhances docetaxel-induced apoptosis of androgen-independent human prostate cancer cells [J]. International Journal of Cancer, 2003, 107:478-485.
    [235] KINOSHITA T, WARIZAYA M, OHORI M, et al. Crystal structure of human ERK2 complexed with a pyrazolo[3,4-c]pyridazine derivative [J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16:55-58.
    [236] GREEN J, CAO J, HALE M, et al. Pyrazole compositions useful as inhibitors of ERK: US, WO/2001/057022[P/OL]. http://www.freepatentsonline.com/WO2001057022.html
    [237] TANG Q, MALTAIS F, JANETKA J W, et al. Pyrazole-derived kinase inhibitors and uses thereof: WO/2003/011854[P/OL]. http://www.freepatentsonline.com/WO2003011854.html
    [238] HALE M R, JANETKA J W, MALTAIS F, et al. Pyrazole-derived kinase inhibitors and uses thereof: WO/2003/011855[P/OL]. http://www.freepatentsonline.com/WO2003011855.html
    [239] ARONOV A M, BAKER C, BEMIS G W, et al. Flipped out: Structure-guided design of selective pyrazolylpyrrole ERK inhibitors [J]. Journal of Medicinal Chemistry, 2007, 50:1280-1287.
    [240] WOO H J, ROUX B. Calculation of absolute protein-ligand binding free energy from computer simulations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102:6825-6830.
    [241] SRINIVASAN J, MILLER J, KOLLMAN P A, et al. Continuum solvent studies of the stability of RNA hairpin loops and helices [J]. J Biomol Struct Dyn, 1998, 16:671-682.
    [242] HUO S, WANG J, CIEPLAK P, et al. Molecular Dynamics and Free Energy Analyses of Cathepsin D-Inhibitor Interactions: Insight into Structure-Based Ligand Design [J]. J. Med. Chem., 2002, 45:1412-1419.
    [243] BROWN S P, MUCHMORE S W. Rapid Estimation of Relative Protein-Ligand Binding Affinities Using a High-Throughput Version of MM-PBSA [J]. J. Chem. Inf. Model., 2007, 47:1493-1503.
    [244] BAYLY C I, CIEPLAK P, CORNELL W, et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model [J]. J. Phys. Chem., 1993, 97:10269-10280.
    [245] WANG J M, CIEPLAK P, KOLLMAN P A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? [J]. Journal of Computational Chemistry, 2000, 21:1049-1074.
    [246] JORGENSEN W L, CHANDRASEKHAR J, MADURA J D, et al. Comparison of simple potential functions for simulating liquid water [J]. The Journal of Chemical Physics, 1983, 79:926-935.
    [247] KOLLMAN P A, MASSOVA I, REYES C, et al. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models [J]. Accounts of Chemical Research, 2000, 33:889-897.
    [248] WANG J M, MORIN P, WANG W, et al. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predictingthe binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA [J]. Journal of the American Chemical Society, 2001, 123:5221-5230.
    [249] PAGE C S, BATES P A. Can MM-PBSA calculations predict the specificities of protein kinase inhibitors? [J]. Journal of Computational Chemistry, 2006, 27:1990-2007.
    [250] LEE L P, TIDOR B. Barstar is electrostatically optimized for tight binding to barnase [J]. Nature Structural Biology, 2001, 8:73-76.
    [251] HUGHES P J, ZHAO Y, Chandraratna R A, et al. Retinoid-mediated stimulation of steroid sulfatase activity in myeloid leukemic cell lines requires RAR alpha and RXR and involves the phosphoinositide 3-kinase and ERK-MAP kinase pathways [J]. Journal of Cellular Biochemistry, 2006, 97:327-350.
    [252] PEREIRA C S, KONY D, BARON R, et al. Conformational and Dynamical Properties of Disaccharides in Water: a Molecular Dynamics Study [J]. Biophys. J., 2006, 90:4337-4344.
    [253] AMADEI A, DE GROOT B L, CERUSO M A, et al. A kinetic model for the internal motions of proteins: Diffusion between multiple harmonic wells [J]. Proteins: Structure Function and Genetics, 1999, 35:283-292.
    [254] WANG Z L, CANAGARAJAH B J, BOEHM J C, et al. Structural basis of inhibitor selectivity in MAP kinases [J]. Structure with Folding & Design, 1998, 6:1117-1128.
    [255] SCHULZE-GAHMEN U, BRANDSEN J, JONES H D, et al. Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine [J]. Proteins, 1995, 22:378-391.
    [256] DE AZEVEDO W F, JR., MUELLER-DIECKMANN H J,SCHULZE-GAHMEN U, et al. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase [J]. Proc Natl Acad Sci U S A, 1996, 93:2735-2740.
    [257] MOHAMMADI M, MCMAHON G, SUN L, et al. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors [J]. Science, 1997, 276:955-960.
    [258] ZHANG F M, STRAND A, ROBBINS D, et al. Atomic-Structure of the Map Kinase Erk2 at 2.3-Angstrom Resolution [J]. Nature, 1994, 367:704-711.
    [259] MICHAELS M L, MILLER J H. The Go System Protects Organisms from the Mutagenic Effect of the Spontaneous Lesion 8-Hydroxyguanine (7,8-Dihydro-8-Oxoguanine) [J]. Journal of Bacteriology, 1992, 174:6321-6325.
    [260]郭晓强,杨彩卿. 8-oxoG切除修复机制[J].医学分子生物学杂志, 2006, 3:397-400.
    [261] ELAHI A, ZHENG Z, PARK J, et al. The human OGG1 DNA repair enzyme and its association with orolaryngeal cancer risk [J]. Carcinogenesis, 2002, 23:1229-1234.
    [262] MARNETT L J. Oxyradicals and DNA damage [J]. Carcinogenesis, 2000, 21:361-370.
    [263] GROLLMAN A P, MORIYA M. Mutagenesis by 8-oxoguanine: an enemy within [J]. Trends in Genetics, 1993, 9:246-249.
    [264] AL-TASSAN N, CHMIEL N H, MAYNARD J, et al. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors [J]. Nat Genet, 2002, 30:227-232.
    [265] HAINAUT P, HERNANDEZ T, ROBINSON A, et al. IARC Database ofp53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools [J]. Nucl. Acids Res., 1998, 26:205-213.
    [266] PAZ-ELIZUR T, KRUPSKY M, BLUMENSTEIN S, et al. DNA Repair Activity for Oxidative Damage and Risk of Lung Cancer [J]. J. Natl. Cancer Inst., 2003, 95:1312-1319.
    [267] CHRISTMANN M, TOMICIC M T, ROOS W P, et al. Mechanisms of human DNA repair: an update [J]. Toxicology, 2003, 193:3-34.
    [268] SCH?RER O D, JIRICNY J. Recent progress in the biology, chemistry and structural biology of DNA glycosylases [J]. BioEssays, 2001, 23:270-281.
    [269] HOLLIS T, LAU A, ELLENBERGER T, et al. Crystallizing thoughts about DNA base excision repair [M]. Academic Press, 2001: 305-314.
    [270] MCCULLOUGH A K, DODSON M L, LLOYD R S. INITIATION OF BASE EXCISION REPAIR: Glycosylase Mechanisms and Structures [J]. Annual Review of Biochemistry, 1999, 68:255-285.
    [271] STIVERS J T, JIANG Y L. A Mechanistic Perspective on the Chemistry of DNA Repair Glycosylases [J]. Chemical Reviews, 2003, 103:2729-2760.
    [272] FROMME J C, BANERJEE A, VERDINE G L. DNA glycosylase recognition and catalysis [J]. Current Opinion in Structural Biology, 2004, 14:43-49.
    [273] NASH H M, BRUNER S D, SCH?RER O D, et al. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily [J]. Current Biology, 1996, 6:968-980.
    [274] LABAHN J, SCH?RER O D, LONG A, et al. Structural Basis for the Excision Repair of Alkylation-Damaged DNA [J]. Cell, 1996, 86:321-329.
    [275] THAYER M M, AHERN H, XING D, et al. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure [J]. EMBO J, 1995, 14:4108-4120.
    [276] BRUNER S D, NORMAN D P G, VERDINE G L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA [J]. Nature, 2000, 403:859-866.
    [277] NORMAN D P G, CHUNG S J, VERDINE G L. Structural and Biochemical Exploration of a Critical Amino Acid in Human 8-Oxoguanine Glycosylase [J]. Biochemistry, 2003, 42:1564-1572.
    [278] NORMAN D P G, BRUNER S D, VERDINE G L. Coupling of Substrate Recognition and Catalysis by a Human Base-Excision DNA Repair Protein [J]. Journal of the American Chemical Society, 2001, 123:359-360.
    [279] OSAKABE T, FUJII Y, HATA M, et al. Quantum chemical study on base excision mechanism of 8-oxoguanine DNA glycosylase: Substrate-assisted catalysis of the N-glycosidic linkage cleavage reaction [J]. Chem. Biol. Inf. J., 2004, 4:73-92.
    [280] SCHYMAN P, DANIELSSON J, PINAK M, et al. Theoretical Study of the Human DNA Repair Protein HOGG1 Activity [J]. The Journal of Physical Chemistry A, 2005, 109:1713-1719.
    [281] CALVARESI M, BOTTONI A, GARAVELLI M. Computational Clues for a New Mechanism in the Glycosylase Activity of the Human DNA Repair Protein hOGG1. A Generalized Paradigm for Purine-Repairing Systems? [J]. The Journal of Physical Chemistry B, 2007, 111:6557-6570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700