用户名: 密码: 验证码:
基于链接化学策略的磁纳米粒子的功能化:制备、表征及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,磁纳米粒子由于其自身的超顺磁性能及生物兼容性,受到广大科学工作者的青睐,磁纳米粒子的合成、表征以及应用已成为化学、材料、生物、环境以及医学等领域关注热点。为了提高磁性纳米材料的分散性、水溶性以及赋予磁纳米粒子更多的功能,就必须对材料表面进行功能化修饰。寻找高效、简便、反应条件温和且具有普适性的磁性纳米粒子功能化的策略对于拓展磁性纳米粒子的应用具有举足轻重的作用。2000年诺贝尔化学奖获得者Sharpless教授提出的链接化学反应(click chemistry)为实现上述目标提供了一种新思路。
     本论文就是在链接化学基础上,将磁纳米粒子分别与荧光染料、氧化石墨烯及其抗菌试剂相结合,制备了多种磁性纳米复合材料,并对其性能、应用进行考察。本论文包括以下几个方面:
     第一章绪论
     主要介绍了磁纳米粒子、氧化石墨烯的合成、修饰及其应用进展。同时,对链接化学的特点、基本反应类型及其应用进行了综述。
     第二章罗丹明B修饰磁纳米粒子的制备、表征及其光磁性能
     利用链接化学的策略合成了有机荧光染料修饰的磁性纳米粒子。首先,通过Stober法在磁纳米粒子外包裹上二氧化硅壳,并通过酰胺反应实现了磁纳米粒子的炔基化修饰。其次,利用PEG长链,在EDC/NHS活化下,对有机染料罗丹明B进行了叠氮化修饰,最后,在一价铜催化下,罗丹明B通过1,3环加成反应成功修饰到磁纳米粒子上。实验结果表明,这种方式制备的纳米复合材料展示了稳定的荧光性能及优异的超顺磁性,可以用于荧光成像以及MRI成像。
     第三章杆菌肽修饰磁纳米粒子的制备、表征及其抗菌性能
     利用链接化学合成了杆菌肽-磁纳米粒子,并对其抗菌性能进行了考察。首先,磁纳米粒子采用了亲水性的生物材料聚丙烯酸(PAA)进行修饰,并通过酰胺法的反应使磁纳米粒子修饰上炔基。其次,利用PEG长链在NHS和EDC的活化作用实现了对杆菌肽的叠氮化修饰。最后通过链接反应实现了磁纳米粒子的生物功能化,合成了杆菌肽-磁纳米粒子复合材料。细胞毒性试验表明,即便在较高浓度下,该纳米复合材料对人体纤维的细胞毒性也非常低低。抗菌试验表明,杆菌肽修饰的磁纳米粒子对金黄色葡萄球菌、大肠杆菌以及枯草杆菌均具有良好的抗菌性能,其抗菌性能甚至优于杆菌肽本身。
     第四章基于链接化学策略的石墨烯-磁纳米粒子的制备及其表征
     利用链接化学成功将磁纳米粒子修饰到氧化石墨烯片状结构上。首先,利用一系列化学反应制备了含有叠氮基的有机磷试剂并利用磁性纳米粒子对磷酸基团的特异性结合能力,通过超声和溶剂效应将其修饰到磁纳米粒子表面,制备了叠氮化的磁纳米粒子。其次,通过酰氯化和取代反应,对氧化石墨烯进行了炔基化修饰。最后,在一价铜的催化下,首次通过链接化学制备了GO/Fe3O4纳米复合材料。该材料具有良好的水溶性和超顺磁性,有望应用于生物医学及环境污水处理。
     第五章聚丙烯酸修饰石墨烯-磁纳米粒子的制备、表征及其对重金属离子的捕获研究
     通过超声反应,制备了PAA/GO/Fe3O4纳米粒子,并将其应用于污水中有毒重金属离子的捕获。考察了pH、纳米复合材料的量以及温度等因素影响下,PAA/GO/Fe3O4纳米复合材料对Cd2+、Pb2+和Cu2+离子三种离子的捕获效果的影响。实验结果表明,在优化的实验条件下,PAA/GO/Fe3O4纳米复合材料对Cd2+、Pb2+和Cu2+离子三种离子的捕获效率分别为90%、95%及89%。同时,循环捕获实验结果表明,该纳米复合材料具有良好的循环使用效果,循环使用5次后,对重金属离子的捕获效率仍可达到80%以上。
     第六章万古霉素修饰石墨烯-磁纳米粒子的制备、表征及其抗菌性能研究
     通过酰胺化反应,进一步对GO/Fe3O4纳米复合材料进行功能化修饰制备了万古霉素修饰的磁性纳米复合材料,并对其抗菌性和细胞毒性进行了全面的考察。通过革兰氏阳性菌枯草杆菌和革兰氏阴性菌大肠杆菌的抑菌试验结果发现,修饰了万古霉素的GO/Fe3O4纳米纳米复合材料比万古霉素具有更优的抗菌性能,其在大肠杆菌和枯草杆菌中最低抑菌浓度(MIC)值分别低达3.9和2.μg/mL。
Recently, magnetic nanoparticles have attracted attention because of their superparamagnetic and the biocompatibility. The synthesis, characterization and application of magnetic nanoparticles have been the focus of many fields, such as chemistry, material, biology, environment and medicine. To meet the demand for the rapid development and potential application, the magnetic nanoparticles with tailored structural and appropriate surface chemistry are very important to improve their dispersivity, solubility and function. Thus, the efficient, simple and general strategy for functionalization of magnetic nanoparticles is very necessary for expanding their applications. Click chemistry, which was developed by Professor Sharpless, the winner of Nobel Prize in Chemistry2001, is a good choice for the functionalization of magnetic nanoparticles because of its mild reaction condition, excellent chemoselectivity, high yields and a great degree of solvent and pH insensitivity.
     In this work, the magnetic nanoparticles were functionalized with fluorescent dyes, graphene oxide or anti-bacterial reagents, respectively via click reaction, and various magnetic nanocomposites were achieved. The characterizations and applications of these magnetic nanocomposites were investigated. The content of this doctoral thesis was listed as following.
     Chapter1:Preface
     The synthesis, modification and application of magnetic nanoparticles, as well as the graphene oxide, have been reviewed. The characteristics, reaction types and the application of click chemistry were also introduced.
     Chapter2:Rhodamine-B decorated superparamagnetic iron oxide nanoparticles: preparation, characterization and their optical/magnetic properties
     This chapter reports on covalent clicking of rhodamine-B (RhB) bearing a terminal azide group to alkyne-terminated silica coated superparamagnetic iron oxide nanoparticles via the copper (I)-catalyzed Huisgen azide-alkyne1,3-dipolar cycloaddition (CuAAC) reaction. The course of the reaction was followed the usage of powder X-ray diffractometry (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, fluorescopy, and magnetics. The RhB labelled Fe3O4@SiO2nanoparticles exhibit stable fluorescence and no detectable leakage of the fluorescent dye because the resulting1,4-disubstituted1,2,3-triazole ring formed via click reaction is thermally stable and relatively inert to hydrolysis, oxidation, and reduction. Due to the superparamagnetic property of the Fe3O4and the RhB molecule covalently decorated in the Fe3O4@SiO2framework, the nanoparticles are endowed with properties of a contrast agent in magnetic resonance imaging (MRI) and optical imaging modality. The cytotoxicity tests indicate the bifunctional nanoparticles could be applied in biomedical or bioengineering field.
     Chapter3:Bacitracin peptide conjugated superparamagnetic iron oxide nanoparticles:synthesis, characterization and antibacterial activity
     In this work, bacitracin peptide conjugated superparamagnetic iron oxide nanoparticles have been prepared via click chemistry and the biocidal activity is investigated. First, water-soluble iron oxide (Fe3O4) nanoparticles were synthesized by coating iron oxide nanoparticles with a hydrophilic, biocompatible polymer, poly (acrylic acid)(PAA), through the carbodiimide reaction, obtained the propargylated Fe3O4/PAA nanoparticles. Then, through the PEG and carbodiimide reaction, N3-bacitracin was obtained. Finally, by click chemistry, the magnetic nanoparticles successfully achieved biofunctionalized, the bacitracin/Fe3O4nanocomposites were prepared. Cell cytotoxicity test indicates that the bacitracin peptide conjugated Fe3O4nanoparticles incubated with human fibroblasts cells show very low cytotoxicity even at relatively high concentrations. In view of the antibacterial activity of bacitracin peptide, the biofunctionalized Fe3O4nanoparticles exhibit very excellent antibacterial effect, even higher than that of bacitracin peptide itself.
     Chapter4:Synthesis and characterization of magnetic graphene oxide/nanocomposites
     We report a facile approach to synthesize graphene oxide (GO)/Fe3O4nanocomposites by click chemistry. Firstly, organophosphorus reagent with azide-group was synthesized and grafted onto the surface of magnetic nanoparticles. Then, alkyne-terminated graphene oxide was obtained through the acylation and substitution reaction. Finally, the GO/Fe3O4nanocomposites were prepared by click chemistry for the first time. The nanocomposites show good solubility and superparamagnetic, indicating the potential applications in biomedicine and environmental sewage treatment.
     Chapter5:Preparation of polyacrylic acid/graphene oxide/Fe3O4nanocomposites for recyclable removal of heavy metal ions
     PAA/GO/Fe3O4nanocomposites have been synthesized and used as adsorbents for removal of heavy metal ions from waste water. The effects of pH, the amount of the nanocomposites, temperature, as well as other factors on the efficiency of removal of Cd2+, Pb2+and Cu2+were investigated. The experimental results show that under the optimized experimental conditions, the capture efficiency of PAA/GO/Fe3O4nanocomposites for Cd2+, Pb2+and Cu2+were90%,95%and89%, respectively. In addition, the magnetic nanocomposites can be used as a recyclable tool for removal of heavy metal ions. After5cycles, the capture efficiency of the PAA/GO/Fe3O4nanocomposites for Cd2+, Pb2+and Cu2+ions is still over80%.
     Chapter6:Vancomycin grafted magnetic graphene oxide nanocomposites: synthesis, characterization and antibacterial activity
     Through the amidation reaction, vancomycin was covalently grafted on GO/Fe3O4nanocomposites. The cytotoxic and antimicrobial properties of the nanocomposites were investigated. Cell cytotoxicity test indicates that vancomycin conjugated GO/Fe3O4nanocomposites show very low cytotoxicity even at relatively high concentrations. In addition, the nanocomposites display excellent antibacterial activity for gram-positive bacteria and gram-negative bacteria. Even more, the antibacterial tests also show that the vancomycin conjugated GO/Fe3O4nanocomposites have better antimicrobial properties than that of vancomycin, and its minimum inhibitory concentration for E. coli and B. subtilis are3.9and2.0μg/mL, respectively.
引文
[1]S. Chikazumi, S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, M. Setogawa, Y. Kurihara, J. Magn Magn Mater,65 (1987) 245.
    [2]A. H. Lu, W. Schmidt, N. Matoussevitch, H. B. Pnnermann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schvth, Angew. Chem. Int. Ed.,116 (2004) 4403.
    [3]S. C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett, Angew. Chem. Int. Ed.,116(2004)5763
    [4]A. K. Gupta, M. Gupta, Biomaterials,26 (2005) 3995
    [5]S. Mornet, S. Vasseur, F. Grasset, P. Verveka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Prog. Solid State Chem.,34 (2006) 237.
    [6]Z. Li, L. Wei, M. Y. Gao, H. Lei, Adv. Mater,17 (2005) 1001.
    [7]T. Hyeon, Chem Commun,4 (2003) 927
    [8]D. W. Elliott, W. X. Zhang, Environ. Sci. Technol.,35 (2001) 4922.
    [9]M. Takafuji, S. Ide, H. Ihara, Z. Xu, Chem. Mater.,16 (2004) 1977.
    [10]J. Lee, T. Isobe, M. Senna, Colloids Surf. A,109 (1996) 121.
    [11]A. Bee, R. Massart, S. Neveu, J. Magn. Magn. Mater.,149 (1995) 6.
    [12]M. A. Willard, L. K. Kurihara, E. E. Carpenter, S. Calvin, V. G. Harris, Int. Mater. Rev.,49 (2004) 125.
    [13]B. L. Cushing, V. L. Kolesnichenko, C. J. O'Connor, Chem. Rev.,104 (2004) 3893.
    [14]D. L. Huber, Small,1 (2005) 482.
    [15]D. Farrell, S. A. Majetich, J. P. Wilcoxon, J. Phys. Chem. B,107 (2003) 11022.
    [16]D. Farrell, Y. Cheng, R. W. McCallum, M. Sachan, S. A. Majetich, J. Phys. Chem. B,109(2005) 13409.
    [17]S. Sun, C. B. Murray and H. Doyle, Mater. Res. Soc. Symp. Proc.,577 (1999) 395.
    [18]C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, C. R. Kagan, IBM J. Res. Dev.,45 (2001) 47.
    [19]C. B. Murray, S. Sun, H. Doyle, T. A. Betley, MRS Bull,26 (2001) 985
    [20]S. Sun, C. B. Murray, J. Appl. Phys.,85 (1999) 4325.
    [21]V. F. Puntes, K. M. Krishnan, P. Alivisatos, Appl. Phys. Lett.,78 (2001) 2187
    [22]D. P. Dinega, M. Bawendi, Angew. Chem. Int. Ed.,38 (1999) 1788.
    [23]A. Hutten, D. Sudfeld, I. Ennen, G. Reiss, K. Wojczykowski, P. Jutzi, J. Magn. Magn. Mater,293 (2005) 93.
    [24]S. Peng, C. Wang, J. Xie, S. Sun, J. Am. Chem. Soc.,128 (2006) 10676
    [25]N. Toshima, Macromol. Symp.,235 (2006) 1.
    [26]D. L. Peng, K. Sumiyama, T. Hihara, S. Yamamuro, T. J. Konno, Phys. Rev. B, 61 (2000)3103.
    [27]H. G. Boyen, G. KSstle, K. Zvrn, T. Herzog, F. Weigl, P. Ziemann, O. Mayer, C. Jerome, M. Mpller, J. P. Spatz, M. G. Gamier, P. Oelhafen, Adv. Funct. Mater.,13 (2003) 359.
    [28]H. B. Pnnemann, W. Brijoux, R. Brinkmann, N. Matoussevitch, N. Waldoefner, N. Palina, H. Modrow, Inorg Chim Acta,350 (2003) 617.
    [29]L. Shen, P. E. Laibinis, T. A. Hatton, Langmuir,15 (1999) 447.
    [30]M. H. Sousa, F. A. Tourinho, J. Depeyrot, G. J. da Silva, M. C. F. L. Lara, J. Phys. Chem. B,105 (2001) 1168.
    [31]R. M. Cornell, U. Schertmann, TVCH, Weinheim, (1996) 45
    [32]M. Wan, J. Li, J. Polymer Sci.,36 (1998) 2799.
    [33]M. D. Butterworth, S. A. Bell, S. P. Armes, A.W. Simpson, J. Colloid Interface Sci.,183(1996)91.
    [34]P. Tartaj, M. P. Morales, T. G. Carreno, S. V. Verdaguer, C. J. Serna, J. Magn. Magn. Mater.,28 (2005) 290.
    [35]G. Barratt, Cell. Mol. Life Sci.,60 (2003) 21.
    [36]L. A. Harris, J. D. Goff, A. Y. Carmichael, J. S. Riffle, J. J. Harburn, T. G. St. Pierre, M. Saunders, Chem. Mater.,15 (2003) 1367.
    [37]A. F. Thunemann, D. Schutt, L. Kaufner, U. Pison, H. MPhwald, Langmuir,22 (2006) 2351
    [38]P. A. Dresco, V. S. Zaitsev, R. J. Gambino, B. Chu, Langmuir,15 (1999) 1945.
    [39]C. R. Vestal, Z. J. Zhang, J. Am. Chem. Soc.,124 (2002) 14312
    [40]Y. Wang, X. Teng, J. S. Wang, H. Yang, Nano Lett,3 (2003) 789.
    [41]D. Ma, J. Guan, F. Normandin, S. Denommee, G. Enright, T.Veres, B. Simard, Chem. Mater,18 (2006) 1920.
    [42]W. Stober, A. Fink, E. J. Bohn, J. Colloid Interface Sci.,26 (1968) 62.
    [43]T. Tago, T. Hatsuta, K. Miyajima, M. Kishida, S. Tashiro, K.Wakabayashi, J. Am. Chem. Soc.,85 (2002) 2188.
    [44]M. Ohmori, E. Matijevic, J. Colloid. Interface. Sci.,160 (1993) 288.
    [45]C. Graf, D. L. J. Vossen, A. Imhof, A. Vanblaaderen, Langmuir,19 (2003) 6693.
    [46]A. P. Philipse, M. P. B. van Bruggen, C. Pathmamanoharan, Langmuir,10 (1994) 92.
    [47]A. Ulman, Chem Rev,96 (1996) 1533.
    [48]M. Ohmori, E. Matijevic, J. Colloid Interface Sci,150 (1992) 594.
    [49]M. A. CorreaDuarte, M. Giersig, N. A. Kotov, L. M. Liz Marzxn, Langmuir,14 (1998) 6430.
    [50]Y. Lu, Y. Yin, B. T. Mayers, Y. Xia, Nano Lett,2 (2002) 183.
    [51]Y. Kobayashi, M. Horie, M. Konno, B. Rodriguez Gonzxlez, L. M. Liz-Marzan, J. Phys. Chem. B,107 (2003) 7420.
    [52]W. Zhao, J. Gu, L. Zhang, H. Chen, J. Shi, J. Am. Chem. Soc.,127 (2005) 8916.
    [53]S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebrad, W. Tan, Langmuir,17 (2001) 2900.
    [54]D. K. Yi, S. S. Lee, G. C. Papaefthymiou, J. Y. Ying, Chem. Mater,18 (2006) 614.
    [55]P. Tartaj, C. J. Serna, J. Am. Chem. Soc.,125 (2003) 15754
    [56]C. R. Vestal, Z. J. Zhang, Nano Lett.,3 (2003) 1739
    [57]J. Rivas, R. D. S. Xnchez, A. Fondado, C. Izco, A. J. Garcya-Bastida, J. Garcya-Otero, J. Mira, D. Baldomir, A. Gonzxlez, I. Lado, M. A. Lwpez-Quintela, S. B. Oseroff, J. Appl. Phys.,76 (1994) 6564.
    [58]E. E. Carpenter, C. Sangregorio, C. J. O'Connor, IEEE Trans. Magn,35 (1999) 3496
    [59]J. I. Park, J. Cheon, J. Am. Chem. Soc.123 (2001) 5743.
    [60]Z. Ban, Y. A. Barnakov, F. Li, V. O. Golub, C. J. O'Connor, J. Mater Chem,15 (2005) 4660.
    [61]Y. Shon, G. B. Dawson, M. Porter, R.W. Murray, Langmuir,18 (2002) 3880
    [62]J. L. Lyon, D. A. Fleming, M. B. Stone, P. Schiffer, M. E. Williams, Nano Lett., 4(2004)719.
    [63]S. J. Cho, J. C. Idrobo, J. Olamit, K. Liu, N. D. Browning, S. M. Kauzlarich, Chem. Mater.,17 (2005) 3181.
    [64]H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, S. Sun, Nano Lett.,5 (2005)379
    [65]L. Wang, J. Luo, M. M. Maye, Q. Fan, Q. Rendeng, M. H. Engelhard, C. Wang, Y. Lin, C. J. Zhong, J. Mater. Chem.,15 (2005) 1821.
    [66]D. Caruntu, B. L. Cushing, G. Caruntu, C. J. O'Connor, Chem. Mater.,17 (2005) 3398.
    [67]J. Zhang, M. Post, T. Veres, Z. J. Jakubek, J. Guan, D. Wang, F. Normandin, Y. Deslandes, B. Simard, J. Phys. Chem. B,110 (2006) 7122.
    [68]V. L. Colvin, A. N. Goldstein, A. P. Alivisatos, J. Am. Chem. Soc.,114 (1992) 5221.
    [69]T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, V. Labhasetwar, Mol. Pharm,2 (2005) 194.
    [70]I. Hilger, K. Fruhauf, W. Andra, R. Hiergeist, R. Hergt, W. A. Kaiser, Acad. Radiol,9(2002)198.
    [71]V. K. Singh, M. K. Patra, M. Manoth, G. S. Gowd, S. R. Vadera, N. Kumar, New Carbon Mater.,24 (2009) 147.
    [72]J. Fresnais, E. Ishow, O. Sandre, J. F. Berret, Small,5 (2009) 2533.
    [73]H. Skaat, S. Margel, Biochem. Biophys. Res. Commun.,386 (2009) 645.
    [74]J. Dobson, Drug. Dev. Res.,67 (2006) 55.
    [75]R. He, X. G. You, J. Shao, F. Gao, B. F. Pan, D. X. Cui, Nanotechnology,18 (2007)5601.
    [76]P. Howes, M. Green, A. Bowers, D. Parker, G. Varma, M. Kallumadil, M. Hughes, A. Warley, A. Brain, R.Botnar, J. Am. Chem. Soc.132 (2010) 9833.
    [77]J. E. Lee, N. Lee, H. Kim, J. Kim, S. H.Choi, J. H. Kim, T. Kim, I. C. Song, S.P.Park, W. K. Moon, T. Hyeon, J. Am. Chem. Soc.,132 (2010) 552.
    [78]J. F. Shen, Y. Z. Hu, M. Shi, N. Li, H. W. Ma, M. X. Ye. J. Phys. Chem. C,114 (2010) 1498.
    [79]B. Samanta, D. Patra, C. Subramani,Y. Ofir, G. Yesilbag, A.Sanyal, V.M. Rotello, Small,5 (2009) 685.
    [80]H. W. Gu, P. L. Ho, K. W. T. Tsang, L. Wang, B. Xu, J. Am. Chem. Soc.,125 (2003)15702.
    [81]J. H. Gao, L. Li, P. L. Ho, G. C. Mak, H. W. Gu, B. Xu, Adv. Mater,18 (2006) 3145.
    [82]Z. Saiyed, S. Telang, C. Ramchand, Biomagn. Res. Technol.,1 (2003) 2.
    [83]I. Safarik, M. Safarikova, Biomagn. Res. Technol,2 (2004) 7.
    [84]C. J. Xu, K. M. Xu, H. W. Gu, R. K. Zheng, H. Liu, X. X. Zhang, Z. H. Guo, B. Xu, J. Am. Chem. Soc.,126 (2004) 9938.
    [85]C. J. Xu, K. M. Xu, H. W. Gu, X. F. Zhong, Z. H. Guo, R. K. Zheng, X. X. Zhang, B. Xu, J. Am. Chem. Soc.,126 (2004) 3392.
    [86]J. H. Gao, G. L. Liang, B. Zhang, Y. Kuang, X. X. Zhang, B. Xu, J. Am. Chem. Soc.,129 (2007) 1428.
    [87]F. Q. Hu, L. Wei, Z. Zhou, Y. L. Ran, Z. Li, M. Y. Gao, Adv. Mater.,18 (2006) 2553.
    [88]X. W. Liu, Q. Y. Hu, Z. Fang, X. J. Zhang, B. B. Zhang, Langmuir,25 (2009) 3.
    [89]C. N. R. Rao, K. Biswas, K. S. Subrahmanyam, S. George, C. S. Rout, K. V. Rao, J. Mater. Chem.,19 (2009) 2457.
    [90]A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys.,81 (2009) 109.
    [91]Y. Feng, S. H. Huang, K. Kang, X. X. Duan, New Carbon Mater.,26 (2011) 26.
    [92]X. G. Liang, Y. S. Jung, S. W. Wu, A. Ismach, D. L. Olynick, S. Cabrini, Jeffrey Bokor, Nano Lett.,10 (2010) 2454.
    [93]J. A. Govindra, K. S. Subrahnanyam, S. R. C. Vivekchand, C. N. R. Rao, J. Mater. Chem.,18 (2008) 1517.
    [94]A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Nano Lett.,8 (2008) 2012.
    [95]S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, Carbon,45 (2007) 1558.
    [96]J. T. Paci, T. Belytschko, G. C. Schatz, J. Phys. Chem. C,111 (2007) 18099.
    [97]Y. Matsuo, TANSO,228 (2007) 209.
    [98]H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. H. Alonso, D. H. Adamson, R. K. Prudhomme, R. Car, D. A. Saville, I.A. Aksay, J. Phys. Chem. B,110 (2006) 8535.
    [99]W. Hummers, R. Offema, J. Am. Chem. Soc.,80 (1958) 1339.
    [100]J. W. Peckett, P. Trens, R. D. Gougeon, A. Poppl, R. K. Harris, M. J. Hudson, Carbon,38 (2000) 345.
    [101]T. Nakajima, Y. Matsuo, Carbon,32 (1994) 469.
    [102]P. C. Lian, X. F. Zhu, H. F. Xiang, Z. Li, W. S. Yang, H. H. Wang, Electrochim. Acta,56 (2010) 834.
    [103]Z. Liu, J. T. Robinson, X. M. Sun, H. J. Dai, J. Am. Chem. Soc.,130 (2008) 10876.
    [104]X. Y. Yang, X. Y. Zhang, Y. F. Ma, Y. Huang, Y. S. Wang, Y. S. Chen. J. Mater Chem,19(2009)2710.
    [105]M. R. Das, R. K. Sarma, R. Saikia, V. S. Kale, M. V. Shelke, Colloids Surf. B, 83(2011)16.
    [106]S. B. Liu, T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. R. Jiang, J. Kong, Y. Chen, ACS Nano,5 (2011) 6971.
    [107]G. X. Zhao, J. X. Li, X. M. Ren, C. L. Chen, X. K. Wang, Environ. Sci. Technol.,45(2011) 10454.
    [108]G. X. Zhao, X. M. Ren, X. Gao, X. L. Tan, J. X. Li, C. L. Chen, Y. Y. Huang, X. K. Wang, Dalton Trans.,40 (2011) 10945.
    [109]V. Chandra, K. S. Kim, Chem. Commun.,47 (2011) 3942.
    [110]G. X. Zhao, L. Jiang, Y. D. He, J. X. Li, H. L. Dong, X. K. Wang, W. P. Hu, Adv. Mater,23 (2011) 3959.
    [111]J. H. Zhu, S. Y. Wei, H. B. Gu, B. Sowjanya, R, Qiang. Environ Sci Technol, 46(2012)977.
    [112]V. Chandra, J. Park, Y. Chun, J. W. Lee, I. C. Hwang, K. S. Kim, ACS Nano,4 (2010) 3979.
    [113]V. V. Rostovtsev, J. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed.,41 (2002) 2596.
    [114]H. C. Kolb, K. B. Sharpless, Drug Discovery Today,8 (2003) 1128
    [115]W. Pringle, K. B. Sharpless, Tetrahedron Lett.,40 (1999) 5151.
    [116]H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed.,113 (2001) 2056
    [117]W. M. Zhu, Q. H. Zhang, Y. Wang, J. Phys. Chem. C,112 (2008) 7731
    [118]M. F. A. Adamo, M. Nagabelli, Org. Lett.,10 (2008) 1807
    [119]J. L. Liang, S. X. Yuan, P. W. H. Chan, C. M. Che, Org. Lett.,4 (2002) 4507.
    [120]K. L. Killops, L.M. Campos, C. J. Hawker, J. Am. Chem. Soc.,130 (2008) 5062.
    [121]A. Gress, A. Volkel, H. Schlaad, Macromolecules,40 (2007) 7928.
    [122]R. L. A. David, J. A. Kornfield, Macromolecules,41 (2008) 1151.
    [123]L. M. Campos, K. L. Killops, R. Sakai, J. M. J. Paulusse, D. Damiron, E. Drockenmuller, B. W. Messmore, C. J. Hawker, Macromolecules,41 (2008) 7063.
    [124]N. Brummelhuis, C. Diehl, H. Schlaad, Macromolecules,41 (2008) 9946.
    [125]L. M. Campos, I. Meinel, R. G. Guino, M. Schierhorn, N. Gupta, G. D. Stucky, C. J. Hawker, Adv. Mater.,20 (2008) 3728.
    [126]E. Vogel, F. Kuebart, J. A. Marco, R. Andree, J. Am. Chem. Soc.,105 (1983) 6982.
    [127]H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed.,40 (2001) 2004.
    [128]R. Huisgen, G. Mloston, E. Langhals, J. Am. Chem. Soc.,108 (1986) 6401.
    [129]R. Huisgen, G. Mloston, E. Langhals, J. Org. Chem.,51 (1986) 4085.
    [130]R. Huisgen, J. Rapp, J. Am. Chem. Soc.,109 (1987) 902.
    [131]V. V. Rostovtsev, J. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed.,41 (2002) 2596.
    [132]V. S. Pore, M. Kumar, N. G. Aher, Tetrahedron,62 (2006) 11178.
    [133]P. L. Suarez, Z. Gandara, G. Gomez, Y. Fall, Tetrahedron Lett,45 (2004) 4619.
    [134]D. Odaci, B. N. Gacal, B. Gacal, S. Timur, Y. Yagci, Biomacromolecules,10 (2009) 2928.
    [135]N. F. Steinmetz, M. E. Mertens, R. E. Taurog, J. E. Johnson, U. Commandeur, R. Fischer, M. Manchester, Nano Lett,10 (2010) 305.
    [136]R. Breinbauer, M. Kohn, Chem. Bio Chem.,4 (2003) 1147.
    [137]Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K.B. Sharpless, M. G. Finn, J. Am. Chem. Soc.,125(2003)3192.
    [138]A. J. Link, D. A. Tirrell, J. Am. Chem. Soc.,125 (2003) 11164.
    [139]R. D. Rohde, H. D. Agnew, W. S. Yeo, R. C. Bailey, J. R. Heath, J. Am. Chem. Soc.,128(2006)9518.
    [140]J. P. Collman, N. K. Devaraj, C. E. D. Chidsey, Langmuir,20 (2004) 1051.
    [141]J. P. Collman, N. K. Devaraj, T. P. A. Eberspacher, C. E. D. Chidsey, Langmuir, 22 (2006) 2457.
    [142]R. Huisgen, Pure. Appl. Chem,61 (1989) 613.
    [143]M. A. White, J. A. Johnson, J. T. Koberstein, N. J. Turro, J. Am. Chem. Soc., 128(2006)11356.
    [144]H. Li, F. Cheng, A. M. Duft, J. Am.Chem.Soc.,127 (2005) 14518.
    [145]J. L. Brennan, N. S. Hatzakis, T. R. Tshikhudo, N. Dirvianskyte, V. Razumas, S. Patkar, J. Vind, A. Svendsen, R. J. M. Nolte, A. E. Rowan, M. Brust, Bioconjugate Chem.,17(2006)1373.
    [1]J. R. Mccarthy, K. A. Kelly, E. Y. Sun, R. Weissleder, Nanomedicine,2 (2007) 153.
    [2]A. K. Gupta, M. Gupta, Biomaterials,26 (2005) 3995.
    [3]W. J. M. Mulder, R. Koole, R. J. Brandwijk, G. Storm, P. T. K. Chin, G. J. Strijkers, C. de Mello Donega, K. Nicolay, A. W. Griffioen, Nano Lett.,6 (2006) 1.
    [4]J. H. Lee, Y. W. Jun, S. I. Yeon, J. S. Shin, J. Cheon, Angew. Chem. Int. Ed.,45 (2006) 8160.
    [5]G. L. Li, D. L. Zeng, L. Wang, B. Y. Zong, K. G. Neoh, E. T. Kang, Macromolecules,42 (2009) 8561.
    [6]J. Fresnais, E. Ishow, O. Sandre, J. F. Berret, Small,5 (2009) 2533.
    [7]H. Skaat, S. Margel, Biochem. Biophys. Res. Commun,386 (2009) 645.
    [8]R. He, X. G. You, J. Shao, F. Gao, B. F. Pan, D. X. Cui, Nanotechnology,18 (2007)5601.
    [9]P. Howes, M. Green, A. Bowers, D. Parker, G. Varma, M. Kallumadil, M. Hughes, A. Warley, A. Brain, R. Botnar, J. Am. Chem. Soc.,132 (2010) 9833.
    [10]J. E. Lee, N. Lee, H. Kim, J. Kim, S. H.Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, T. Hyeon, J. Am. Chem. Soc.,132 (2010) 552.
    [11]K. Kang, J. Choi, J. H. Nam, J. Phys. Chem. B.,113 (2009) 536.
    [12]G. W. Reimers, S. E. Khalafalla, U S Bureau Mines, Tech Rep, (1972) 59.
    [13]D. L. Ma, J. W. Guan, F. Normandin, Chem. Mater,18 (2006) 1920.
    [14]A. Schatz, R. N. Grass, Q. Kainz, W. J. Stark, O. Reiser, Chem. Mater,22 (2010) 305.
    [15]A. Gheorghe, M. Schulte, O. Reiser, J. Org. Chem.,71 (2006) 2173.
    [16]A. Gheorghe, T. Chinnusamy, E. C. Yanez, P. Hilgers, O. Reiser, Org. Lett,10 (2008)4171.
    [17]J. Noth, K. J. Frankowski, B. Neuenswander, J. Aube, O. Reiser, J. Comb. Chem, 10(2008)456.
    [18]K. El-Boubbou, D. C. Zhu, C. Vasileiou, B. B. D. Prosperi, W. Li, X. F. Huang, J. Am. Chem. Soc.,132 (2010) 4490.
    [19]K. Hayashi, M. Moriya, W. Sakamoto, T. Yogo, Chem. Mater,21 (2009) 1318.
    [20]K. Hayashi, K. Ono, H. Suzuki, M. Sawada, M. Moriya, W. Sakamoto, T.Yogo, Chem. Mater,22 (2010) 3768.
    [21]B. Samanta, D. Patra, C. Subramani, Y. Ofir, G. Yesilbag, A. Sanyal, V. M. Rotello, Small,5 (2009) 685.
    [22]A. S. Goldmann, C. Schodel, A. Walther, J. Yuan, K. Loos, A. H. E. Muller, Macromol. Rapid Commun.,31 (2010) 1608.
    [23]Y. P. He, Y. M. Miao, C. R. Li, S. Q. Wang, L. Cao, S. S. Xie, G. Z. Yang, B. S. Zou, Phys. Rev. B,71 (2005) 125411.
    [24]Y. Il. Kim, D. Kim, C. S. Lee, Physica B,337 (2003) 42.
    [25]J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S. M. Lee, Y. M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J. G. Park, J. Kim, T. Hyeon, Small,4 (2008) 143.
    [26]V. Chandra, J. Park, Y. Chun, J. W. Lee, I. C. Hwang, K. S. Kim, ACS Nano,4 (2010)3979.
    [27]C. R. Vestal, Z. J. Zhang, Nano Lett.,3 (2003) 1739.
    [28]F. Grasset, N. Labhsetwar, D. Li, D. C. Park, N. Saito, H. Haneda, O. Cador, T. Roisnel, S. Mornet, E. Duguet, J. Portier, J. Etourneau, Langmuir,18 (2002) 8209.
    [29]M. X. Gao, C. H. Deng, Z. Q. Fan, Small,10 (2007) 1714.
    [30]F. Zhang, C. C. Wang, Langmuir,10 (2009) 8255.
    [31]A. Schlossbauer, D. Schaffert, J. Kecht, E. Wagner, T. Bein, J. Am. Chem. Soc., 130 (2008) 12558.
    [32]H. B. Kim, S. Habuchi, N. Kitamura, Anal. Chem,71 (1999) 842.
    [33]M. F. Kircher, U. Mahmood, R. S. King, R.Weissleder, L. Josephson, Cancer Res.,63(2003)8122.
    [34]J. Kim, J. E. Lee, J. Lee, J. H. Yu, B. C. Kim, K. An. J. G. Park, J. Kim, T. Hyeon, J. Am. Chem. Soc.,128 (2006) 688.
    [35]L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, R. Weissleder, Bioconjugate. Chem.,13 (2002) 554.
    [36]R. Seidenfaden, A. Krauter, F. Schertzinger, R. Gerardy-Schahn, H.Hildebrandt, Mol. Cell. Bio.,23 (2003) 5908.
    [37]T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M. H. Cho, J. K. Lee, S. B. Park, Small,2 (2006) 209.
    [38]H. B. Kim, S. Habuchi, N. Kitamura, Anal. Chem.,71 (1999) 842.
    [39]M. F. Kircher, U. Mahmood, R. S. King, R. Weissleder, L. Josephson, Cancer Res,63 (2003) 8122.
    [40]D. M. Huang, Y. Hung, B. S. Ko, S. C. Hsu, W. H. Chen, C. L. Chien, C. P. Tsai, C. T. Kuo, J. C. Kang, C. S. Yang, C. Y. Mou, Y. C. Chen, FASEB J,19 (2005) 2014.
    [41]H. B. Xia, P. Foo, J. B. Yi, Chem. Mater.,21 (2009) 2442.
    [42]D. Ma, T. Veres, L. Clime, F. Normandin, J. Guan, D. Kingston, B. Simard, Phys. Chem. C,111(2007)1999.
    [43]V. Mahalingam, S. Onclin, M. Peter, Langmuir,20 (2004) 11756.
    [44]G. Huang, C. F. Zhang, S. Z. Li, C. Khemtong, J. M. Gao, J. Mater. Chem,19 (2009) 6367.
    [45]L. Wang, K. G. Neoh, E. T. Kang, B. Shuter, S. C. Wang, Biomaterials,31 (2010) 3502.
    [1]H. L. Seldon, M. C. Dahm, G. M. Clark, S. Crowe, Biomaterials,15 (1994) 1161.
    [2]R. Ghavamzadeh, V. Haddadi Asl, H. Mirzadeh, J. Biomater. Sci. Polym. Ed.,15 (2004) 1019.
    [3]J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, S. Mukherji, Acta Biomater,4 (2008) 707.
    [4]Y. Zhang, H. Peng, W. Huang, Y. Zhou, D. Yan, J. Colloid Interface Sci.,325 (2008)371.
    [5]Y. H. Kim, D. K. Lee, H. Cha, C. W. Kim, Y. S. Kang, J. Phys. Chem. C,111 (2007) 3629.
    [6]I. Sondi, B. Salopek-Sondi, J. Colloid Interface Sci.,275 (2004) 177.
    [7]J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, M. J. Yacaman, Nanotechnology,16 (2005) 2346.
    [8]A. Kumar, P. K. Vemula, P. M. Ajayan, G. John, Nat. Mater.,7 (2008) 236.
    [9]M. S. A. Shah, M. Nag, T. Kalagara, S. Singh, S. V Manorama, Chem. Mater,20 (2008) 2455.
    [10]A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, J. Phys. Chem. B,110 (2006) 16248.
    [11]P. V. Asharani, Y. L. Wu, Z. Y. Gong, S. Valiyaveettil, Nanotechnology,19 (2008)255102.
    [12]Y. Horie, D. A. David, M. Taya, S. Tone, Ind. Eng. Chem. Res.,35 (1996) 3920.
    [13]P. K. Stoimenov, R. L. Klinger, G. L. Marchin, K. J. Klabunde, Langmuir,18 (2002)6679.
    [14]K. Ghule, A. V. Ghule, B. J. Chen and Y. C. Ling, Green Chem.,8 (2006) 1034.
    [15]J. C. Yu, W. HO, J. Lin, H. Yip, P. K. Wong, Environ. Sci. Technol.,37 (2003) 2296.
    [16]B. K. Sunkara, R. D. K. Misra, Acta. Biomater,4 (2008) 273.
    [17]D. E. Sosnovik, R. Weissleder, Curr. Opin. Biotechnol,18 (2007) 4.
    [18]A. K. Gupta, M. Gupta, Biomaterials,26 (2005) 1565.
    [19]S. Laurent, D.Forge, M.Port, A.Roch, C. Robic, L. E. Vander, R. N. Muller, Chem. Rev.,108 (2008) 2064.
    [20]P. Gong, H. Li, X. He, K. M. Wang, J. B. Hu, W. H. Tan, S. C. Zhang, X. H. Yang, Nanotechnology,18 (2007) 285604.
    [21]B. Chudasama, A. K. Vala, N. Andhariya, R. V. Upadhyay, R. V. Mehta, Nano Res,2 (2009) 955.
    [22]M. Sureshkumar, D. Y. Siswanto, C. K. Lee, J. Mater. Chem.,20 (2010) 6948.
    [23]H. Kong, J. Song, J. Jang, Chem. Commun.,46 (2010) 6735.
    [24]C. T. Tsao, C. H. Chang, Y. Y. Lin, M. F. Wu, J. L. Wang, J. L. Han, K. H. Hsieh, Carbohydr Res,345 (2010) 1774.
    [25]F. Boulmedais, B. Frisch, O. Etienne, P. Lavalle, C. Picart, J. Ogier, J. C. Voegel, P. Schaaf, C. Egles, Biomaterials,25 (2004) 2003.
    [26]B. S. Inbaraj, T. H. Kao, T. Y. Tsai, C. P. Chiu, R. Kumar, B. H. Chen, Nanotechnology,22 (2011) 075101.
    [27]A. J. Kell, G. Stewart, S. Ryan, R. Peytavi, M. Boissinot, A. Huletsky, M. G. Bergeron, B. Simard, ACS Nano,2 (2008) 1777.
    [28]R. Qiao, C. Yang, M. Gao, J. Mater. Chem.,19 (2009) 6274.
    [29]H. C. Dong, J. Y. Huang, R. R. Koepsel, P. L. Ye, A. J. Russell, K. Matyjaszewski, Biomacromolecules,12 (2011) 1305.
    [30]J. Song, H. Kong, J. Jang, J. Colloid Interface Sci.,359 (2011) 505.
    [31]Y. H. Maa, S. Y. Wu, T. Wu, Y. J. Chang, M. Y. Hua, J. P. Chen, Biomaterials, 30 (2009) 3343.
    [32]H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew.Chem. Int. Ed.,40 (2001) 2004.
    [33]W. J. Zhang, Y. X. Zhang, X. H. Shi, C. Liang, Y. Z. Xian, J. Mater. Chem.,21 (2011)16177.
    [34]R. Peng, W. J. Zhang, Q. Ran, C. Liang, L. Jing, S. Q.Ye, Y. Z. Xian, Langmuir, 27(2011)2910.
    [35]C. R. Vestal, Z. J. Zhang, Nano Lett.,3 (2003) 1739.
    [36]R. M. Cornell, U. Schwertmann, VCH:New York, (1996) 167.
    [37]M. Takahashi, T. Yoshino, T. Matsunaga, Biomaterials,3 (2010) 4952.
    [38]S. M. Chen, G. Z. Wu, Y. D. Liu, D. W. Long, Macromolecules,39 (2006) 330.
    [39]Y. Zhang, B Chen, Z. P. Yang, Z. J. Zhang. Acta Phys. Chim. Sin.,27 (2011) 1261.
    [40]L. H. Liu, H. Dietsch, P. Schurtenberger, M. Yan, Bioconjugate. Chem.,20 (2009) 1349.
    [41]Y. Hu, J. Ge, Y. Sun, T. Zhang, Y. Yin. Nano Lett,7 (2007) 1832.
    [42]J. Zhang, R. S. Srivastava, R. D. K. Misra, Langmuir,23 (2007) 6342.
    [43]M. Kar, P. S. Vijayakumar, B. L. V. Prasad, S. S. Gupta, Langmuir,26 (2010) 5772.
    [44]A. Schlossbauer, D. Schaffert, J. Kecht, E. Wagner, T. Bein, J. Am. Chem. Soc., 130 (2008) 12558.
    [45]K. Hayashi, M. Moriya, W. Sakamoto, T. Yogo, Chem. Mater,21 (2009) 1318.
    [46]R. Seidenfaden, A. Krauter, F. Schertzinger, R. G. Schahn, H. Hildebrandt, Mol. Cell. Bio.,23 (2003) 5908.
    [47]T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M.H. Cho, J. K. Lee, S. B. Park, Small,2 (2006) 209.
    [48]K. Tanaka, A. Narita, N. Kitamura, W. Uchiyama, M. Morita, T. Inubushi, Y. Chujo, Langmuir,26 (2010) 11759.
    [49]M. Arsianti, M. Lim, C. P. Marquis, R. Amal, Biomacromolecules,11 (2010) 2521.
    [50]M. Mahmoudi, A. Simchi, M. Imani, J. Phys. Chem. C,113 (2009) 9573.
    [51]E. J. Van den Bos, A. Wagner, H. Mahrholdt, R. B. Thompson, Y. Morimoto, B. S. Sutton, R. M. Judd, D. A. Taylor, Cell Transplant,12 (2003) 743.
    [52]A. Melaiye, R. S. Simons, A. Milsted, F. Pingitore, C. Wesdemiotis, C. A. Tessier, W. J. Youngs, J. Med. Chem.,47 (2004) 973.
    [53]A. L. Barry, In Antibiotics in Laboratory Medicine,2nd ed.; Lorian, V., Ed.; Williams & Wilkins:Baltimore, (1986) 1.
    [54]L. I. Salzberg, J. D. Helmann. J. Bacteriol.,7 (2007) 4671.
    [55]M. N. Aftab, I. U. Haq, S. Baig, Pakistan. J. Sci.,62 (2010) 99.
    [56]R. Bernard, A. Guiseppi, M. Chippaux, M. Foglino, F. Denizot, J. Bacteriol.,12 (2007) 8636.
    [57]H. W. Michael, M. Weber, A. Marahiel, Phil. Trans. R. Soc. Lond B,357 (2002) 895.
    [1]M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. Ah, R. S. Ruoff, Nano Lett.,8 (2008) 3498.
    [2]A. K. Geim, A. H. MacDonald, Phys. Today,60 (2007) 35.
    [3]K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Science,315 (2007) 1379.
    [4]Y. B. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Nature,438 (2005) 201.
    [5]M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett,9 (2009) 1872.
    [6]G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, J. Am. Chem. Soc.,131 (2009) 8262.
    [7]A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, Y. Liu, Adv. Mater,21 (2009) 103.
    [8]J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J. M. D. Tascon, Langmuir,24 (2008) 10560.
    [9]X.Y. Yang, X. Y. Zhang, Z. F. Liu, Y. F. Ma, Y. Huang, Y. S. Chen, J. Phys. Chem. C,112(2008)17554.
    [10]Z. Liu, J. T. Robinson, X. M. Sun, H. J. Dai, J. Am. Chem. Soc.,130 (2008) 10876.
    [11]R. Pasricha, S. Gupta, A. K. Srivastava, Small,5 (2009) 2253
    [12]Y. X. Xu, H. Bai, G. W. Lu, C. Li, G. Q. Shi, J. Am. Chem. Soc.,130 (2008) 5856.
    [13]S. S. Banerjee, D. H. Chen, Chem. Mater.,19 (2007) 3667.
    [14]Y. M. Huh, Y. W. Jun, H. T. Song, S. Kim, J. S. Choi, J. H. Lee, S. Yoon, K. S. Kim, J. S. Shin, J. S. Suh and J. Cheon, J. Am. Chem. Soc.,127 (2005) 12387.
    [15]J. Bao, W. Chen, T. Liu, Y. Zhu, P. Jin, L. Wang, J. Liu, Y. Wei, Y. Li, Acs Nano,1 (2007) 293.
    [16]S. W. Cao, Y. J. Zhu, M. Y. Ma, L. Li and L. Zhang, J. Phys. Chem.C,112 (2008) 1851.
    [17]A. H. Lu, E. L. Salabas, F. Schuth, Angew. Chem. Int. Ed.,46 (2007) 1222.
    [18]N. A. Frey, S. Peng, K. Cheng, S. H. Sun, Chem Soc. Rev,38 (2009) 2532.
    [19]X. Y. Yang, X. Y. Zhang, Y. F. Ma, Y. Huang, Y. S. Wang, Y. S. Chen, J Mater Chem,19(2009)2710.
    [20]H. P. Cong, J. J. He, Y. Lu, S. H. Yu, Small,6 (2009) 169.
    [21]J. F. Shen, Y. Z. Hu, M. Shi, N. Li, H.W. Ma, M. X. Ye. J. Phys Chem C.,114 (2010) 1498.
    [22]P. C. Liana, X. F. Zhu, H. F. Xiang, Z. Li, W. S. Yang, H. H. Wang, Electrochimica Acta,56 (2010) 834.
    [23]B. J. Li, H. Q. Cao, J. Shao, M. Qu, J. H. Warner, J. Mater. Chem.,21 (2011) 5069.
    [24]W. H. Shi, J. X. Zhu, D. H. Sim, Y. Y. Tay, Z. Y. Lu, X. J. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H. H. Hng, Q. Y. Yan, J. Mater. Chem.,21 (2011) 3422.
    [25]H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem.,113 (2001) 2056.
    [26]K. A. Jorgensen, Angew. Chem. Int. Ed.,39 (2000) 3558.
    [27]F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless, V. V. Fokin, J. Am. Chem. Soc.,127 (2005) 210.
    [28]T. L. Mindt, H. Struthers, L. Brans, T. Anguelov, C. Schweinsberg, V. Maes, D. Tourwe, R. Schibli, J. Am. Chem. Soc.,128 (2006) 15096.
    [29]M. A.White, J. A. Johnson, J. T. Koberstein, N. J. Turro, J. Am. Chem. Soc.,128 (2006)11356.
    [30]Y. Zhang, H. K. He, C. Gao, Macromolecules,41 (2008) 9581.
    [31]K. F. Zhou, Y. H. Zhu, X. L. Yang, C. Z. Li, New J. Chem.,34 (2010) 2950.
    [32]X. Y. Yang, X. Y. Zhang, Y. F. Ma, Y. Huang, Y. S. Wang, Y. S. Chen, J. Mater Chem.,19(2009)2710.
    [33]H. K. He, C. Gao, Appl. Mater. Inter,2 (2010) 3201.
    [34]A. B. Bourlinos, D. Gournis, D. Petridis, T. Szabo, A. Szeri, I. Dekany, Langmuir, 19(2003)6050
    [35]S. F. Chin, K. S. Iyer, C. L. Raston, Lab. Chip,8 (2008) 439
    [36]J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J. M. D. Tascon, Langmuir,24 (2008) 10560.
    [37]A. Schlossbauer, D. Schaffert, J. Kecht, E. Wagner, T. Bein, J. Am Chem. Soc., 130(2008) 12558.
    [38]R. Peng, W. J. Zhang, Q. Ran, C. Liang, L. Jing, S. Q. Ye, Y. Z. Xian, Langmuir, 27(2011)2910.
    [39]K. Hayashi, M. Moriya, W. Sakamoto, T. Yogo, Chem Mater.,21 (2009) 1318.
    [40]V. Chandra, J. Park, Y. Chun, J. Woo Lee, I. Hwang, K. S. Kim, Macromolecules, 4 (2010) 3979.
    [41]H. K. Jeong, Y. P. Lee, M. H. Jin, E. S. Kim, J. J. Bae, Y. H. Lee, Chem. Phys. Lett.,470 (2009) 255.
    [42]K. W. Putz, O. C. Compton, C. Segar, A. Zi, S. T. Nguyen, L. C. Brinson, ACS Nano,5(2011)6601.
    [43]Y. Zhang, B. Chen, Z. P. Yang, Z. J. Zhang. Acta Phys. Chim. Sin.,27 (2011) 1261.
    [44]R. Seidenfaden, A. Krauter, F. Schertzinger, R. Gerardy-Schahn, H. Hildebrandt, Mol. Cell. Bio.,23 (2003) 5908.
    [1]S. Silver, Microbes Environ,13 (1998) 177.
    [2]R. B. Martin, Met. Ions Biol. Syst.,20 (1986) 21.
    [3]R. B. Martin, Marcel Dekker, New York,2 (1988) 9.
    [4]S. A. Kazakov, S. M. Hecht, In Encyclopedia of Inorganic Chemistry, Chichester U.K,5(1994)2697.
    [5]G. L. Eichhorn, Inorganic Biochemistry, Amsterdam,2 (1973) 1191.
    [6]R. M. Izatt, J. J. Christensen, J. H. Rytting, Chem. Rev.,71 (1971) 439.
    [7]M. A. White, J. A. Johnson, J. T. Koberstein, N. J. Turro, J. Am. Chem. Soc.,128 (2006)11356.
    [8]L. Gratz, G. Keeler, J. Blum, L. Sherman, Environ. Sci. Technol.,44 (2010) 7764.
    [9]A. D. Browski, Z. Hubicki, P. Podkoscielny, E. Robens, Chemosphere,56 (2004) 91.
    [10]A. P. delos Rios, F. J. Hernandez-Fernandez, L. J. Lozano, S. Sanchez, J. I. Moreno, C. Godinez. J. Chem Eng. Data,55 (2010) 605.
    [11]L. Ottosen, H. Hansen, S. Laursen, A. Villumsen, Environ. Sci. Technol.,31 (1997) 1711.
    [12]S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science,287 (2000) 1989.
    [13]Z. Xu, Q. Liu, J. A. Finch, New York, Marcel Dekker, (1999) 31.
    [14]B. R. Pieters, R. A. Williams, C. Webb, Oxford, Butterworth-Heinemann, (1992) 248.
    [15]A. Reza Mahdavian, M. A. S. Mirrahimi, Chem. Eng. J.,159 (2010) 264.
    [16]I. Y. Goon, C. C. Zhang, M. Lim, J. J. Gooding, R. Amal, Langmuir,26 (2010) 12247.
    [17]X. W. Liu, Q. Y. Hu, Z. Fang, X. J. Zhang, B. B. Zhang, Langmuir,25 (2009) 3.
    [18]J. Song, H. Kong, J. Jang, J. Colloid. Interface. Sci,359 (2011) 505.
    [19]J. P. Jolivet, C. Chaneac, E. Tronc, Iron Oxide Chemistry, From Molecular Clusters to Extended Solid Networks Chem Commun, (2004) 481.
    [20]S. Zhang, X. Li, J. P. Chen, Carbon,48 (2010) 60.
    [21]M. S. Mauter, M. Elimelech, Environ. Sci. Technol.,42 (2008) 5843.
    [22]J. Miyamoto, H. Kanoh, K. Kaneko, Carbon,43 (2005) 855.
    [23]J. F. Shen, Y. Z. Hu, M. Shi, N. Li, H. W. Ma, M. X. Ye, J. Phys. Chem. C,114 (2010)1498-1503.
    [24]Y. Y. Liang, D. Q. Wu, X. L. Feng, K. Mullen, Adv. Mater.,21 (2009) 1679.
    [25]M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff, Nano Lett.,8 (2008) 3498.
    [26]G. X. Zhao, J. X. Li, X. M. Ren, C. L. Chen, X. K. Wang, Environ. Sci. Technol., 45(2011) 10454.
    [27]G. X. Zhao, X. M. Ren, X. Gao, X. L. Tan, J. X. Li, C. L. Chen, Y. Y. Huang, X. K. Wang, Dalton Trans.,40 (2011) 10945.
    [28]Chandra, V.; Kim, K. S. Chem. Commun.,47 (2011) 3942.
    [29]G. X. Zhao, L. Jiang, Y. D. He, J. X. Li, H. L. Dong, X. K. Wang, W. P. Hu, Adv. Mater,23 (2011)3959.
    [30]F. Caruso, Adv. Mater.,13 (2001) 11.
    [31]M. H. Liao, B. H. Chen, J. Mater. Chem.,12 (2002) 3654.
    [32]E. S. G. Choo, B. Yu, J. M. Xue, J. Colloid. Interface. Sci.,358 (2011) 462.
    [33]D. H. Chen, S. H. Huang, Process Biochemistry,39 (2004) 2207.
    [34]A. Y. Yin, X. Y. Guo, W. L. Dai, K. N. Fan, J. Phys. Chem. C,114 (2010) 8523.
    [35]S. M. Chen, G. Z. Wu, Y. D. Liu, D. W. Long, Macromolecules,39 (2006) 330.
    [36]X. Y. Yang, X. Y. Zhang, Y. F. Ma, Y. Huang, Y. S. Wang, Y. S. Chen, J. Mater. Chem.,19(2009)2710.
    [37]Y. Zhang, B Chen, Z. P. Yang, Z. J. Zhang, Acta Phys. Chim. Sin,27 (2011) 1261.
    [38]J. Zhang, R. S. Srivastava, R. D. K. Misra, Langmuir,23 (2007) 6342.
    [39]I. J. Bruce, T. Sen, Langmuir,21 (2005) 7029.
    [40]Y. Hu, J. Ge, Y. Sun, T. Zhang, Y. Yin, Nano Lett.,7 (2007) 1832.
    [41]B. Feng, R. Y. Hong, Y. J. Wu, G. H. Liu, L. H. Zhong, Y. Zheng, J. M. Ding, D. G. Wei, J. Alloys Compd,473 (2009) 356.
    [42]R. Seidenfaden, A. Krauter, F. Schertzinger, R. Gerardy-Schahn, H. Hildebrandt, Mol. Cell. Biochem.,23 (2003) 5908.
    [43]Y. J. Kim, R. C. Johnson, J. T. Hupp, Nano Lett.,1 (2001)165.
    [44]W. J. Zhang, Y. X. Zhang, X. H. Shi, C. Liang, Y. Z. Xian, J. Mater. Chem,21 (2011) 16177.
    [45]R. Peng, W. J. Zhang, Q. Ran, C. Liang, L. Jing, S. Q. Ye, Y. Z. Xian, Langmuir, 27(2011)2910.
    [46]J. H. Wang, S. R. Zheng, Y. Shao, J. L. Liu, Z. Y. Xu, D. Q. Zhu. J. Colloid Interface Sci.,349 (2010) 293.
    [1]K. E. Jones, N. Patel, M. Levy, A. Storeygard, D. Balk, J. Gittleman, P. Daszak, Nature,451 (2008)990.
    [2]Y. Wan, D. Zhang, Y. Wang, P. Qi, J. J. Wu, B. R. Hou, J. Hazard Mater.,186 (2011)306.
    [3]F. Menichetti, Clin Microbiol. Infect.,11 (2005) 22.
    [4]N. Woodford, D. Livermore, J. Infect,59 (2009) 4.
    [5]T. Silhavy, D. Kahne, S. Walker, Cold Spring Harb Perspect Biol.,2 (2010) 414.
    [6]W. N. Joseph, W. Moyu, D. B. Alejandra, Z. Dejian, V. Manuel, B. Matthew, Nat Nanotechnol,3(2008)691.
    [7]S. J. Wagner, D. Robinette, Transfusion,38 (1998) 674.
    [8]Y. H. Che, Y. B. Li, M. Slavik, D. Paul, J. Food. Prot.,63 (2000) 1043.
    [9]C.Walsh, Science,284 (1999) 442.
    [10]G. Jia, J. Siegrist, C. Deng, J. V. Zoval, G. Stewart, R. Peytavi, A. Huletsky, M. G. Bergeron, M. J. Madou, Colloids Surf B,58 (2007) 52.
    [11]R. Nagarajan, Antimicrob Agents Chemother.,35 (1991) 605.
    [12]P. Reynolds, E. Structure, J. Clin Microbiol. Infect Dis.,8 (1989) 943.
    [13]Y. X. Cheng, Y. J. Liu, J. J. Huang, K. Li,W. Zhang, Y. Z. Xian, L.T. Jin, Talanta, 77 (2009) 1332.
    [14]Y. Wan, D. Zhang, B. R. Hou, Biosens Bioelectron.,25 (2010) 1847.
    [15]F. A. Mohammed, C. S. Tiwary, P. T. Kalaichelvan, R. Venkatesan, Colloids Surf B,75 (2009) 175.
    [16]J. T. Klaus, E. O. Joerger, C. G. Granqvist, Trends. Biotechnol.,19 (2001) 15.
    [17]D. Mandal, M. E. Bolander, D. Mukhopadhyay, G. Sarkar, P. Mukherjee, Appl Microbiol Biotechnol,69 (2006) 485.
    [18]H. Gu, P. L. Ho, K. W. T. Tsang, C. W. Yu, B. Xu, Chem. Commun,6 (2003) 1966.
    [19]H. Gu, P. L. Ho, K. W. T. Tsang, W. Ling, B. Xu, J. Am. Chem. Soc.,125 (2003) 15702.
    [20]Y. Wan, D. Zhang, B. R. Hou, Biosens. Bioelectron.,25 (2010) 1847.
    [21]A. J. Kell, G. Stewart, S. Ryan, R. Peytavi, M. Boissinot, A. Huletsky, M. G. Bergeron, B. Simard, ACS Nano,2 (2008) 1777.
    [22]Y. S. Lin, P. J. Tsai, M. F. Weng, Y. C. Chen, Anal. Chem.,77 (2005) 1753.
    [23]W. B. Hu, C. Peng, W. J. Luo, M. Lv, X. M. Li, D. Li, Q. Huang, C. H. Fan, ACS Nano,4 (2010) 4317.
    [24]O. Akhavan, E. Ghaderi, ACS Nano,4 (2010) 5731.
    [25]S. B. Liu, T. Y. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. R. Jiang, J. Kong, Y. Chen, ACS Nano,5 (2011) 6971.
    [26]O. N. Ruiz, K. A. S. Fernando, B. J. Wang, N. A. Brown, P. G. Luo, N. D. McNamara, M. Vangsness, Y. P. Sun, C. E. Bunker, ACS Nano,5 (2011) 8100.
    [27]M. R. Das, R. K. Sarma, R. Saikia, R. Saikia, V. S. Kale, M. V. Shelke, P. Sengupta, Colloids Surf. B,83 (2011) 16.
    [28]J. Zhang, R. S. Srivastava, R. D. K. Misra, Langmuir,23 (2007) 6342.
    [29]I. J. Bruce, T. Sen, Langmuir,21 (2005) 7029.
    [30]Y. Hu, J.Ge, Y. Sun, T. Zhang, Y. Yin, Nano Lett.,7 (2007) 1832.
    [31]B. Feng, R. Y. Hong, Y. J. Wu, G. H. Liu, L. H. Zhong, Y. Zheng, J. M. Ding, D. G. Wei, J. Alloys Compd.,473 (2009) 356.
    [32]R. Seidenfaden, A. Krauter, F. Schertzinger, R. Gerardy-Schahn, H. Hildebrandt, Mol. Cell. Biochem.,23 (2003) 5908.
    [33]柯诗剑,计剑,高等学校化学学报,28(2007)26.
    [34]G. Huang, C. F. Zhang, S. Z. Li, C. Khemtong, J. M. Gao, J. Mater. Chem,19 (2009) 6367.
    [35]L. Wang, K. G. Neoh, E. T. Kang, B. Shuter, S. C. Wang, Biomaterials,31 (2010) 3502.
    [36]T. J. Yoon, K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S. H. Yun, B. H. Sohn, M. H. Cho, J. K. Lee, S. B. Park, Small,2 (2006) 209.
    [37]A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Nevecna, R. Zboril, J. Phys. Chem. B,110 (2006) 16248.
    [38]M. Awais, A. Pervez, A. Yaqub, M. M. Shah, Pakistan J Zool,42 (2010) 267.
    [39]R. Bernard, A. Guiseppi, M. Chippaux, M. Foglino, F. Denizot, J. Bacteriol.,12 (2007) 8636.
    [40]A. M. Fayaz, M. Girilal, S. A. Mahdy, S. S. Somsundar, R. Venkatesan, P. T. Kalaichelvana, Process Biochem,46 (2011) 636.
    [41]H. J. Chung, T. Reiner, G. Budin, C. Min, M. Liong, D. Issadore, H. Lee, R. Weissleder, ACS Nano,5 (2011) 8834.
    [42]K. Y. Yoon, J. H. Byeon, C. W. Park, J. Hwang, Environ. Sci. Technol.,42 (2008) 1251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700