用户名: 密码: 验证码:
石墨烯基复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是目前已知材料中厚度最薄、强度最大的材料,完美的石墨烯是由单层碳原子组成的六边形晶格结构二维碳质材料,展示出电子在内部的优异流动性以及优良的导热性能及刚度。由于石墨烯具有特殊的物理、化学性质以及优异的结构特性,已经在全世界范围内引起了一股新的研究热潮。基于石墨烯的材料已在催化、光学、电子学、磁学、传感器、储能等诸多领域显示出了巨大的应用潜能。本论文中将在分析石墨烯近期的研究和应用成果基础之上,开展新型的石墨烯及石墨烯基复合材料的构筑,深入研究石墨烯及石墨烯基复合材料的光、电催化以及抑菌性能,揭示材料的特殊结构与优异性能之间的关系,并对材料的光、电催化以及抑菌机理进行较为深入的研究。
     采用淬火技术同步剥离与还原膨胀石墨制备高质量、高产率的石墨烯。XPS、Raman等测试结果表明通过水合肼或浓氨水辅助的淬火过程能够有效减少石墨烯表面的含氧基团,导电原子力分析表明石墨烯具有优异的导电性能。膨胀石墨层间存在大量插层化合物,通过淬火应力能够剥离膨胀石墨形成石墨烯片,高质量的石墨烯可以作为良好的载体材料构筑石墨烯基复合体。设计一种简单的浓氨水辅助水热合成法制备氮掺杂石墨烯。在还原氧化石墨的同时实现石墨烯的氮掺杂,氮掺杂石墨烯显示出较高的氮掺杂量(7.2%)以及较好的稳定性,同时氮掺杂石墨烯也显示出比石墨烯更优异的电容特性,比电容的最高值为144.6F/g。通过此种方法可以合成出具有广泛应用前景的高品质氮掺杂石墨烯,也为改善和提高超级电容器的电容特性以及稳定性提供了一种新的选择。
     通过合适初级纳米粒子在膨胀石墨层间原位生长,利用初级纳米粒子生长力剥离膨胀石墨的同时与石墨烯复合构筑石墨烯基复合材料,石墨烯片的引入明显提高锐钛型TiO_2纳米晶的热稳定性,同时TiO_2自身的光生载流子分离效率提高,光催化性能研究表明复合材料不论在可见光还是紫外光下均比P25的催化活性要优异,在可见光下苯酚的降解率为62%,而在紫外光下苯酚的降解率为81%。为合成高性能的石墨烯基光催化剂提供了新颖的实验方法。采用HF和甲醇的溶剂热体系,一步合成新颖的石墨烯/暴露{001}高能面TiO_2复合体,利用复合体进一步深入探究TiO_2和C之间的电子转移行为,揭示二者之间的电子转移过程对进一步理解光催化机制具有指导意义。XPS结果表明TiO_2与石墨烯之间存在较强的相互作用以及电子转移行为。XANES进一步说明复合体中电子转移的途径与方向,这种电子转移行为能够对载流子分离效率的提高具有积极作用,利于光催化性能的提高。通过光催化性能评价发现石墨烯/暴露{001}高能面TiO_2复合体显示出比P25优异的紫外光催化活性。
     通过简单的原位化学还原方法制备Ag/石墨烯复合结构,实验结果表明大约8~10μm的石墨片表面均匀生长着直径约为45nm的银纳米粒子。并在此基础上以大肠杆菌为受试菌株,用抑菌圈法测试Ag/石墨烯复合体的抑菌效果,实验结果表明Ag/石墨烯复合体对大肠杆菌具有优异的抑菌性能,可能归因于高质量石墨烯的引入使得Ag纳米颗粒的分散性提高,同时也提高了Ag纳米颗粒的光照稳定性,Ag纳米粒子与石墨烯片协同效应共同促进抑菌性能的明显提高。
     通过几种新颖的方法制备了新型的石墨烯及石墨烯基复合材料,研究复合材料各组分之间的相互作用机理,探索复合材料结构与性能之间关系,丰富石墨烯及石墨烯基复合材料相关领域的基础理论,从而为实现相关材料的实际应用奠定坚实基础。
Graphene has attracted increasing attention because its unique nanostructure holds greatpromise for potential applications in different fields such as photocatalysis, sensors, batteriesand supercapacitors. Graphene sheets, one-atom-thick two-dimensional layers of sp2-bondedcarbon, are predicted to have a range of unusual properties. Their thermal conductivity andmechanical stiffness may rival the remarkable in-plane values for graphite; theirfracturestrength should be comparable to that of carbon nanotubes for similar types of defects;and recent studies have shown that individual graphene sheets have extraordinary electronictransport properties. One possible route to harnessing these propertiesfor applications wouldbe to incorporate graphene sheets in acomposite material. The manufacturing of suchcomposites requires not only that graphene sheets be produced on a sufficient scale but thatthey also be incorporated, and homogeneously distributed, into various matrices. The mainresearch contents of thesis are shown as follows:
     Recently, single-or few-layer graphene sheets had been prepared by several methods.However, the low productivity of the micromechanical exfoliation makes it unsuitable forlarge-scale use. The functionalization of GO disrupts the electronic structure of graphene.Thus, facile and efficient strategy to produce high quality and large yield graphene is urgentlyrequired. Quenching technology is an important operation in the final fabrication process ofany engineering component. We can make full use of quenching stress to exfoliate graphitelayers for the production of graphene. In the first part, we presented a high-efficient hydrazinehydrate or concentrated ammonia-assisted quenching route to prepare the high qualitygraphenes. The success process was attributed to the strong quenching and presence ofhydrazine hydrate or concentrated ammonia. The strategy is promising due to its facileoperation, rapid production and low-cost starting materials.
     Supercapacitors have attracted increasing attention as alternative energy-storage systems.Up to now, carbon nanomaterials such as porous carbon materials and carbon nanotubes havebeen used as supercapacitors electrodes due to their large surface areas and highconductivities. The capacitive behavior of carbon materials can be further improved by thepresence of active species that contribute to the total specific capacitance by the pseudocapacitive effect. In this work, we developed a concentrate ammonia-assistedhydrothermal method to obtain N-doped graphene sheets by simultaneous N-doping andreduction of graphene oxide (GO) sheets. The effects of hydrothermal temperature on surfacechemistry and structure of the N-doped graphene sheets were also investigated. N bindingconfigurations of sample consist of pyridine N, quaternary N, and pyridine-N oxides. Thesample exhibits excellent thermal stability. Electrical measurements demonstrate that productsshow higher capacitive performance than that of pure graphene that ascribe thepseudocapacitive effect from the N-doping. The samples also show excellent long-term cyclestability of capacitive performance.
     We present a facile route to prepare TiO_2-graphene composites by in situ growth of TiO_2ininterlayer of low-cost expanded graphite (EG) under solvothermal. The vacuum-assistanttechnology associated with the use of surfactant (cetyltrimethylammonium bromides) plays akey role in the fabrication of such composites. Firstly, the vacuum environment promotes theinitial solution containing Ti(OBu)4, and the surfactant fully infusing into the interlayer of EG;subsequently, numerous nanoparticles of TiO_2in situ uniformly grow in interlayer with thehelp of surfactant, facilitates the EG exfoliation; in the mean time, EG by the aid of theethanol solvothermal, eventually forming the TiO_2-graphene composites. The as-preparedsamples have been characterized by Raman, SEM, TEM, AFM, FT-IR, and thermogravimeticanalysis. It is shown that a large number of TiO_2nanoparticles homogeneously cover thesurface of high-quality graphene sheets. The graphene exhibits multi-layered structure(five~seven layers). Noticeably, the synthesized TiO_2-graphene by post thermal treatment athigh temperature under nitrogen show high photocatalytic activity to degrade phenol undervisible and UV light in comparison with bare P25. The enhanced photocatalytic performanceis attributed to the increased charge separation, the strengthened light absorbance and lightabsorption width, and the fine adsorptivity for pollutants.
     A simply and feasible strategy to synthesize the novel anatase TiO_2/graphene compositeswith exposed TiO_2{001} high-energy facets by the hydrofluoric acid-and methanol-jointassisted solvothermal reactions. During the synthesis process, graphene were uniformlycovered with a large number anatase TiO_2nanoparticles, exposing the {001} facets. TheX-ray photoelectron spectroscopy (XPS) and X-ray absorption (XAS) measurements show the presence of electron transfer between TiO_2and graphene. Furthermore, transient photovoltage(TPV) spectra of the composite also exhibits prolonged mean lifetime of electron-hole pairscompared with pure TiO_2. The electron transfer between Ti and C will greatly retard therecombination of photoinduced charge carriers and prolong electron lifetime, whichcontributing to the enhancement of photocatalytic performance. During the photocatalysismeasurement, the TiO_2/graphene composites have high photocatalytic activity compared withthe P25under UV light, likely due to the effective separation of photoinduced charge andexposure of high reactive {001} facets.
     A novel Ag/graphene composite antibacterial agent was synthesized through a facilechemical reduction method. The high quality graphene was selected as the carbon substratefor supporting Ag particles. The composite had been characterized by high-resolutiontransmission electron microscopy and scanning electron microscopy. The results show thatabout45~50nm Ag nanoparticles are uniformly dispersed on the surface of the graphene. Theantibacterial activity of composite is investigated using the agar well diffusion method. Theresults reveal that excellent and stable antibacterial activity of composite against E. coli due tofavorable dispersibility of Ag nanoparticles and introduction of high quality graphene.
     The novel graphene and graphene-based composite materials are prepared by severalmethods. We futher study the mechanism of interaction between the various components ofthe composite. Meanwhile, we understand the relationship between structure and properties ofcomposite materials. We hope our work can improve the development of related theory.
引文
[1] Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thincarbon films. Science,2004,306(5296):666-669P
    [2] Geim A K, Novoselov K S. The rise of graphene. Nat Mater,2007,6(3):183-l91P
    [3] Williams J R, DiCarlo L, Marcus C M. Quantum hall effect in a gate-controlledp-n junction of grapheme. Science,2007,317(5838):638-641P
    [4] Service R F. Carbon sheets an atom thick give rise to graphene dreams. Science,2009,324(5929):875-877P
    [5] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y,Hong B H. Large-scale pattern growth of graphene films for stretchabletransparent electrodes. Nature,2009,457(7230):706-710P
    [6] N’Diaye A T, Bleikamp S, Feibelman P J. Two-dimensional Ir cluster lattice on agraphene moire on Ir (111). Phys.Rev.Lett.,2006,97(21):215501P
    [7] Wu J, Pisula W, Mullen K. Graphenes as potential material for electronics.Chem.Rev.,2007,107(3):718-747P
    [8] Heersche H B, Jarillo-Herrero P, Ostinga J B. Bipolar supercurrent in graphene.Nature,2007,446(7131):56-59P
    [9] Hasan T, Sun Z P, Wang F Q. Nanotube-polymer composites for ultrafastphotonics. Adv.Mater.,2009,21(38-39):3874-3899P
    [10] Ang P K, Chen W, Wee A T S. Solution-Gated Epitaxial Graphene as pH Sensor.J.Am.Chem.Soc.2008,130(44):14392-14393P
    [11] Schedin F, Geim A K, Morozov S V. Detection of individual gas moleculesadsorbed on graphene. Nat.Mater.,2007,6(9):652-655P
    [12] Hwang E H, Adam S, Sarma S D. Transport in chemically doped graphene in thepresence of adsorbed molecules. Phys.Rev.B,2007,76(19):195421-195429P
    [13] Robinson J T, Perkins F K, Snow E S. Reduced graphene oxide molecular sensors.Nano Lett.,2008,8(10):3137-3140P
    [14] Sundaram R S, Gomez-Navarro C, Balasubramanian K. Electrochemicalmodification of graphene. Adv.Mater.,2008,20(16):3050-3053P
    [15] Tang L H, Wang Y, Li Y M. Preparation, Structure, and ElectrochemicalProperties of Reduced Graphene Sheet Films. Adv.Funct.Mater.,2009,19(17):2782-2789P
    [16] Wang Y, Li Y M, Tang L H. Application of graphene-modified electrode forselective detection of dopamine. Electrochem.Commun.,2009,11(4):889-892P
    [17] Shang N G, Papakonstantinou P, McMullan M. Catalyst-free efficient growth,orientation and biosensing properties of multilayer graphene nanoflake films withsharp edge planes. Adv.Funct.Mater.,2008,18(21):3506-3514P
    [18] Wang Y, Li Y M, Tang L H, Lu J, Li J H, Application of graphene-modifiedelectrode for selective detection of dopamine. Electrochem.Commun.2009,11(4):889-992P
    [19] Alwarappan S, Erdem A, Liu C, Li C Z. Probing the Electrochemical Propertiesof Graphene Nanosheets for Biosensing Applications. J.Phys.Chem.C,2009,113(20):8853-8857P
    [20] Zhou M, Zhai Y, Dong S. Electrochemical sensing and biosensing platform basedon chemically reduced ghraphene oxide. Anal.Chem.,2009,81(14):5603-5613P
    [21] Li J, Guo S j, Zhai Y M. Nafion-graphene nanocomposite film as enhancedsensing platform for ultrasensitive determination of cadmium.Electrochem.Commun.,2009,11(5):1085-1088P
    [22] Lu J, Do I, Drzal L T, Worden R M. Nanometal-Decorated Exfoliated GraphiteNanoplatelet Based Glucose Biosensors with High Sensitivity and Fast Response.ACS Nano,2008,2(9):1825-1832P
    [23] Shan C S, Yang H F, Song J F. Direct Electrochemistry of Glucose Oxidase andBiosensing for Glucose Based on Graphene. Anal.Chem.,2009,81(6):2378-2382P
    [24] Zhou K F, Zhu Y H, Yang X L. Electrocatalytic Oxidation of Glucose by theGlucose Oxidase Immobilized in Graphene-Au-Nafion Biocomposite.Electroanalysis,2010,22(3):259-264P
    [25] Novoselov K S, Jiang Z, Zhang Y, Morozov S V. Room-temperature quantum halleffect in Graphene. Science,2007,315(5817):1379-1379P
    [26] Wang Y, Huang Y, Song Y, Zhang X Y, Ma Y F, Liang J J, Chen Y S. Roomtemperature ferromagnetism of graphene. Nano Lett,2009,9(1):220-224P
    [27] Heersche H B, Jarillo-Herrero P, Ostinga J B. Bipolar supercurrent in graphene.Nature,2007,446(7131):56-59P
    [28] Dedkov Y S, Fonin M, Rudiger U. Rashba effect in the graphene/Ni (111) system.Phys.Rev.Lett.,2008,100:107602P
    [29] Sun Y, Yang X B, Ni J. Bonding differences between single iron atoms versusiron chains with carbon nanotubes: First-principles calculations. Phys.Rev.B2007,76(3):035407P
    [30] Sevinli H, Topsakal M, Durgun E, Ciraci S. Electronic and magnetic properties of3d transition-metal atom adsorbed graphene and grapheme nanoribbons.Phys.Rev.B2008,77(19):195434P
    [31] Chan K T, Neaton J B, Cohen M L. First-principles study of metal adatomadsorption on graphene. Phys.Rev.B2008,77(23):235430P
    [32] Durgun E, Dag S, Ciraci S, Gülseren O. Energetics and electronic structures ofindividual atoms adsorbed on carbon nanotubes. J.Phys.Chem.B2004,108(2):575-582P
    [33] Yagi Y, Briere T M, Sluiter M H F, Kumar V, Farajian A A, Kawazoe Y. Stablegeometries and magnetic properties of single-walled carbon nanotubes dopedwith3d transition metals: A first-principles study. Phys.Rev.B2004,69(7):075414P
    [34] Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastie properties andintrinsie strength of monolayer graphene. Seienee,2008,321(5887):385P
    [35] Lee C, Wei X, Kysar J W. Measurement of the elastic properties and intrinsicstrength of monolayer graphene. Science,2008,321:385P
    [36] Ponomarenko L, Schedin F, Katsnelson M, Yang R, Hill E, Novoselov K. Chaoticdirac billiard in graphene quantum dots. Science,2008,320(5874):356P
    [37] Wang Y, Shi Z Q, Huang Y, Ma Y F, Wang C Y, Chen M M. Supercapacitordevices based on graphene materials. J. Phys. Chem. C,2009,113(30):13103P
    [38] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I.Detection of individual gas molecules adsorbed on graphene. Nat. Mater.,2007,6(9):652P
    [39] Eda C, Fanchini C, Chhowalla M. Large-area ultrathin films of reduced graphemeoxide as a transparent and flexible electronic material. Nat. Nanotechnol,2008,3(5):270P
    [40] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V,Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films.Science2004,306:666-669P
    [41] Kim K S, Zhao Y, Jang H. Large-scale pattern growth of graphene films forstretchable transparent electrodes. Nature,2009,457(7230):706-710P
    [42] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R D. Velamakanni A,Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Large-area synthesis ofhigh-quality and uniform graphene films on copper foils. Science2009,324:1312-1314P
    [43] Hass J, First P N. Interface structure of epitaxial graphene grown on SiC (0001).Phys Rev B,2008,78:205424P
    [44] Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H-J, AdvancedMaterials,2010,21,2777-2780P
    [45] William S. Hummers J, Offeman R E. Preparation of Graphitic Oxide, J. Am.Chem. Soc.,1958,80(6),1339-1339P
    [46] Li D, Muller M B, Gilje S. Processable aqueous dispersions of graphenenanosheets. Nature Nanotechnology,2008,3:101-105P
    [47] Fan X B, Peng W C, Li Y, Li X Y, Wang S L, Zhang G L, Zhang F B,Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A GreenRoute to Graphene Preparation, Adv. Mater.2008,20:4490-4493P
    [48] Choucair M, Thordarson. Solvothermal synthesis gram-scale production ofgraphene. Nature Nanotech.,2009,4:30-33P
    [49] Wang L, Tian C G, Wang B L, Wang R H, Zhou W, Fu H G. ControllableSynthesis of Graphitic Carbon Nanostructures from Ion-Exchange Resin-IronComplex via Solid-State Pyrolysis Process. Chemical Communication2008,5411-5413P
    [50] Wang L, Tian C G, Wang H, Ma Y G, Wang B L, Fu H G. Mass production ofgraphene via an in situ self-generating template route and its promoted activity aselectrocatalytic support for methanol electroxidization. Journal of PhysicalChemistry C2010,114(19):8727-8733P
    [51] Subrahmanyam K S, Ghosh A, Gomathi A, Govindaraj A, Rao C N R. Covalentand Noncovalent Functionalization and Solubilization of Graphene. Nanosci.Nanotechnol. Lett.2009,1(1):28-31P
    [52] Si Y C, Samulski E T. Exfoliated Graphene Separated by Platinum Nanoparticles.Chem. Mater.,2008,20(21):6792-6797P
    [53] Li Y, Tang L, Li J. Preparation and electrochemical performance for methanoloxidation of Pt/graphene nanocomposites. Electrochem. Commun.,2009,11(4):846-849P
    [54] Zhu C, Guo S, Zhai Y, Dong S. Layer-by-layer self-assembly for constructing agraphene/platinum nanoparticle three-dimensional hybrid nanostructure usingionic liquid as a linker. Langmuir,2010,26(10):7614-7618P
    [55] Guo S, Dong S, Wang E. Three-dimensional Pt-on-Pd bimetallic nanodendritessupported on graphene nanosheet: facile synthesis and used as an advancednanoelectrocatalyst for methanol oxidation. ACS Nano,2010,4(1):547-555P
    [56] Xu C, Wang X, Zhu J W. Graphene-Metal Particle Nanocomposites. J. Phys.Chem.C,2008,112(50):19841-19845P
    [57] Xu C, Wang X, Yang L, Wu Y. Fabrication of a graphene-cuprous oxidecomposite. J. Solid State Chem.,2009,182(9):2486-2490P
    [58] Xu C, Wang X, Zhu J W, Yang X J, Lu L. Deposition of Co3O4nanoparticles ontoexfoliated graphite oxide sheets. J. Mater. Chem.,2008,18(46):5625-5629P
    [59] Paek S M, Yoo E, Honma I. Enhanced cyclic performance and lithium storagecapacity of SnO2/graphene nanoporous electrodes with three-dimensionallydelaminated flexible structure. Nano Lett.2009,9(1):72-75P
    [60] Wang D H, Choi D W, Li J, Yang Z. G, Nie I M, Kou Rl. Self-AssembledTiO2-Graphene hybrid Nanostructures for Enhanced Li-Ion Insertion. ACS Nano,2009,3(4):907-914P
    [61] Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z. A facile one-step method to producegraphene-CdS quantum dot nanocomposites as promising optoelectronicmaterials. Adv. Mater.,2010,22:103-106P
    [62] Xu Y X, Zhao L, Bai H. Chemically Converted Graphene Induced MolecularFlattening of5,10,15,20-Tetrakis(1-methyl-4-pyridinio) porphyrin and ItsApplication for Optical Detection of Cadmium(II)Ions. J.Am.Chem.Soc.,2009,131(37):13490-13497P
    [63] Wang X R, Tabakman S M, Dai H J. Atomic layer deposition of metal oxides onpristine and functionalized graphene. J.Am.Chem.Soc.,2008,130(26):8152-8153P
    [64] Wang Q H, Hersam M C. Room-temperature molecular-resolutioncharacterization of self-assembled organic monolayers on epitaxial graphene.Nat.Chem.,2009,1(3):206-211P
    [65] Xu Y X, Bai H, Lu G W, Li C, Shi G Q. Flexible graphene films via the filtrationof water-soluble noncovalent functionalized graphene sheets.J.Am.Chem.Soc.,2008,130:5856-5857P
    [66] Hao R, Qian W, Zhang L, Hou Y. Aqueous dispersions of TCNQ anion stabilizedgraphene sheets. Chem.Commun.,2008,48:6576-6578P
    [67] Stankovich S, Piner R D, Chen X Q, Wu N Q, Nguyen S T, Ruoff R S. Stableaqueous dispersions of graphitic nanoplatelets via the reduction of exfoliatedgraphite oxide in the presence of poly(sodium4-styrenesulfonate). J.Mater.Chem.,2006,16(2):155-158P
    [68] Li X P L, Wang X R, Zhang L, Lee S W, Dai H J. Chemically derived,ultrasmooth graphene nanoribbon semiconductors. Science,2008,319(5867):1229-1232P
    [69] Ramanathan T, Abdala A A, Stankovich S, Brinson L C. Functionalized graphenesheets for polymer nanocomposites. Nat.Nanotechnol.,2008,3(6):327-331P
    [70] Patil A J, Vickery J L, Scott T B, Mann S. Aqueous stabilization andself-assembly of graphene sheets into layered bio-nanocomposites using DNA.Adv.Mater.,2009,21(31):3159-3165P
    [71] Pumera M. Electrochemistry of graphene: new horizons for sensing and energystorage. The Chemical.Record Rec.,2009,9(4):211-223P
    [72] Yoo E, Kim J, Hosono E. Large reversible Li storage of graphene nanosheetfamilies for use in rechargeable lithium ion batteries. Nano Lett.,2008,8(8):2277-2282P
    [73] Wang C, Li D, Too C O, Wallace G G. Electrochemical properties of graphenepaper electrodes used in lithium batteries. Chem. Mater.,2009,21(13):2604-2606P
    [74] Khantha M, Cordero N A, Mol I. Interaction of1ithium with Graphene: anabinitio study. Phys.Rev.B,2004,70(12):125422-12531P
    [75] Takamura T, Endo K, Fu L. Identification of nano-sized holes by TEM in thegraphene layer of graphite and the high rate discharge capability of Li-ion batteryanodes. Electrochim.Acta,2007,53(3):1055-1061P
    [76] Bessel C A, Laubernads K, Rodriguez N M. Graphite nanofibers as an electrodefor fuel cell applications. The Journal of Physical Chemistry B,2001,105,1115-1118P
    [77] Britto P J, Santhanam K S V, Rubio A. Improved charge transfer at carbonnanotube electrodes. Advance Materials,1999,11:154-157P
    [78] Che G L, Lakshmi B B, Fisher E.R. Carbon nanotube membranes forelectrochemical energy storage and production.Nature,1998,393:346-349P
    [79] Li W Z, Liang C H, Qiu J S. Carbon nanotubes as support for cathode catalyst ofa direct methanol fuel cell. Carbon,2002,40(5):791-794P
    [80] He Z B, Chen J H, Liu D Y. Deposition a delectrocatalytic properties of platinumnano particals on carbonnanotubes for methanol electrooxidation. MaterialsChemistry and Physics,2004,85:396-401P
    [81] Huang W J, Lin Y, Taylor S. Sonication-assisted functionalization andsolubilization of carbon nanotubes. Nano Letter,2002,2(3):231-234P
    [82] McCann E, Kechedzhi K, Falko V I. Weak localisation magnetoresistance andvalley symmetry in graphene. Physical Review Letters,2006,97:146805-146808P
    [83] Li W Z, Liang C H, Qiu J S. Carbon nanotubes as support for cathode catalyst ofa direct methanol fuel cell. Carbon,2002,40:787-803P
    [84] Dikin D A, Stankovich S, Zimney E J. Preparation and characterization ofgraphene oxide paper. Nature,2007,448:457-460P
    [85] Schedin F, Geim A K, Morozov S V. Detection of individual gas moleculesadsorbed on graphene. Nature Materials,2007,6:652-655P
    [86] Kou R, Shao Y Y, Liu J. Enhanced activity and stability of Pt catalysts onfunctionalized graphene sheets for electrocatalytic oxygen reduction.Electrochemistry Communications,2009,11(5):954-957P
    [87]张浩,曹高萍,杨裕生.电化学双电层电容器用新型炭材料及其应用前景.化学进展,2008,20(10):1495-1500页
    [88]黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学(B辑:化学),2009,39(9):887-896页
    [89] Stoller M D, Park S, Zhu Y. Graphene-based ultracapacitors. Nano Letters,2008,8:3498-3502P
    [90] Vivekchand S R C, Rout C S, Subrahmanyam K S. Graphene-basedelectrochemical supercapacitors. Journal of Chemical Sciences,2008,120(1):9-13P
    [91] Zhang Y, Li H, Pan L. Capacitive behavior of graphene-ZnO composite film forsupercapacitors. Journal of Electro analytical Chemistry,2009,634(1):68-71P
    [92] Yan J, Wei T, Shao B. Preparation of a graphene nanosheet/polyaniline compositewith high specific capacitance. Carbon,2010,48(2):487-493P
    [93] Stoller M D, Park S, Zhu Y, Ruoff R S. Graphene-based ultracapacitors. NanoLett.2008,8(10):3498-3502P
    [94] Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat.Mater.,2008,7(11):845-854P
    [95] Vivekchand S R C, Rout C S, Ahmanyalvl K S S. Graphene-basedelectro-chemical supercapacitors. J.Am.Chem.Sci.,2008,130(11):9-l3P
    [96] Klimov V, Mikhailovsky A A, Xu S. Optical gain and stimulated emission innanocrystal quantum dots. Science,2000,290(5490):314-317P
    [97] Srinivas G, Zhu Y, Piner R. Synthesis of graphene-like nanosheets and theirhydrogen adsorption capacity. Carbon,2010,48(3):630-635P
    [98] N’Diaye A T, Bleikamp S, Feibelman P J. Two-dimensional Ir cluster lattice on agraphene moire on Ir(111). Phys.Rev.Lett.,2006,97(21):215501P
    [99] Wu J, Pisula W, Mullen K. Graphenes as potential material for electronics.Chem.Rev.,2007,107(3):718-747P
    [100] Heersche H B, Jarillo-Herrero P, Ostinga J B. Bipolar supercurrent in graphene.Nature,2007,446(7131):56-59P
    [101] Hasan T, Sun Z P, Wang F Q. Nanotube-polymer composites for ultrafastphotonics. Adv.Mater.,2009,21(38-39):3874-3899P
    [102] Ang P K, Chen W, Wee A T S. Solution-Gated Epitaxial Graphene as pH Sensor.J.Am.Chem.Soc.2008,130(44):14392-14393P
    [103] Schedin F, Geim A K, Morozov S V. Detection of individual gasmoleculesadsorbed on graphene. Nat.Mater.,2007,6(9):652-655P
    [104] Hwang E H, Adam S, Sarma S D. Transport in chemically doped graphene in thepresence of adsorbed molecules. Phys.Rev.B,2007,76(19):195421-195429P
    [105] Robinson J T, Perkins F K, Snow E S. Reduced graphene oxide molecular sensors.Nano Lett.,2008,8(10):3137-3140P
    [106] Sundaram R S, Gomez-Navarro C, Balasubramanian K. Electrochemicalmodification of graphene. Adv.Mater.,2008,20(16):3050-3053P
    [107] Tang L H, Wang Y, Li Y M. Preparation, Structure, and ElectrochemicalProperties of Reduced Graphene Sheet Films. Adv.Funct.Mater.,2009,19(17):2782-2789P
    [108] Wang Y, Li Y M, Tang L H. Application of graphene-modified electrode forselective detection of dopamine. Electrochem.Commun.,2009,11(4):889-892P
    [109] Shang N G, Papakonstantinou P, McMullan M. Catalyst-free efficient growth,orientation and biosensing properties of multilayer graphene nanoflake films withsharp edge planes. Adv.Funct.Mater.,2008,18(21):3506-3514P
    [110] Wang Y, Li Y M, Tang L H, Lu J, Li H. Application of graphene-modifiedelectrode for selective detection of dopamine. Electrochem.Commun.2009,11(4):889-992P
    [111] Shi L P, Xiong S J. Phonon thermal condance of disordered graphene srips witharmchair edges. Phys.Let.A,2009,373(5):563-569P
    [112] Nika D L, Pokatilov E P, Askerov A S, Balandin A A. Phonon thermal conductionin graphene: role of umklapp and edge roughness scattering. Phys. Rev.B2009,79(20):155413P
    [113] Jiang J W, Wang J S, Li B W. Thermal conductance of graphene and dimerite.Phys.Rev.B2009,79(20):205418P
    [114] Geim A K, Novoselov K S. The rise of graphene. Nat. Mater.2007,6(3):183-191P
    [115] Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A. Graphene: The newtwo-dimensional nanomaterial. Angew.Chem.Int.Ed.2009,48(42):7752-7777P
    [116] Zhang H, Xu P, Du G, Chen Z, Oh K, Pan D, Jiao Z. A Facile One-Step Synthesisof TiO2/Graphene Composites for Photodegradation of Methyl Orange. NanoRes.,2011,4,274P
    [117] Liu Y, Ren Z Y, Wei Y L, Jiang B J, Feng S S, Zhang L Y, Zhang W B, Fu H G.Synthesis and applications of graphite carbon sphere with uniformly distributedmagnetic Fe3O4nanoparticles (MGCSs) and MGCS@Ag, MGCS@TiO2.Journal of Material Chemistry2010,20,4802-4808P
    [118] Feng S S, Ren Z Y, Wei Y L, Jiang B J, Liu Y, Zhang L Y, Zhang W B, Fu H G.Synthesis and application of hollow magnetic graphitic carbon microsphereswith/without TiO2nanoparticle layer on the surface. Chemical Communication.2010,46,6276-6278P
    [119] Bianchini C, Shen P K. Palladium-Based Electrocatalysts for Alcohol Oxidationin Half Cells and in Direct Alcohol Fuel Cells, Chem. Rev.2009,109,4183-4206P
    [120] Yoo E, Okata T, Akita T, Kohyama M. Nakamura J, Honma I. EnhancedElectrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface,Nano Lett.,2009,9,2255-2259P
    [121] Li Y M, Tang L H, Li J H. Pt/graphene Nano Composites as the Anode Catalystof Methanol Oxidation, Electrochem. Commun.,2009,11,846-849P
    [122] Li Y J, Gao W, Ci L J, Wang C M, Ajayan P M. Catalytic performance of Ptnanoparticles on reduced graphene oxide for methanol electro-oxidation, Carbon,2010,48,1124-1130P
    [123] Zhou Y G, Chen J J, Wang F B, Sheng Z H, Xia X H. A facile approach to thesynthesis of highly electroactive Pt nanoparticles on graphene as an anodecatalyst for direct methanol fuel cells, Chem. Commun.,2010,46,5951-5953P
    [124] Liu S, Wang J Q, Zeng J, Ou J F, Li Z P, Liu X H, Yang S R.“Green”electrochemical synthesis of Pt/graphene sheet nanocomposite film and itselectrocatalytic property, J. Power Sources,2010,195,4628-4633P
    [125] Williams G, Seger B, Kamat P V. TiO2-Graphene Nanocomposites. UV-AssistedPhotocatalytic Reduction of Graphene Oxide. ACS Nano,2008,2,1487P
    [126] Akhavan O. Graphene Nanomesh by ZnO Nanorod Photocatalysts. ACS Nano,2010,4,4174P
    [127] Li B, Cao H, Shao J, Qu M, Warner J H. Superparamagnetic Fe3O4nanocrystals@graphene composites for energy storage devices. J. Mater. Chem.,2011,21,5069P
    [128] Dreyer D R, Park S, Bielawski W C, Ruoff R S. The chemistry of graphene oxide.Chem. Soc. Rev.,2010,39,228P
    [129]黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学B辑:化学2009,39(9):887-896页
    [130]傅强,包信和.石墨烯的化学研究进展.科学通报2009,54(18):2657-2666页
    [131] Scheuermann G M, Rumi L, Steurer P, Bannwarth W, Mülhaupt R. Palladiumnanoparticles on graphite oxide and its functionalized graphenederivatives ashighly active catalysts for the suzuki-miyaura coupling reaction. J.Am.Chem.Soc.2009,131(23):8262-8270P
    [132] Kou R, Shao Y Y, Wang D H, Engelhard M H, Kwak J H, Wang J, Viswanathan VV, Wang C M, Lin Y H, Wang Y, Aksay I A, Liu J. Enhanced activity and stabilityof Pt catalysts on functionalized grapheme sheets for electrocatalytic oxygenreduction. Electrochem.Commun.2009,11(5):954-957P
    [133] Xu C, Wang X, Zhu J W. Graphene-metal particle nanocomposites. J. Phys. Chem.C2008,112(50):19841-19845P
    [134] Seger B, Kamat P V. Electrocatalytically active graphene-platinumnanocomposites Role of2-D carbon support in PEM fuel cells. J.Phys.Chem.C2009,113(19):7990-7995P
    [135] Muszynski R, Seger B, Kamat P. Decorating graphene sheets with goldnanoparticles. J.Phys.Chem.C2008,112(14):5263-5266P
    [136] Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I. Enhancedelectrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface.Nano Lett.2009,9(6):2255-2259P
    [137] Lightcap I V, Kosel T H, Kamat P V. Anchoring semiconductor and metalnanoparticles on a two-dimensional catalyst and shuttling electrons with reducedgraphene oxide. Nano Lett.2010,10(2):577-583P
    [138] Si Y C, Samulski E T. Exfoliated Graphene Separated by Platinum Nanoparticles.Chem.Mater.,2008,20(21):6792-6797P
    [139] Li Y, Tang L, Li J. Preparation and electrochemical performance for methanoloxidation of Pt/graphene nanocomposites. Electrochem.Commun.,2009,11(4):846-849P
    [140] Zhu C, Guo S, Zhai Y, Dong S. Layer-by-layer self-assembly for constructing agraphene/platinum nanoparticle three-dimensional hybrid nanostructure usingionic liquid as a linker. Langmuir,2010,26(10):7614-7618P
    [141] Guo S, Dong S, Wang E. Three-dimensional Pt-on-Pd bimetallic nanodendritessupported on graphene nanosheet: facile synthesis and used as an advancednanoelectrocatalyst for methanol oxidation. ACS Nano,2010,4(1):547-555P
    [142] Xu C, Wang X, Zhu J W. Graphene-Metal Particle Nanocomposites.J.Phys.Chem.C,2008,112(50):19841-19845P
    [143] Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I. EnhancedElectrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface,Nano Lett.,2009,9,2255-2259P
    [144] Li Y M, Tang L H, Li J H. Pt/graphene Nano Composites as the Anode Catalystof Methanol Oxidation, Electrochem. Commun.,2009,11,846-849P
    [145] Li Y J, Gao W, Ci L J, Wang C M, Ajayan P M. Catalytic performance of Ptnanoparticles on reduced graphene oxide for methanol electro-oxidation, Carbon,2010,48,1124-1130P
    [146] Zhou Y G, Chen J J, Wang F B, Sheng Z H, Xia X H. A facile approach to thesynthesis of highly electroactive Pt nanoparticles on graphene as an anodecatalyst for direct methanol fuel cells, Chem. Commun.,2010,46,5951-5953P
    [147] Liu S, Wang J Q, Zeng J, Ou J F, Li Z P, Liu X H, Yang S R.“Green”electrochemical synthesis of Pt/graphene sheet nanocomposite film and itselectrocatalytic property, J. Power Sources,2010,195,4628-4633P
    [148] Yang J, Tian C G, Wang L, Fu H G. An effective strategy to small-sized andhigh-dispersed palladium nano particles supported on graphene with excellentperformance for formic acid oxidation. Journal of Materials Chemistry2011,21,3384-3390P
    [149] Nugent J M, Santhanam K S V, Rubio. Fast electron transfer kinetics onmultiwalled carbon nanotube microbundle electrodes. Nano Letter,2001,1(2):87-91P
    [150] Huang W J, Lin Y, Taylor S. Sonication-assisted functionalization andsolubilization of carbon nanotubes. Nano Letter,2002,2(3):231-234P
    [151] Li W Z, Liang C H, Qiu J S. Carbon nanotubes as support for cathode catalyst ofa direct methanol fuel cell. Carbon,2002,40:787-803P
    [152] Zhao Z Z, Fang X, Li Y L, Wang Y, Shen P K, Xie F Y, Zhang X. The origin ofthe high performance of tungsten carbides/carbon nanotubes supported Ptcatalysts for methanol electrooxidation, Electrochem. Commun.,2009,11,290-293P
    [153] Wang R H, Tian C G, Wang L, Wang B L, Zhang H B, Fu H G. In situsimultaneous synthesis of WC/graphitic carbon nanocomposite as a highlyefficient catalyst support for DMFC. Chemical Communication2009,3104-3106P
    [154] ZhuY, Murali S, Stoller M D. Carbon-based supercapacitors produced byactivation of grapheme. Science,2011,332(6037):1537P
    [155] Kim T Y, Lee H W, Stoller M D. High-performance supercapacitors based onpoly (ionic liquid)-modified grapheme electrodes. ACS Nano,2011,5(1):436-442P
    [156] Zhang K, Mao L, Zhang L L. Surfactant-intercalated, chemically reducedgraphene oxide for high performance supercapacitor electrodes. J Mater Chem,2011,21(20):7302-7307P
    [157] Wang H W, Wu H Y, Chang Y Q. Tert-butylhydroquinone-decorated graphenenanosheets and their enhanced capacitive behaviors. Chin Sci Bull,2011,56(20):2092-2097P
    [158] Niu C, Sichel E K, Hoch R. High power electrochemicalcapacitors based oncarbon nanotube electrodes. Applied Physics Letter,1997,70(11):1480-1482P
    [159] Ye J, Liu X, Cui H. Electrochemical oxidation of multi-walled carbon nanotubesand its application to electrochemical double layer capacitors. ElectrochemistryCommunications,2005,7(3):249-255P
    [160] Zhang H, Cao G, Yang Y. Electrochemical properties of ultra-long, aligned,carbon nanotube array electrode in organic electrolyte. Journal of Power Sources,2007,172(1):476-480P
    [161] Lu W, Qu L, Henry K. High performance electrochemical capacitors from alignedcarbon nanotube electrodes and ionic liquid electrolytes.Journal of Power Sources,2009,189(2):1270-1277P
    [162] Stoller M D, Park S, Zhu Y. Graphene-based ultracapacitors. Nano Letters,2008,8:3498-3502P
    [163] Vivekchand S R C, Rout C S, Subrahmanyam K S. Graphene-basedelectrochemical supercapacitors. Journal of Chemical Sciences,2008,120(1):9-13P
    [164] Zhang Y, Li H, Pan L. Capacitive behavior of graphene-ZnO composite film forsupercapacitors. Journal of Electro analytical Chemistry,2009,634(1):68-71P
    [165] Yan J, Wei T, Shao B. Preparation of a graphene nanosheet/polyaniline compositewith high specific capacitance. Carbon,2010,48(2):487-493P
    [166] Qian Y, Lu S, Gao F. Preparation of MnO2/graphene composite as electrodematerial for supercapacitors. J Mater Sci,2011(46):1-6P
    [167] Wang H, Liang Y, Mirfakhrai T. Advanced asymmetrical supercapacitors basedon graphene hybrid materials. Nano Res,2011(4):1-8P
    [168] Zang Y, Li H, Pan L. Capacitive behavior of graphene-ZnO composite film forsupercapacitors. J Electroanal Chem,2009,634(1):68-71P
    [169] Mishra A K, Ramaprabhu S. Functionalized graphene-based nanocomposites forsupercapacitor application. J Phys Chem C,2011,115(29):14006-14013P
    [170] Chen Q, Tang J, Ma J. Graphene and nanostructured MnO2composite electrodesfor supercapacitors. Carbon,2011,49(9):2917-2925P
    [171] Nyholm L, Nystrom G, Mihranyan A. Toward flexible polymer andpaper-basedenergy storage devices. Adv Mater,2011,23(33):3751-3769P
    [172] Li C, Shi G. Synthesis and electrochemical applications of the composites ofconducting polymers and chemically converted grapheme. Electrochim Acta,2011(1):8P
    [173] Zhu Y, Murali S, Cai W. Graphene and graphene oxide: synthesis, properties, andapplications. Adv Mater,2010,22(35):3906-3924P
    [174] Li D, Muller M B, Gilje S. Processable aqueous dispersions of graphenenanosheets. Nanotechnology,2008,3(2):101-105P
    [175] Zhang K, Zhang L L, Zhao X S. Graphene/polyaniline nanofiber composites assupercapacitor electrodes. Chem Mater,2010,22(4):1392-1401P
    [176] Xu J, Wang K, Zu S Z. Hierarchical nanocomposites of polyaniline nanowirearrays on grapheneoxide sheets with synergistic effect for energy storage. ACSNano,2011,4(9):5019-5026P
    [177] Mini P A, Balakrishnan A, Nair S V. Highly super capacitive electrodes made ofgraphene/poly (pyrrole). Chem Commun,2011,47(20):5753-5755P
    [178] Xing W, Xue J S, Zheng T. Correlation between lithium intercalation capacity andmicrostructure in hard carbons. J. Electrochem. Soc.1996,143:3482-3491P
    [179] Dahn J R, Zheng T, Liu Y. Mechanisms for lithium insertion in carbonaceousmaterials. Science,1995,270:590-593P
    [180] Yoo E, Kim J, Hosono E. Large reversible Li storage of graphene nanosheetfamilies for use in rechargeable lithium ion batteries. Nano Lett.,2008,8:2277-2282P
    [181] Paek S, Yoo E, Honma I. Enhanced cyclic performance and lithium storagecapacity of SnO2/graphene nanoporous electrodes with three-dimensionallydelaminated flexible structure. Nano Lett.2009,9:72-75P
    [182] Wang Q, Shen X, Yao J. Graphene nanosheets for enhanced lithium storage inlithium ion batteries. Carbon2009,47:2049-2053P
    [183] Khantha M, Cordero N A, Molina L M. Interaction of lithium with graphene: Anbinitio study. Phys. Rev. B,2004,70:125422P
    [184] Wang D, Choi D, Li J. Self-assembled TiO2-graphene hybrid nanostructures forenhanced Li-ion insertion. ACS nano,2009,3:907-914P
    [185] Pan D, Wang S, Zhao B. Li storage properties of disordered graphene nanosheets.Chem. Mater.,2009,21:3136-3142P
    [186] Wang C, Li D, Too C O. Electrochemical properties of graphene paper electrodesused in lithium batteries. Chem. Mater.,2009,21:2604-2606P
    [187] Stoller M D, Park S, Zhu Y. Graphene-based ultracapacitors. Nano Lett.,2008,8:3498-3502P
    [188] Polyakov A A, Sci Metal. Modeling the basic parameters of heat treatment oflarge forgings. Heat Treatment,1995,37,7P
    [189] Tang Y B, Lee C S, Chen Z H, Yuan G D, Kang Z H, Lee S T. High-QualityGraphenes via a Facile Quenching Method for Field-Effect Transistors. NanoLett.,2009,9,1374P
    [190] Flahaut E, Bacsa R, Peigney A, Laurent C. Gram-scale CVD synthesis ofdouble-walled carbon nanotubes. Chem. Commun.,2003,1442P
    [191] Stoller M D, Park S J, Zhu Y W, An J H, Ruoff R S. Graphene-BasedUltracapacitors. Nano Lett.,2008,8:3498-3502P
    [192] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N.Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett.,2008,8:902-907P
    [193] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, StormerH L. Ultrahigh electron mobility in suspended graphene. Solid State Commun.,2008,146:351-355P
    [194] Zhang Y B, Tan Y W, Stormer H L, Kim P. Experimental observation of thequantum Hall effect and Berry's phase in graphene. Nature,2005,438:201-204P
    [195] Novoselov K S, McCann E, Morozov S V, Falko V I, Katsnelson M I, Zeitler U,Jiang D, Schedin F, Geim A K. Unconventional quantum Hall effect and Berry'sphase of2in bilayer graphene. Nat. Phys.,20062:177-180P
    [196] Jiao L Y, Zhang L, Wang X R, Diankov G, Dai H J. Narrow graphene nanoribbonsfrom carbon nanotubes. Nature,2009,458:877-880P
    [197] Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H. Highly conductinggraphene sheets and Langmuir–Blodgett films. Nature Nanotech.,2008,3,538P
    [198] Eda G, Fanchini G, Chhowalla. Large-area ultrathin films of reduced grapheneoxide as a transparent and flexible electronic material. Nature Nanotech.,2008,3,270P
    [199] Choucairl M, Stride J A. Gram-scale production of graphene based onsolvothermal synthesis and sonication. Nature Nanotech.,2009,4,30P
    [200] Zhao Q, Li C, He X, Zhao X. XPS study of N-doped TiOx thin films prepared byDC reactive magnetron sputtering. Key Eng Mater2003,249:457-62P
    [201] Chiang T-C, Seitz F. Photoemission spectroscopy in solids. Ann Phys2001,10(12):61-74P
    [202] Yumitori S. Correlation of C1s chemical state intensities with the O1s intensity inthe XPS analysis of anodically oxidized glass-like carbon samples. J Mater Sci2000,35(1):139-46P
    [203] Kozlowski C, Sherwood PMA. X-ray photoelectron spectroscopic studies ofcarbon-fiber surfaces. Part4. The effect of electrochemical treatment in nitricacid. J Chem Soc FaradT1Phys Chem Condensed Phases1984,80(8):2099-107P
    [204] Awad MI, Saleh MM, Ohsaka T. Oxygen reduction on rotating porous cylinder ofmodified reticulated vitreous carbon. J Solid State Electr2008,12(3):251-8P
    [205] Zhang G, Sun S, Yang D, Dodelet J-P, Sacher E. The surface analyticalcharacterization of carbon fibers functionalized by H2SO4/HNO3treatment.Carbon2008,46(2):196-205P
    [206] Boukhvalov D, Katsnelson M. Tuning the gap in bilayer graphene using chemicalfunctionalization: density functional calculations. Phys Rev B2008,78(8):1-5P
    [207] Ramm M, Ata M, Gross T, Unger W. X-ray photoelectron spectroscopy andnear-edge X-ray-absorption fine structure of C60polymer films. Appl Phys A:Mater2000;70(4):387-90P
    [208] Jaramillo A, Spurlock LD, Young V, Brajter-Toth A. XPS characterization ofnanosized overoxidized polypyrrole films on graphite electrodes. The Analyst1999,124:1215-21P
    [209] Qiu Y, Gao L. Preparation and characterization of crn/cn and nano-TiN/CNcomposites. J Am Ceram Soc2005,88(2):494-6P
    [210] Riascos H, Zambrano G, Prieto P, Devia A, Galindo H, Power C. Characterizationof fullerene-like CNx thin films deposited by pulsed-laser ablation of graphite innitrogen. Phys Status Solidi (a)2004,201(10):2390-3P
    [211] Jung I, Pelton M, Piner R, Dikin D A, Stankovich S, Watcharotone S. Simpleapproach for high-contrast optical imaging and characterization ofgraphene-based sheets. Nano Letters2007,7(12):3569-75P
    [212] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y.Synthesis of graphene-based nanosheets via chemical reduction of exfoliatedgraphite oxide. Carbon2007,45(7):1558-65P
    [213] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G.Preparation and characterization of graphene oxide paper. Nature2007,448(7152):457-60P
    [214] Li D, Mu¨ller M B, Gilje S, Kaner R B, Wallace G G. Processable aqueousdispersions of graphene nanosheets. Nature Nanotechnol2008,3(2):101-15P
    [215] Watcharotone S, Dikin D A, Stankovich S, Piner R, Jung I, Dommett G H B.Graphene–silica composite thin films as transparent conductors. Nano Letters2007,7(7):1888-92P
    [216] K tz R, Carlen M. Principles and applications of electrochemical capacitors.
    [217] Electrochimica Acta,2000,45(15-16):2483-2498P
    [218] Burke A. Ultracapacitors: why, how, and where is the technology. Journal ofPower Sources,2000,91(1):37-50.
    [219] Obreja Vasile V. N. On the performance of supercapacitors with electrodes basedon carbon nanotubes and carbon activated material-A review. Physica Elsevier,2008,40(7):2596-2605P
    [220] Pandolfo A G, Hollenkamp A F. Carbon properties and their role insupercapacitors. Journal of Power Sources,2006,157(1):11-27P
    [221] Chu A, Braatz P. Comparison of commercial supercapacitors and high-powerlithium-ion batteries for power-assist applications in hybrid electric vehicles I.Initial characterization. Journal of Power Sources,2002,112(1):236-246P
    [222] Ito E, Mozia S, Okuda M. Nanoporous carbons from cypress II. Application toelectric double layer capacitors. New Carbon Materials,2007,22(4):321-326P
    [223] Mitani S, Lee S, Yoon S. Activation of raw pitch coke with alkali hydroxide toprepare high performance carbon for electric double layer capacitor. Journal ofPower Sources,2004,133(2):298-301P
    [224] Biniak S, Bozena D, Janusz S. Electrochemical behaviour of carbon fibreelectrodes in various electrolytes. Double-layer capacitance. Carbon,1995,33(9):1255-1263P
    [225] Tanahashi I, Yoshida A, Nishino A. Activated carbon fiber sheets as polarizableelectrodes of electric double layer capacitors. Carbon,1990,28(4):477-482P
    [226] Vivekchand S R C, Rout C S, Subrahmanyam K S. Graphene-basedelectrochemical supercapacitors. Journal of Chemical Sciences,2008,120(1):9-13P
    [227] Zhang Y, Li H, Pan L. Capacitive behavior of graphene-ZnO composite film forsupercapacitors. Journal of Electro analytical Chemistry,2009,634(1):68-71P
    [228] Yan J, Wei T, Shao B. Preparation of a graphene nanosheet/polyaniline compositewith high specific capacitance. Carbon,2010,48(2):487-493P
    [229] Wang Y, Wang C, Guo C. Influence of carbon structure on performance ofelectrode material for electric double-layer capacitor. Journal of Physics andChemistry of Solids,2008,69(1):16-22P
    [230] Wang L, Toyoda M, Inagaki M. Dependence of electric double layer capacitanceof activated carbons on the types of pores and their surface areas. New CarbonMaterials,2008,23(2):111-115P
    [231] Jiang B J, Tian C G, Wang L, Xu Y X, Wang R H, Qiao Y J, Ma Y G, Fu H G.Facile fabrication of high quality graphene from expandable graphite:simultaneous exfoliation and reduction. Chem. Commun.46(2010)4920-4922P
    [232] M. Choucair, P. Thordarson, J. A. Stride, Diagnosing lung cancer in exhaledbreath using gold nanoparticles. Nat. Nanotechnol.4(2009)30P
    [233] L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, P. M. Ajayan,Synthesis of Nitrogen-Doped Graphene Films for Lithium Battery Application.ACS Nano4(2010)6337-6342P
    [234] Casanovas, J.; Ricart, J. M.; Rubio, J.; Illas, F.; JimenezMateos, J. M. J. Am.Chem. Soc. The interpretation of X-ray photoelectron spectra of pyrolizedS-containing carbonaceous materials.118(1996)8071-8076P
    [235] Yan J, Wei T, Shao B. Preparation of a graphene nanosheet/polyaniline compositewith high specific capacitance. Carbon,2010,48(2):487-493P
    [236] Liu Y, Xue J S, Dahn J R. Mechanism of lithium insertion in hard carbonsprepared by pyrolysis of epoxy resins. Carbon34(1996)193-200P
    [237] Deng D H, Pan X L, Yu L, Cui Y, Jiang Y P, Qi J, Li W-X, Fu Q, Ma X C, Xue QK, Sun G Q, Bao X H. Toward N-doped graphene via solvothermal synthesis.Chem. Mater.23(2011)1188-1193P
    [238] Qu P. Several Aspects of Dye-sensitized Titanium Dioxide Colloidal Thin Films.2001:1P
    [239] Mafuné F, Kohno J, Takeda Y, Kondow T. Formation of Gold Nanoparticles byLaser Ablation in Aqueous Solution of Surfactant. J. Phys. Chem. B.2000:104,8333P
    [240] Abid J P, Wark A W, Brevet P F, Girault H H. High efficiency dye-sensitizednanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem.Commun.2002:792P
    [241] Pol V G, Srivastava D N, Palchik O, Palchik V, Slifkin M A, Weiss A M,Gedanken A. Sonochemical Deposition of Silver Nanoparticles on Silica Spheres.Langmuir.2002,18:3352P
    [242] Sun S, Anders S, Hamann H F, Thiele Jan-U, Baglin J E E, Thomson T, FullertonE E, Murray C B, Terris B D. Fabrication of Hollow Palladium Spheres and TheirSuccessful Application to the Recyclable Heterogeneous Catalyst for SuzukiCoupling Reactions. J. Am. Chem. Soc.2002:124,12P
    [243] Wang T C, Rubner M F, Cohen R E. Polyelectrolyte Multilayer Nanoreactors forPreparing Silver Nanoparticle Composites: Controlling Metal Concentrationand Nanoparticle Size. Langmuir.2002,18:3370P
    [244] Dai J, Bruening M L. Catalytic Nanoparticles Formed by Reduction of Metal Ionsin Multilayered Polyelectrolyte Films. Nano Letters.2002,2:497P
    [245] Lee K, Seo W S, Park J T. Synthesis and Optical Properties of Colloidal TungstenOxide Nanorods. J. Am. Chem. Soc.2003,125:3408P
    [246] Shi H T, Qi L M, Ma J M. An Inorganic Route for Controlled Synthesis ofW18O49Nanorods and Nanofibers in Solution. J. Am. Chem. Soc.2003,125:3450P
    [247] Yuan. Z H, Jia. J H, Zhang. L D. Effect of ZnFe2O4dopant on structural phasetransformation and photocatalytic activity of TiO2nanopowders. Mater.Chem.Phys.2002,(73):323-326P
    [248] Jin Joo, Soon G K, Taekyung Y, Min C, Jinwoo L. Large-Scale Synthesis of TiO2Nanorods via Nonhydrolytic Sol-Gel Ester Elimination Reaction and TheirApplication to Photocatalytic Inactivation of E. coli.2005,109(32):15297-15302P
    [249] Nobuyuki S, Akira F, Toshiya W, Kazuhito H. Quantitative Evaluation of thePhotoinduced Hydrophilic Conversion Properties of TiO2Thin Film Surfacesbythe Reciprocal of Contact Angle.2003,107(4):1029-1035P
    [250] Lim S H, Luo J, Zhong Z, Ji W, Lin J. Room-Temperature Hydrogen Uptake byTiO2Nanotubes. Inorg. Chem.2005,44(12):4124-4126P
    [251] Mor G K, Oomman K V, Craig A. Fabrication of tapered, conical shapedtitaniananotubes. J.Mater.Res.2003,18(11):2588-2593P
    [252] Sakthivel Sh, Kisch H. Daylight photocatalysis by carbon-modified titaniumDioxide. Angew. Chem., Int. Ed.2003,42,4908-4911P
    [253] Zhao L, Chen X F, Chen X, Zhang Y J, Wei W, Sun Y H, Antonietti M,Titirici1M-M. One-Step Solvothermal Synthesis of a Carbon@TiO2DyadeStructure Effectively Promoting Visible Light Photocatalysis. Advanced Materials2010,22,3317-3321P
    [254] Li X L, Zhang G Y, Bai X D, Sun X M, Wang X R, Wang E G, Dai H J. Highlyconducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol.2008,3,538-542P
    [255] Daoud W A, Pang G K. Synthesis and Electrochemical Properties of TiO2-B@CCore-Shell Nanoribbons. J. Phys. Chem. B2006,110,25746-25750P
    [256] Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund P C. Large Area, Few-LayerGraphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano.Lett.2006,6,2667-2673P
    [257] Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S. Thestructure of suspended graphene sheets. Nature2007,446,60-63P
    [258] Ni Zh H, Wang Y Y, Yu T, Shen Z X. Raman Spectroscopy and Imaging ofGraphene. Nano. Res.2008,1,273-291P
    [259] Jun Y W, Casula M F, Sim J H, Kim S Y. Alivisatos A P. Surfactant-AssistedElimination of a High Energy Facet as a Means of Controlling the Shpaes of TiO2Nanocrystals. J. Am. Chem. Soc.2003,125,15981-15985P
    [260] Li D, Müller M, Gilje B S, Kaner R B, Wallace G G. Processable aqueousdispersions of graphene nanosheets. Nat. Nanotechnol.2008,3,101-105P
    [261] Liu K S, Fu H G, Shi K Y, Xiao F S, Jing L Q, Xin B F. Preparation of Large-PoreMesoporous Nanocrystalline TiO2Thin Films with Tailored Pore Diameters. J.Phys. Chem. B2005,109,18719P
    [262] Fu Q, Liu J. Preparation of Large-Pore Mesoporous Nanocrystalline TiO2ThinFilms with Tailored Pore Diameters. Langmuir2005,21,1162-1165P
    [263] Chen D H, Hsieh Ch H. Synthesis of nickel nanoparticles in aqueous cationicsurfactant solutions. J. Mater. Chem.2002,12,2412-2415P
    [264] Jing L Q, Xin B F, Yuan F Y, Fu H G. Photophysical and Photochemical Processesof Zn-doped TiO2Nanoparticles and Their Relationships. J. Phys. Chem. B.2006,110,17860-17865P
    [265] Wang W D, Philippe S, Philippe K. Photocatalytic degradation of phenol onMWNT and titania composite catalysts prepared by a modified sol-gel method.Appl. Catal. B: Environ.2005,56,305P
    [266] Williams G, Seger B, Kamat P V. TiO2-Graphene Nanocomposites. UV-AssistedPhotocatalytic Reduction of Graphene Oxide. ACS Nano2008,2,1487-1491P
    [267] Tsukasa T, Shigeyoshi I, Susumu K, Hiroshi Y. Effect of adsorbents coated withtitanium dioxide on the photocatalytic degradation of propoxur. Environ. Sci.Technol.1996,30,1275-1281P
    [268] Riegel G, Bolton J R. Photocatalytic Efficiency Variability in TiO2Particles. J.Phys. Chem.1995,99,4215P
    [269] Linsebigler A L, Guanquan L, Yates J T. Photocatalysis on TiO2Surfaces:Principles, Mechanisms, and Selected Results. Chem. Rev.1995,95,735P
    [270] Carp O, Huisman C L. Photoinduced reactivity of titanium dioxide. Solid StateChem.2004,32,33P
    [271] Chen M S, Goodman D W. The Structure of Catalytically Active Gold on Titania.Science2004,306,252P
    [272] Fang W Q, Zhou J Z, Liu J, Chen Z G, Yang C, Sun C H, Qian G R, Zou J, Qiao SZ, Yang H G. Hierarchical structures of single-crystalline anatase TiO2nanosheets dominated with {001} facets. Chem. Eur. J,2011,17,1423-1427P
    [273] Han X G, Kuang Q, Jin M S, Xie Z X, Zheng L S. Synthesis of TitaniaNanosheets with a High Percentage of Exposed (001) Facets and RelatedPhotocatalytic Properties. J. Am. Chem. Soc.2009,131,3152P
    [274] Choi H C, Jung Y M, Kim S B. Vibrational Spectroscopy2005,37,33P
    [275] Yu J G, Yu H G, Cheng B, Zhao X J, Yu J C, Ho W K. The effect of calcinationtemperature on the surface microstructure and photocatalytic activity of TiO2thinfilms prepared by liquid phase deposition. J. Phys. Chem. B2003,107,13871P
    [276] Jing L Q, Fu H G, Wang B Q, Wang D J, Xin B F. Effects of Sn dopant on thephotoinduced charge property and photocatalytic activity of TiO2nanoparticles.Appl. Catal. B2006,62,282P
    [277] Melaiye A, Sun Z, Hindi K, Milsted A, Ely D. Formation of nanosilver particlesand antimicrobial activity. J. Am. Chem. Soc.127(2005)2285-2291P
    [278] Guin D, Manorama S V, Latha J N L, Singh S. Photoreduction of Silver on Bareand Colloidal TiO2Nanoparticles/Nanotubes: Synthesis, Characterization, andTested for Antibacterial Outcome. J. Phys. Chem. C.111(2007)13393-13397P
    [279] Yang G W, Gao G Y, Wang C, Xu C L, Hu L L. Controllable deposition of Agnanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon46(2008)747-752P
    [280] Jena B K, Mishra B K, Bohidar S. Synthesis of Branched Ag Nanoflowers Basedon a Bioinspired Technique: Their Surface Enhanced Raman Scattering andAntibacterial Activity. J. Phys. Chem. C113(2009)14753-14758P
    [281] Tian Ch G, Zhang Q, Jiang B J, Tian G H, Fu H G. Glucose-mediatedsolution–solid route for easy synthesis of Ag/ZnO particles with superiorphotocatalytic activity and photostability. J. Alloys Compd.509(2011)6935-6941P
    [282] Zhang H, Chen G. Potent Antibacterial Activities of Ag/TiO2NanocompositePowders Synthesized by a One-Pot Sol-Gel Method. Environ. Sci. Technol.43(2009)2905-2910P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700