用户名: 密码: 验证码:
抗李氏杆菌细菌素及李氏杆菌噬菌体内溶菌素CBD基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单核细胞增多症李氏杆菌作为食源性致病菌,对食品安全造成严重的威胁。控制李氏杆菌污染的有效方法之一就是在食品中添加细菌素。乳酸片球菌PA003产生的片球菌素是一种明显抑制李氏杆菌的细菌素。为了解决野生菌株片球菌素产量低的问题,实现片球菌素的高效表达,本研究将片球菌素结构基因pedA分别克隆到大肠杆菌及食品级乳酸乳球菌表达系统,进行异源表达;李氏杆菌噬菌体编码的内溶菌素是导致李氏杆菌裂解的因素之一,本研究将细菌素结构基因与内溶菌素中编码细胞表面结合蛋白(CBD)的基因构建到同一乳酸乳球菌表达载体,观察重组菌株吸附李氏杆菌并分泌细菌素的能力。
     以乳酸片球菌PA003全基因组为模板将片球菌素的结构基因pedA扩增后插入到表达质粒pET32a(+)中,转化大肠杆菌BL21(DE3)感受态细胞,从克隆菌株中提取的重组质粒含有pedA基因,其核苷酸序列与NCBI公布的片球菌素pedA基因序列(GenBankAY083244)同源性为100%。重组菌株经诱导后,可高效表达预期大小的22kDa硫氧还蛋白和片球菌素的融合蛋白,表达形式为包涵体。用谷胱甘肽氧化还原系统的复性缓冲液处理后并采用Ni-IDA亲和重力柱分离纯化,在500mmol/L咪唑浓度下洗脱得到单一蛋白条带。融合蛋白经肠激酶酶切后得到与片球菌素大小一致的多肽,以李氏杆菌CVCC1595为指示菌,产量为512AU/ml培养液。采用相同的策略将扩增的pedA基因克隆到表达质粒pET20b(+)中,利用载体的pelB信号肽实现融合蛋白在胞内和细胞周质的可溶表达,片球菌素产量为384AU/ml培养液。
     将乳酸乳球菌usp45信号肽序列和片球菌素结构基因pedA连接,分别插入到大肠杆菌-乳酸乳球菌穿梭质粒pMG36e的P32启动子和乳酸乳球菌食品级表达载体pLEB688的P_(45)启动子后的多克隆位点,得到的重组质粒转化至乳酸乳球菌NZ9000。重组菌液中检测到分泌的片球菌素,对李氏杆菌有抑菌活性。
     将含有P_(45)启动子、usp45信号肽和片球菌素结构基因papA序列(P_(45)-SSusp45-papA),和含有P_(45)启动子、usp45信号肽和明串珠菌素C结构基因lecC序列(P_(45)-SSusp45-lecC)分别克隆到pBluescript/fliC H7质粒中,转化大肠杆菌JT1。重组大肠杆菌菌株能够分别分泌具有抑制李氏杆菌活性的片球菌素和明串珠菌素C的表达产物。
     将CBD基因分别克隆到分泌片球菌素、明串珠菌素C的乳酸乳球菌表达载体,转化乳酸乳球菌GRS5,实现细菌素基因与CBD基因的共表达,获得的重组菌株具有同时吸附李氏杆菌和分泌细菌素的能力。在此基础上,通过菌体接合作用引入乳酸链球菌素产生和免疫基因,构建能够同时分泌片球菌素和乳酸链球菌素、以及明串珠菌素C和乳酸链球菌素的重组菌株,实现了两类细菌素在相同表达载体中的共表达。
     本研究构建了硫氧还蛋白与片球菌素的融合蛋白在大肠杆菌细胞内以包涵体形式存在的及可溶性分泌的两种高效表达系统;实现了片球菌素在食品级表达系统乳酸乳球菌中的分泌表达;将CBD基因与细菌素基因在乳酸乳球菌中共表达,得到能同时吸附李氏杆菌和分泌具有抑菌活性的细菌素的重组乳酸菌;构建同时分泌乳酸链球菌素与片球菌素,乳酸链球菌素与明串珠菌素C的两种细菌素的乳酸乳球菌表达系统。以上研究为细菌素的生产提供了新的方法,对控制食品中的李氏杆菌,提高食品安全水平具有潜在的应用价值。
As a foodborne pathogen, Listeria monocytogenes is a great threat to food safety.One effective way of inhibiting Listeria contamination is to add bacteriocin in food.Pediocin produced by Pediococcus acidilactici PA003is a strong anti-listerialbacteriocin. In order to solve low production of pediocin in this wild type strain,pediocin structure gene pedA was cloned into Escherichia coli and food-gradeLactococcus lactis expression systems, respectively, for heterologous expression.Listeria phage endolysin is one of the factors for Listeria lysis. In this study,bacteriocin structure gene and gene encoding Listeria phage endolysin cell-wallbinding domain (CBD) were constructed in the same Lc. lactis expression vector toexamine recombinant strain’s abilities of binding Listeria and secreting bacteriocin.
     The total DNA of P. acidilactici PA003was used as the template to amplify thestructural gene pedA which was inserted into pET32a(+) vector before transformationof E. coli BL21(DE3) competent cells. The recombinant plasmid containing the pedAgene was100%homologous to the pedA gene published in the NCBI (GenBankAY083244). This recombinant strain was induced and efficiently expressed22kDafusion protein of thioredoxin and pediocin in the form of inclusion body. A singleprotein band was observed in500mmol/L imidazol elute of Ni-IDA agarose resincolumn after treatment of the renaturation buffer in GSSG-GSH system. One proteinband corresponded with the predicted pediocin was obtained after enterokinasetreatment and the antimicrobial activity against L. monocytogenes CVCC1595is512AU/ml of culture. Same strategy was adopted using pET20b(+) as the expressionvector. The pelB signal peptide in this vector resulted in the soluble expression offusion protein both intracellularly and in the periplasmic space. Pediocin productionwas384AU/ml of culture.
     The signal sequence of usp45from Lc. lactis and pediocin structure gene pedAwere ligated, and then inserted into multiple clone sites after the promoter P32of E.coli-Lc. lactis shuttle vector pMG36e and promoter P_(45)of food-grade Lc. lactis vectorpLEB688respectively. Recombinant plasmids were electroporated into Lc. lactisNZ9000. Pediocin secretion was detected in the recombinant cultures which showedinhibitory activities against L. monocytogenes.
     The P_(45)promoter gene, signal sequence of usp45and pediocin structure gene papA (P_(45)-SSusp45-papA), and the P_(45)promoter sequence, signal sequence of usp45and leucocin C structure gene lecC (P_(45)-SSusp45-lecC) were cloned into vectorpBluescript/fliC H7,respectively, and electroporated into E. coli JT1strain.Recombinant E. coli strains secreted anti-listerial expression products of pediocin andleucocin C respectively.
     CBD genes were cloned into pediocin and leucocin C secretion vectors of Lc.lactis, respectively, and transformed into Lc. lactis GRS5. Bacteriocin structure geneand CBD gene were co-expressed. Recombinant strains were capable of bindingListeria and secretion of bacteriocin. On the basis of it, nisin production and immunegenes were introduced by conjugation and the recombinant strains produced pediocinand nisin, leucocin C and nisin respectively, which realized co-production of twobacteriocins in the same vectors.
     In this study, thioredoxin-PedA was expressed both as inclusion body and solublesecreted product in E. coli cells at high levels. Pediocin was secreted in food-gradeexpression system of Lc. lactis. CBD gene and bacteriocin structure gene wereco-expressed in Lc. lactis resulting in Listeria-binding and Listeria-killingrecombinant Lc. lactis strains. Nisin and pediocin, or nisin and leucocin C, weresecreted together in the constructed Lc. lactis strain. This research provided novelmethods for bacteriocin production potentially useful for control of Listeria in foodand also for improvement of food safety level.
引文
[1]Kaur G, Singh T P, Malik R K et al., Mechanism of nisin, pediocin34, andenterocin FH99resistance in Listeria monocytogenes, Probiotics&Antimicro Prot,2012,4:11~20
    [2]Calo-Mata P, Arlindo S, Boehme K et al., Current applications and future trends oflactic acid bacteria and their bacteriocins for the biopreservation of aquatic foodproducts, Food Bioprocess Technol,2008,1:43~63
    [3]Liu S, Han Y, Zhou Z, Lactic acid bacteria in traditional fermented Chinese foods,Food Research International,2011,44:643~651
    [4]Nettles C G., Susan F, Barefoot S F, Biochemical and genetic characterization ofbacteriocin of food-associated lactic acid bacteria, J Food Protection,1993,50:338~356
    [5]Klaenhammer T R, Genetic of bacteriocins produced by lactic acid bacteria, FEMSMicrobiol Rev,1993,12:39~85
    [6]Hust A, Function of nisin and nisin-like basic proteins in the growth cycle ofStreptococcus lactis, Nature,1967,214:1232~1234
    [7]Cotter P D, Hill C, Ross P R, Bacteriocins: developing innate immunity for food,Nature,2005,3:777~788
    [8]Hammami R, Zouhir A, Le Lay C et al., BACTIBASE second release: a databaseand tool platform for bacteriocin characterization, BMC Microbiology,2010,10:22
    [9]Gillor O, Etzion A, Riley M A, The duel role of bacteriocins as anti-and probiotics,Appl Microbiol Biotechnol,2008,81:591~606
    [10]朱文淼,刘稳,乳酸菌细菌素的分子生物学研究进展,中国微生态学杂志,2000,12:113~115
    [11]Siegers K, Entian K D, Genes involved in immunity to the lantibiotic Nisinproduced by Lactococcus lactis6F, Applied and Environmental Microbiology,1995,12:1082~1089
    [12]李明春,田瑞,邢来君,乳球菌肽(Nisin)的研究进展,基础研究,1999,12:10~12
    [13]Drider D, Fimland G, Héchard Y et al., The continuing story of Class IIabacteriocin, Microbiology and molecular biology reviews,2006,70:564~582
    [14]Chen Y, Ludescher R D, Montville T J, Electrostatic interaction, but not theYGNGV consensus motif, govern the binding of pediocin PA-1and its fragmentsto phospholipid vesicles, Appl Environ Microbiol,1997,63:4770~4777
    [15]Chen Y, Sharpira R, Eisenstein M et al., Functional characterization of pediocinPA-1binding to liposomes in the absence of a protein receptor and its relationshipto a predicted tetiary structure, Appl Environ Microbiol,1997,63:524~531
    [16]Okereke A, Montville T J, Nisin dissipates the proton motive force of the obligateanaerobe Clostridium sporogenes PA3679, Appl Environ Microbiol,1992,58:2463~2467
    [17]Bruno M E C, Montville T J, Common mechanistic action of bacteriocins fromlactic acid bacteria, Appl Environ Microbiol,1993,59:3003~3010
    [18]Kaiser A L, Montville T J, Purification of the bacteriocin bavaricin MN andcharacterization of its mode of action against Listeria monocytogenes Scott A cellsand lipid vesicles, Appl Environ Microbiol,1996,62:4529~4535
    [19]Maftah A, Renault D, Vignoles C et al., Membrane permeabilization of Listeriamonocytogenes and mitochondria by bacteriocin mesentaricin Y105, J Bacteriol,1993,175:3232~3235
    [20]Moll G N, Hildeng-Hauge H, Nissen-Meyer J et al., Mechanistic properties of thetwo-component bacteriocin lactococcin G, J Bacteriol,1998,180:96~99
    [21]Nicholls D G, Ferguson S J, Chemiosmotic energy transduction. In: Nicholls DG,Ferguson SJ (eds) Bioenergetics2, London: Academic Press,2002,1~20
    [22]Montville T J, Chen Y, Mechanistic action of pediocin and nisin: recent progressand unresolved questions, Appl Microbiol Biotechnol,1998,50:511~519
    [23]Ojcius D M, Young J D, Cytolytic pore-forming proteins and peptides: is there acommon structural motif? TIBS,1991,16:225~229
    [24]Driessen A J, van den Hooven H W, Kuiper W et al., Mechanistic studies oflantibiotic-induced permeabilization of phospholipid vesicles, Biochemistry,1995,34:1606~1614
    [25]Breukink E, Wiedemann I, Kraaij C Van et al., Use of the cell wall precursor lipidII by a pore-forming peptide antibiotic, Science,1999,286:2361~2364
    [26]Friedrich C L, Moyles D, Beveridge T J et al.,Antibacterial action of structurallydiverse cationic peptides on Gram-positive bacteria, Antimicrob AgentsChemother,2000,44:2086~2092
    [27]Brotz H, Josten M, Wiedemann I et al., Role of lipid-bound peptidoglycanprecursors in the formation of pores by nisin, epidermin and other lantibiotics,Mol Microbiol,1998,30:317~327
    [28]Broz H, Bierbaum G, Leopold K et al., The lantibiotic mersacidin inhibitspeptidoglycan synthesis by targeting lipid II, Antimicrob Agents Chemother,1998,42:154~160
    [29]Beaulieu L, Aomari H, Groleau D et al., An improved and simplified method forthe large-scale purification of pediocin PA-1produced by Pediococcus acidilactici,Biotechnol Appl Biochem,2006,43:77~84
    [30]Abee T, Krockel L, Hill C, Bacteriocins: modes of action and potentials in foodpreservation and control of food poisoning, Int J Food Microbiol,1995,28:169~185
    [31]Delves-Broughton J, Blackburn P, Evans RJ et al., Application of the bacteriocin,nisin, Antonie van Leeuwenhoek,1996,69:193~202
    [32]García P, Rodríguez L, Rodríguez A et al., Food biopreservation: promisingstrategies using bacteriocins, bacteriophages and endolysins, Trends in FoodScience and Technology,2010,21:373~382
    [33]Bernbom N, Jelle B, Brogren C H et al., Pediocin PA-1and a pediocin producingLactobacillus plantarum strain do not change the HMA rat microbiota,International Journal of Food Microbiology,2009,130:251~257
    [34]Castellano P, Belfiore C, Fadda S et al., A review of bacteriocinogenic lactic acidbacteria used as bioprotective cultures in fresh meat produced in Argentina, MeatScience,2008,79:483~499
    [35]Chung H J, Montivile T J, Chikindas M J, Nisin depletes ATP and proton motiveforce in mycobacteria, Letters in Applied Microbiology,2000,31:416~420
    [36]Rayman M K, Aris B, Hust A, Nisin: a possible alternative or adjunct to nitrite inthe preservation of meats, Appl Environ Microbiol,1981,41:375~380
    [37]Schlyter J H, Glass K A, Loeffelholz J et al., The effects of diacetate with nitrite,lactate, or pediocin on the viability of Listeria monocytogenes in turkey slurries,Int J Food Microbiol,1993,19:271~281
    [38]Coventry M J, Muirhead K, Hickey M W, Partial characterisation of pediocin PO2and comparison with nisin for biopreservatition of meat products, Int J FoodMicrobiol,1995,26:133~145
    [39]Sobrino-López A, Martín-Belloso O, Use of nisin and other bacteriocins forpreservation of dairy products, International Dairy Journal,2008,18:329~343
    [40]宋连花,王彦文,乳链菌肽的研究进展,食品研究与开发,2004,25:89~92
    [41]Mauriello G, De Luca E, La Storia A et al., Antimicrobial activity of anisin-activated plastic film for food packaging, Letters in Applied Microbiology,2005,41:464~469
    [42]Mitra S, Chakrabartty P K, Biswas S R, Potential production and preservation ofdahi by Lactococcus lactis W8, a nisin-producing strain, LWT-Food Science andTechnology,2010,43:337~342
    [43]Settanni L, Corsetti A, Application of bacteriocins in vegetable foodbiopreservation, International journal of food microbiology,2008,121:123~138
    [44]Choi M H, Park Y H, Selective control of lactobacilli in kimchi with nisin, Lettersin Applied Microbiology,2000,30:173~177
    [45]Grande M J, Lucas R, Abriouel H et al., Inhibition of Bacillus licheniformis LMG19409from ropy cider by enterocin AS-48, Journal of Applied Microbiology,2006,101:422~428
    [46]蒋永福,张焜,黎碧娜,天然防腐剂-乳酸链球菌素的研究进展,精细化工,2002,19:453~458
    [47]Tiwari B K, Valdramidis V P, O’Donnell C P et al., Application of naturalantimicrobials for food preservation, J Agric Food Chem,2009,57:5987-6000
    [48]郭清泉,张兰威,冯镇等,Nisin在酸奶制品中的应用,食品与机械,2001,84:30~31
    [49]罗欣,朱燕,Nisin在牛肉冷却肉保鲜中的应用研究,食品科学,2000,21:53~57
    [50]Engelke G, Gutowski-Eckel Z, Hammelmann M et al., Biosynthesis of thelantibiotic nisin: genomic organization and menbrane localization of the NisBprotein, Appl Environ Microbiol,1992,58:3730~3743
    [51]Diep D B, Havarstein L S, Nes I F, Characterization of the locus responsible forthe bacteriocin production in Lactobacillus plantarum C11, J Bacteriol,1996,178:4472~4483
    [52]Rauch P J, de Vos W M, Characterization of the novel nisin-sucrose conjugativetransposon Tn5276and its insertion in Lactococcus lactis, J Bacteriol,1992,174:1280~1287
    [53]Chikindas M, Emond E, Haandrikman A J et al., Heterologous processing andexport of the bacteriocins pediocin PA-1and lactococcin A in Lactococcus lactis:a study with leader exchange, Probiotics&Antimicro Prot,2011,2:66~76
    [54]Klein C, Kaletta C, Entian K D, Biosynthesis of the lantibiotic subtilin inregulated by a histidine kinase/response regulator system, Appl Environ Microbiol,1993,59:296~303
    [55]Engelke G, Gutowski-Eckel Z, Kiesau P et al., Regulation of nisin biosythesis andimmunity in Lactococcus lactis6F3, Appl Environ Microbiol,1994,60:814~825
    [56]Miller K W, Ray P, Steinmetz T et al., Gene organization and sequences ofpediocin AcH/PA-1production operons in Pediococcus and Lactobacillusplasmids, Letters in Applied Microbiology,2005,40:56~62
    [57]Marugg J D, Gonzalez C F, Kunka B S et al., Cloning, expression, and nucleotidesequence of genes involved in production of pediocin PA-1, a bacteriocin fromPediococcus acidilactici PAC1.0, Appl Environ Microbiol,1992,58:2360~2367
    [58]Martín M, Gutiérrez J, Criado R et al., Chimeras of mature pediocin PA-1fused tothe signal peptide of enterocin P permits the cloning, production, and expressionof pediocin PA-1in Lactococcus lactis, Journal of Food Protection,2007,70:2792-2798
    [59]Martín M, Gutiérrez J, Criado R et al., Cloning, production and expression of thebacteriocin enterocin A produced by Enterococcus faecium PLBC21inLactococcus lactis, Appl Microbiol Biotechnol,2007,76:667~675
    [60]王培培,乳酸片球菌16SrRNA基因和片球菌素基因的克隆及序列分析:[硕士学位论文],天津;天津大学,2007
    [61] Haugen H S, Fimland G, Nissen-Meyer J, Mutational Analysis of Residues in theHelical Region of the Class IIa Bacteriocin Pediocin PA-1, Appl Envir Microbiol,2011,77:1966~1972
    [62]Nissen-Meyer J, Rogne P, Oppeg rd C et al., Structure-Function Relationships ofthe Non Lanthionine-Containing Peptide (class II) Bacteriocins Produced byGram-Positive Bacteria, Current Pharmaceutical Biotechnology,2009,10:19~37
    [63]Kjos M, Nes I F, Diep D B et al., Mechanisms of resistance to bacteriocinstargeting the mannose phosphtransferase system, Appl Envir Microbiol,2011,77:3335~3342
    [64]Diep D B, Skaugen M, Salehian Z et al., Common mechanisms of target cellrecognition and immunity for class II bacteriocins, Proc Natl Acad Sci USA,2007,104:2384~2389
    [65]Opsata M, Nes I F, Holo H, Class IIa bacteriocin resistance in Enterococcusfaecalis V583: The mannose PTS operon mediates global transcriptionalresponses, BMC Microbiology,2010,10:224
    [66]Terpe K, Overview of bacterial expression systems for heterologous proteinproduction: from molecular and biochemical fundamentals to commercial systems,Appl Microbiol Biotechnol,2006,72:211~222
    [67]Dong H, Nilsson L, Kurland C G, Co-variation of tRNA abundance and codonusage in Esherichia coli at different growth rate, J Mol Biol,1996,260:649~663
    [68]Kurland C, Gallant J, Errors of heterologous protein expression, Curr OpinBiotechnol,1996,7:489~493
    [69]Beaulieu L, Tolkatchev D, Jetté J-F et al., Production of active pediocin PA-1inEscherichia coli using a thioredoxin gene fusion expression approach: cloning,expression, purification, and characterization, Can J Microbiol,2007,53:1246~1258
    [70]Austin C, Novel approach to obtain biologically active recombinant heterodimericproteins in Escherichia coli, Journal of Chromatography B,2003,786:93~107
    [71]龙建银,王会信,外源基因在大肠杆菌中表达的研究进展,生物化学与生物物理进展,1997,24:126~131
    [72]Clark E D B, Protein refolding for industrial process, Current Opinion inBiotechnology,2001,12:202~207
    [73]Zahn R, Ashley M B, Sarah P, Chaperone activity and structure of monomericpolypeptide binding domains of GroEI, Proe Natl Acad Sci USA,1996,93:15024~15029
    [74]Myriam M A, Consuelo G, Lourival D P, Oxidative refolding chromatography:folding of the scorpion toxin Cn5, Nature Biotechnology,1999,17:187~191
    [75]徐明波,孟文华,马贤凯,PDI、PPI和分子伴侣催化重组人IL-2和GM-CSF的再折叠,中国科学B辑,1994,24:717~723
    [76]Hagen A J, Hatton T A, Wang D I C, Protein refolding in reverse micelles,Biotech and Bioeng,1989,35:955~965
    [77]Muller C, Rinas U, Renaturation of heterodimeric platelet-derived growth factorfrom inclusion bodies of recombinant Esherichia coli using size-exclusionchromatography, J Chromatography A,1999,855:203~213
    [78]Geng X D, Chang X Q, High-performance hydrophobic interactionchromatography as a tool for protein refolding, J Chromatography,1992,599:185~194
    [79]Yoshimoto M, Immobilized liposome chromatography for studies ofprotein-menbrane interactions and refolding of denatural bovine carbonicanhydrase, J Chromatography B,1998,712:59~71
    [80]唐以杰,陈清池,利用大肠杆菌获取重组蛋白的研究进展,广东教育学院学报,2001,21:60~64
    [81]Choi J H, Lee S Y, Secretory and extracellular production of recombinant proteinsusing Escherichia coli, Appl Microbiol Biotechnol,2004,64:625~635
    [82]Markrides S C, Strategies for achieving high-level expression of gene inEsherichia coli, Microbol Rev,1996,60:512~538
    [83]Ingham A B, Moore R J, Recombinant production of antimicrobial peptides inheterologous microbial systems, Biotechnol Appl Biochem,2007,47:1~9
    [84]Nigutová K, Seren ová L, Piknová M et al., Heterologous expression offunctionally active enterolysin A, class III bacteriocin from Enterococcus faecalis,in Escherichia coli, Protein Expression and Purification,2008,60:20~24
    [85]Jasniewski J, Cailliez-Grimal C, Gelhaye E et al., Optimization of the productionand purification processes of carnobacteriocins Cbn BM1and Cbn B2fromCarnobacterium maltaromaticum CP5by heterologous expression in Escherichiacoli, Journal of Microbiological Methods,2008,73:41~48
    [86]Kim Y S, Kim M J, Kim P et al., Cloning and production of a novel bacteriocin,lactococcin K, from Lactococcus lactis subsp. lactis MY23, Biotechnology Letters,2006,28:357~362
    [87]Klocke M, Mundt K, Idler F et al., Heterologous expression of enterocin A, abacteriocin from Enterococcus faecium, fused to a cellulose-binding domain inEscherichia coli results in a functional protein with inhibitory activity againstListeria, Appl Microbiol Biotechnol,2005,67:532~538
    [88]Moon G S, Pyun Y R, Kim W J, Expression and purification of a fusion-typedpediocin PA-1in Escherichia coli and recovery of biologically active pediocinPA-1, International Journal of Food Microbiology,2006,108:136~140
    [89]Konings W N, Kok J, Kuipers O P et al., Lactic acid bacteria: the bugs of the newmillennium, Current Opinion in Microbiology,2000,3:276~282
    [90]孙强正,徐建国,乳酸乳球菌食品级表达载体的研究进展,中国微生态学杂志,2006,18:260~261
    [91]Daniel C, Roussel Y, Kleerebezem M et al., Recombinant lactic acid bacteria asmucosal biotherapeutic agents, Trends in Biotechnology,2011,29:499~508
    [92]Hu S, Kong J, Kong W, Identification of nisin-producing strains bynisin-controlled gene expression system, Curr Microbiol,2009,58:604~608
    [93] Martín M C, Pant N, Ladero V et al., Integrative expression system for deliveryof antibody fragments by lactobacilli, Appl Envir Microbiol,2011,77:2174~2179
    [94]王荫榆,有关乳酸菌和表达体系的研究:[博士论文],上海;复旦大学,2003
    [95]Rigoulay C, Poquet I, Madsen S M et al., Expression of the Staphylococcusaureus surface proteins HtrA1and HtrA2in Lactococcus lactis, FEMSMicrobiology,2004,237:279~288
    [96]Mierau I, Leij P, Swam I Van et al., Industrial-scale production and purificationof a heterologous protein in Lactococcus lactis using the nisin-controlled geneexpression system NICE: The case of lysostaphin, Microbial Cell Factories,2005,4:15
    [97]de Ruyter P, Kuipers O P, Meijer W C et al., Food-grade controlled lysis ofLactococcus lactis for accelerated cheese ripening, Nat Biotechnol1997,15:976~979
    [98]Mierau I, Kleerebezem M,10years of the nisin-controlled gene expressionsystem (NICE) in Lactococcus lactis, Appl Microbiol Biotechnol,2005,68:705~717
    [99]阮孟斌,朱明月,周鹏,外源基因在乳酸菌中的表达,应用与环境生物学报,2004,10:526~529
    [100]Takara T M, Saris P E J, A food-grade cloning vector for lactic acid bacteriabased in the nisin immunity gene nisI, Appl Microbial Biotechnol,2002,59:467~471
    [101]Sun Z, Zhong J, Liang X et al., Novel mechanism for nisin-resistance viaproteolytic degradation of nisin by the nisin-ressitance protein NSR, AntimicrobAgents Chemother,2009,53:1964~1973
    [102]Liu C Q, Su P, Khunajakr N et al., Development of food-grade cloning andexpression vectors for Lactococcus lactis, J Appl Microbiol,2005,98:127~135
    [103]Havarstein L S, Holo H, Nes I F, The leader peptide of colicin V sharesconsensus sequences with leader peptide that are common among peptidebacteriocins produced by gram-positive bacteria, Microbiology,1994,140:2383~2389
    [104]Havarstein L S, Diep D B, Nes I F, A family of bacteriocin ABC transporterscarry out proteolytic processing of their substrates concomitant with export, MolMicrobiol,1995,16:229~240
    [105]Belkum M J, Worobo R W, Stiles M E, Double-glycine-type leader peptidesdirect secretion of bacterioncins by ABC transporters: colicin V secretion inLactococcus lactis, Mol Microbiol,1997,23:1293~1301
    [106]Horn N, Fernandez A, Dodd H M et al., Nisin-controlled production of pediocinPA-1and collin V in nisin-and non-nisin-producing Lactococcus lactis strains,Appl Environ Microbiol,2004,70:5030~5032
    [107]Horn N, Martínez M I, Martínez J M et al., Enhanced production of pediocinPA-1and coproduction of nisin and pediocin PA-1by Lactococcus lactis, ApplEnviron Microbiol,1999,65:4443~4450
    [108]Hanlin M B, Kalchayanand N, Ray P et al., Bacteriocin of lactic acid bacteria incombination have greater antibacterial activity, Journal of food Protection,1993,56:252~255
    [109]Mulet-Powell N, Lacoste-Armynot AM, Vi as M et al., Interactions betweenpairs of bacteriocins from lactic acid bacteria, Journal of Food Protection,1998,61:1210~1212
    [110]Rekhif N, Atrih A, Lefebure G, Selection of spontaneous mutants of Listeriamonocytogenes ATCC15313resistant to different bacteriocins produced by lacticacid strains, Current Microbiology,1994,28:237~241
    [111]Reviriego C, Ferandez A, Horn N et al., Production of pediocin PA-1andcoproduction of nisin A and pediocin PA-1, by wild Lactococcus lactis strains ofdairy origin, International Dairy Journal,2005,15:45~49
    [112]Martínez J M, Kok J, Sanders J W et al., Heterologous coproduction of enterocinA and pediocin PA-1by Lactococcus lactis: detection by specificpeptide-directed antibodies, Appl Environ Microbiol,2000,66:3543~3549
    [113]Rocourt J, The genus Listeria and Listeria monocytogenes: phylogenetic position,taxonomy, and identification. In: Ryser ET, Marth EH (eds) Listeria, listeriosis,and food safety,2nd ed. USA: Marcel Dekker, New York,1999,1~20
    [114]Leonard P, Hearty S, Quinn J et al., A generic approach for the detection ofwhole Listeria monocytogenes cells in contaminated samples using surfaceplasmon resonance, Biosensors and Bioelectronics,2004,19:1331~1335
    [115]Ramaswamy V, Cresence V M, Rejitha J S, Listeria-review of epidemiology andpathogenesis, J Microbiol Immunol Infect,2007,40:4~13
    [116]Vazquez-Boland J A, Kuhn M, Berche P et al., Listeria pathogenesis andmolecular virulence determinants, Clin Microbiol Rev,2001,14:584~640
    [117]Bille J, Blanc D S, Schmid H et al., Outbreak of human listeriosis associatedwith tomme cheese in northwest Switzerland,2005, EuroSurveill,2006,11:91~93
    [118]Schultz, EW, Listerella Infections: A Review, Stanford Medical Bulletin,1945,3:135~151
    [119]Zimmer M, Sattelberger E, Inman R B et al., Genome and proteome of Listeriamonocytogenes phage PSA: an unusual case for programmed+1translationalframeshifting in structural protein synthesis, Mol Microbiol,2003,50:303~317
    [120]Carlton R M, Noordman W H, Biswas B et al., Bacteriophage P100for controlof Listeria monocytogenes in foods: genome sequence, bioinformatic analyses,oral toxicity study, and application, Regul Toxicol Pharmacol,2005,43:301~312
    [121]Loessner M J, Rees C E D, Listeria phages: basics and applications. In Phages:Their role in bacterial pathogenesis and biotechnology, Washington D C: ASMPress,2005,362~379
    [122]Mahony J, Auliffe O M, Ross R P et al., Bacteriophage as biocontrol agents offood pathogens, Current Opinion in Biotechnology,2011,22:157~163
    [123]Coffey B, Mills S, Coffey A et al., Phage and their lysins as biocontrol agents forfood safety application, Annu Rev Food Sci Technol,2010,1:449~468
    [124]Bren L, Bacteria-eating virus approved as food additive, FDA Consum,2007,41:20-22
    [125]Loessner M J, Bacteriophage endolysins-current state of research andapplications, Curr Opin Microbiol,2005,8:480~487
    [126]Borysowski J, Weber-Dabrowska B, Gorski A, Bacteriophage endolysins as anovel class of antibacterial agents, Exp Biol Med (Maywood),2006,231:366~377
    [127]Hermoso J A, Garcia J L, Garcia P, Taking aim on bacterial pathogens: fromphage therapy to enzybiotics, Curr Opin Microbiol,2007,10:461~472
    [128]Loessner M J, Kramer K, Ebel F et al., C-terminal domains of Listeriamonocytogenes bacteriophage murein hydrolases determine specific recognitionand high-affinity binding to bacterial cell wall carbohydrates, Mol Microbiol,2002,44:335~349
    [129]Schmelcher M, Shabarova T, Eugster M R et al., Rapid multiplex detection anddifferentiation of Listeria cells by use of fluorescent phage endolysin cell wallbinding domains, Appl Envir Microbiol,2010,76:5745~5756
    [130]Georgiou G, Stathopoulos C, Daugherty PS et al., Display of heterologousproteins on the surface of microorganisms: From the screening of combinatoriallibraries to live recombinant vaccines, Nautre Biotechnology,1997,15:29~34
    [131] Bloois E van, Winter R T, Kolmar H et al., Decoration microbes: surface displayof proteins on Escherichia coli, Trends in Biotechnology,2011,19:79~85
    [132]Nhan N T, de Valdivia E G, Gustavsson M et al., Surface display of salmonellaepitopes in Escherichia coli and Staphylococcus carnosus, Microbial Factories,2011,10:22
    [133]Pozzi G, Oggioni M R, Manganelli R et al., Expression of M6gene ofStreptococcus pyogenes in Streptococcus gordonii after chromosomal integrationand transcriptional fusion, Research in Microbiology,1992,143:449~457
    [134]Leenhouts K, Buist G, Kok J, Anchoring of proteins to lactic acid bacteria,Antonie van Leeuwenhoek,1999,76:367~376
    [135]Steen M T, Chung Y J, Hansen J N, Characterization of the nisin gene as part ofa polycistronic operon in the chromosome of Lactococcus lactis ATCC11454,Appl Environ Microbiol,1991,57:1181~1188
    [136]Li R, Takala T M, Qiao M et al., Nisin-selectable food-grade secretion vector forLactococcus lactis, Biotechnology Letters,2011,33:797~803
    [137]Wang J Y, Chao Y P, Immobilization of cells with surface-displayedchitin-binding domain, Appl Environ Microbiol,2006,72:927~931
    [138]Westerlund-Wikstr m B, Tanskanen J, Virkola R et al., Functional expression ofadhesive peptides as fusions to Escherichia coli flagellin, Protein Engineering,1997,10:1319~1326
    [139]Kim Y S, Kim M J, Kim P et al., Cloning and production of a novel bacteriocin,lactococcin K, from Lactococcus lactis subsp. lactis MY23, BiotechnologyLetters,2006,28:357~362
    [140]Yang Z, Liu Q, Wang Q et al., Novel bacterial surface display systems based onouter membrane anchoring elements from the marine bacterium Vibrioanguillarum, Appl Environ Microbiol,2008,74:4359~4365
    [141]Papagianni M, Anastasiadou S, Pediocins: the bacteriocins of pediococci.Sources, production, properties and applications, Microbial Cell Factories,2009,8:3
    [142]Li M, Fan H, Liu J et al., High pH solubilization and chromatography-basedrenaturation and purification of recombinant human granulocytecolony-stimulating factor from inclusion body, Appl Biochem Biotechnol,2012,166:1264~1274
    [143]Tran-Moseman A, Schauer N, de Bernardez C E, Renaturation of Escherichiacoli-derived recombinant human macrophage colony-stimulating factor, ProteinExpr Purif,1999,16:181~189
    [144]于文国,陶秀娥,包涵体蛋白复性及其影响因素,河北工业科技,2007,24:314~316
    [145]李亚玲,周志江,韩烨等,乳酸片球菌细菌素的分离纯化及理化性质,食品工业科技,2007,8:94~97
    [146]Chen C M, Sebranek J G, Dickson J S et al., Use of pediocin for control ofListeria monocytogenes on Frankfurters, Journal of Food Science,2003,15:35~56
    [147]Sorensen H P, Mortensen K K, Soluble expression of recombinant proteins inthe cytoplasm of Esherichia coli, Microbial Cell Factories,2005,4:1~8
    [148]Sariyar B, Ozkan P, Kirdar B et al., Expression and translocation of glucoseisomerase as a fusion protein in E. coli, Enzyme and Microbial Technology,2004,35:105~112
    [149]van de Guchte M, van der Vossen J M, Kok J et al., Construction of alactococcal expression vector: expression of hen egg white lysozyme inLactococcus lactis subsp. lactis, Appl Environ Microbiol,1989,55:224~228
    [150]Reenen C A van, van Zyl W H, Dicks L M T, Expression of the immunityprotein of plantaricin423, produced by Lactobacillus plantarum423, andanalysis of the plasmid encoding the bacteriocin, Appl Environ Microbiol,2006,72:7644~7651
    [151]Franke C M, Leenhouts K J, Haandrikman A J et al., Topology of LcnD, aprotein implicated in the transport of bacteriocins from Lactococcus lactis,Journal of Bacteriology,1996,178:1766~1769
    [152]Borrero J, Jiménez J J, Gútiez L et al., Use of the usp45lactococcal secretionsignal sequence to drive the secretion and functional expression of enterococcalbacteriocins in lactococcus lactis, Appl Microbial Biotechnol,2011,89:131~143
    [153]Le Loir Y, Nouaille S, Commissaire J et al., Signal peptide and propeptideoptimization for heterologous protein secretion in Lactococcus lactis, ApplEnviron Microbiol,2001,67:4119~4127
    [154]Martínez B, Bravo D, Rodríguez A, Consequences of the development ofnisin-resistant Listeria monocytogenes in fermented dairy products, Journal ofFood Protection,2005,68:2383~2388
    [155] Oliver S P, Jayarao B M, Almeida R A, Foodborne pathogens in milk and thedairy farm environment: food safety and public health implications. FoodbornePathogens and Disease,2005,2:115~129
    [156]Benkerroum N, Ghouati Y, Ghalfi H et al., Biocontrol of Listeria monocytogenesin a model cultured milk (lben) by in situ bacteriocin production fromLactococcus lactis ssp. lactis, International Journal of Dairy Technology,2002,55:14~151
    [157]Schvartzman M S, Belessi X, Butler F et al., Comparison of growth limits ofListeria monocytogenes in milk, broth and cheese, Journal of AppliedMicrobiology,2010,109:1790~1799
    [158]Pitt W M, Harden T J, Hull R R, Behavior of Listeria monocytogenes inpasteurized milk during fermentation with lactic acid bacteria, Journal of FoodProtection,2000,63:916~920
    [159]Stergiou V A, Thomas L V, Adams M R, Interactions of nisin with glutathione ina model protein system and meat, Journal of food protection,2006,69:951~956
    [160]Galvez A, Lopez R L, Abriouel H et al., Application of bacteriocins in thecontrol of foodborne pathogenic and spoilage bacteria, Critical reviews inbiotechnology,2008,28:125~152
    [161]Hartmann H A, Wilke T, Erdmann R, Efficacy of bacteriocin-containing cell-freeculture supernatants from lactic acid bacteria to control Listeria monocytogenesin food, International journal of food microbiology,2011,146:192~199
    [162]de Buyser M L, Dufour B, Maire M et al., Implication of milk and milk productsin food-borne diseases in France and in different industrialized countries, Int JFood Microbiol,2001,67:1~17
    [163]Somkuti G A, Steinberg D H, Pediocin production in milk by Pediococcusacidilatici in co-culture with Streptococcus thermophilus and Lactobacillusdelbrueckii subsp. bulgaricus, J Ind Microbiol Biotechnol,2011,37:65~69
    [164]Tipparaju S, Ravishankar S, Slade P J, Survival of Listeria monocytogenes invanilla-flavored soy and dairy products stored at8℃, Journal of Food Protection,2004,67:378~382
    [165]Fimland G, Sletten K, Nissen-Meyer J, Complete amino acid sequence of thepediocin-like antimicrobial peptide leucocin C, BBRC,2002,295:826~827
    [166]Budde B B, Hornbaek T, Jacobsen T et al., Leuconostoc carnosum4010has thepotential for use as a protective culture for vacuum-packed meats: cultureisolation, bacteriocin identification, and meat application experiments, Int J FoodMicrobiol,200383:171~84
    [167]Francisco J A, Earhart C F, Georgiou G, Transport and anchoring of β-lactamaseto the external surface of Eshcerichia coli, Proc Natl Acad Sci,1992,89:2713~2717
    [168]Stathopoulos C, Georgiou G, Earhart C F, Characterization of Esherichia coliexpression an Lpp’OmpA (46-159)-PhoA fusion protein localized in the outermembrane, Appl Microbiol Biotechnol,1996,45:112~119
    [169]Majander K, Anton L, Antikainen J et al., Extracellular secretion of polypeptidesusing a modified Escherichia coli flagellar secretion apparatus, NatureBiotechnol,2005,23:475~481
    [170]Dieye Y, Usai S, Clier F et al., Design of a protein-targeting system for lacticacid bacteria, J Bacteriol,2001,183:4157~4166
    [171]Narita J, Okano K, Kitao T et al., Display of α-amylase on the surface ofLactobacillus casei cells by use of the PgsA anchor protein, and production oflactic acid from starch, Appl Environ Microbiol,2006,72:269~275
    [172]Liu S, Kyl-Nikkil K, Saris P E J, Cell immobilization studies using acellulose-binding domain fused to PrtP in Lactococcus lactis, BioengineeredBugs,2011,2:160~162
    [173]Medina M B, Houten L Van, Cooke P H et al., Real-time analysis of antibodybinding interactions with immobilized E. coli O157:H7cells using the BIAcore,Biotechnol Techn,1997,11:173~176
    [174]Broadbent J R, Sandine W E, Kondo J K, Characteristics of Tn5307exchangeand intergeneric transfer of genes associated with nisin production, ApplMicrobiol Biotechnol,1995,44:139~146
    [175]Broadbent J R, Kondo J K, Genetic construction of nisin-producing Lactococcuslactis subsp. cremoris and analysis of a rapid method for conjugation, Americansociety for microbiology,1991,57:517~524

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700