用户名: 密码: 验证码:
潮汐活动对亚热带地区红树林生态系统水热平衡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地能量交换和蒸散是影响湿地各生态过程和功能的重要因素,其影响湿地水热平衡、养分循环、碳累积以及植被生产力。滨海湿地生态系统位于陆地与海洋的交汇处,易受潮汐周期性的影响。由于潮汐可能作为一个能量源或汇,其带来的横向通量会影响湿地生态系统的能量分配和能量收支,进而影响到滨海湿地生态系统结构和功能。红树林是滨海湿地主要的湿地类型,也是蓝碳碳汇的主要贡献者,其能量交换及水汽通量(蒸散)已经成为滨海湿地生态学研究的重要科学问题。本论文以中国福建亚热带红树林生态系统为研究对象,结合涡度相关技术(Eddy covariance, EC)和树干茎流法(Sap flow)对亚热带红树林生态系统的能量平衡、蒸散及红树植物蒸腾(水分利用)进行了系统研究,分析了能量平衡各分量的分配特征、能量闭合水平以及影响能量闭合和能量分配的因素;研究红树林生态系统蒸散的变化特征及其影响因素。此外,还分别从生态系统和植物个体水平上对比分析了红树植物水分利用的特征及其对环境因子的响应等,并揭示了滨海湿地特有环境因子-潮汐对滨海湿地生态系统的能量平衡、蒸散及红树植物蒸腾的调节机理。主要结果与结论如下:
     1.2009-2011年红树林生态系统半小时尺度和日尺度Rn-G (Rn:净辐射;G:土壤热通量)和LE+HS (LE:潜热通量;Hs:显热通量)的线性回归相关指数分别为0.63-0.69和0.67-0.79,表明利用用涡度相关法可以准确评估生态系统的能量分配和蒸散水平。通过对2009-2011年亚热带红树林能量各组分季节变化和分配的研究发现:生态系统能量平衡各组分在年内的变化过程主要受季节气候的变化,在不同时间尺度上,该生态系统能量平衡各分量分配比例不同。冬季,显热占主导地位,其他季节潜热占主导地位。总体看来,两个站点的能量主要分配给潜热通量(38.15%)和显热通量次之(28.56%),而土壤热通量最小(<0.1%)。
     2.通过不同生态系统对比研究中发现,红树林滨海湿地生态系统潜热通量占净辐射比例(LE/Rn)与其他湿地生态系统接近,但是远远低于陆地生态系统(农田、阔叶林生态系统等)。而较低的LE/Rn及能量不闭合可能与潮汐影响有关。潮汐是影响滨海湿地生态系统能量闭合和能量分配的重要因子。冬季潮汐活动降低波文比值,并显著降低了生态系统能量闭合度;夏季则相反,导致生态系统的波文比显著增大,并在一定程度上提高了能量闭合度。红树林生态系统较低的普利斯特里-泰勒系数(LE/LEeq比率)(小于0.8)及较低的冠层表面导度(5-9mm s-1),以及冬季和夏季下午较低的解耦合系数值都说明:在受到淹水和高盐度严重胁迫下,红树林生态系统蒸散主要受到生物调节,即气孔和饱和水汽压差(VPD)控制。3.蒸散红树林生态系统蒸散(ET)发具有规律的日变化进程和季节动态。夏季大于春秋两季,冬季最小。2009-2011年全年总蒸发量分别为945.54mm、886.49mm、1062.00mm。环境因子在很大程度上制约着蒸散的变化,其中以净辐射和饱和水汽压差对蒸散影响最大。潮汐活动也是影响生态系统的蒸散的主要环境因子。夏秋季,潮汐活动降低ET;冬春季,潮汐活动使ET增大。分别利用Priestley-Taylor (PT)模型和Penman-Monteith (PM)模型来模拟亚热带红树林生态系统的蒸散,都能得到较好的拟合结果。
     4.蒸散,红树植物树干茎流密度(SFD)随PAR和VPD的变化呈现明显的昼夜动态和季节动态,表现为典型的单峰型曲线。不同径级的秋茄和白骨壤的SFD范围分别为15.37-38.21g m-2s-1和21.26-73.15gm-2s-,说明红树植物的SFD处于较高的水平。然而,不论从个体水平上还是生态系统水平上,红树植物水分利用都十分保守。秋茄和白骨壤的最大日蒸腾量小于分别为0.31-5.43kg d-1和2.01-10.61k d-1。外推得到秋茄和白骨壤林段总蒸腾量分别为85.56mm和129.51mm,红树植物的蒸腾量约占生态系统蒸散(915.50mm)的23%。
     5.不同季节,环境因子对树干茎流、日蒸腾量(F)和蒸散的响应程度不同。夏季,与树干茎流相关性较高(R2>0.4)的因子是光合有效辐射(PAR)、饱和水汽压差(VPD)和风速;冬季主要影响因子变为PAR、VPD和气温(Ta)。对于F,除了以上因子外,空气相对湿度也是影响F的主要的环境因子。其中,PAR和VPD是影响红树植物蒸腾的最主要因子(R2>0.7)。而对于ET,除了PAR之外,其他因子与ET的相关性都较弱(R2<0.4)。由此说明,PAR是反映红树林生态系统蒸散的重要环境参数。
     6.蒸散红树植物的冠层气孔导度随着VPD的增加而降低,随PAR的增加而呈线性增加,并且随VPD的增加,气孔导度对PAR的敏感性逐渐下降。虽然冠层表面导度也随VPD的增加而降低,随PAR的增加而增加,但是相关指数较低。说明冠层表面导度对环境因子的敏感性较低。
     7.成熟红树植物的蒸腾和生态系统的蒸散对周期性潮汐活动的响应不同。其中,潮汐浸淹对白骨壤的蒸腾影响最大(SFD降低7.5%,日蒸腾量降低了16.83%),秋茄次之(SFD降低5.8%,日蒸腾量降低了12.35%),蒸散最少(降低了4.5%和10.26%)。同时,周期性潮汐淹水也在一定程度上使树林生态系统的初级生态系生产力(GEP),净生态系统交换(NEE)和生态系统呼吸(ER)分别降低了6.56%,6.84%和12.08%。
     以上结果表明:由于独特的地理位置,红树林受到潮汐带来淹水和盐度的胁迫,因此红树植物水分利用十分保守,其蒸腾作用主要受到植物生理的调控,而潮汐活动显著改变了红树林生态系统的水热平衡及植物水分利用。为进一步揭示红树植物生态系统高水分利用效率及高生产力的原因机理奠定基础。对于研究湿地生态系统CO2净交换、水汽通量及二者之间的关系,深刻认识与理解湿地生态系统物质循环与能量交换特点、把握湿地碳循环过程及其驱动机制具有重要意义。
Energy exchange and evapotranspiration (ET) between land surface and the atmosphere is among the most important processes in any ecosystem since it can significantly affect temperature, water transport, plant growth and many other ecosystem processes. Understanding the magnitude and changes of various energy fluxes as well as related regulatory mechanisms is critical for quantifying ecosystem functions and their responses to climate change. Located between the interface of land and sea (intertidal zone), estuarine wetland ecosystems is affected by the periodic tidal flooding, where tidal activities and upstream hydrology can play vital roles in regulating the magnitude and dynamics of the energy budget through horizontal transportation of mass and energy, and then affect the ecological processes and functions of estuarine wetlands,. Despite of the importance roles mangrove forests playing in regulating matter exchange in the coastal zones, there are still limited studies on the energy balance and ET in mangrove ecosystems. In this dissertation study, energy balance, ET variations and water use of mangrove trees of subtropical mangrove ecosystems in Yunxiao (23°55'N,117°23'E) of Fujian province, China were investigated by combining eddy covariance technique and tree sap flow methods. The characteristics of energy distribution of energy balance components, energy closure level, ET variation, water use of mangrove trees as well as their response to environmental factors were all discussed, including tidal influence on energy balance, ET and water use of mangroves. The purpose of this research is to understand the characteristics of energy flux, water vapor flux and water consumption by transpiration of the mangrove forests and lay the foundation for further researches on environmental mechanism, especial the tidal regulation in coastal zone. Main results and conclusions are listed below.
     1. The results of energy closure in the past three years (2009-2011) as indicated as the correlation index of liner regression between Rn-G (Rn:net radiation, G:soil heat flux) and LE+HS(LE:latent heat, Hs:sensible heat) were0.63-0.69and0.67-0.79, indicating that the flux data quality was reliable and suitable for the ecosystem energy partitioning studies. Daily flux of net radiation (Rn), latent heat flux (LE), sensible heat flux (Hs), and soil heat flux (G) had remarkable seasonal variation. Seasonal energy flux was controlled by the seasonal change. The sensible heat was greater than latent heat and the bowen ratio was larger than1during winter season. The latent heat dominated the energy flux and had greater energy flux than sensible heat and the bowen ratio reduced to0.4-0.6from spring to autumn. Overall, the latent heat showed the higher ratio (38.15%) in net radiation than that of the sensible heat (28.56%), whilst the ratio of soil heat was neglectable (<0.1%). The latent heat was almost equal to sensible heat under flooding and high salinity stress.
     2. When comparing the energy partitioning in different ecosystem, the LE/Rn was closed to that of wetland ecosystems, but was much lower than that of terrestrial ecosystems including agriculture ecosystem, broad-leave forest ecosystem and so on. This indicated that mangrove forest in subtropical zone was water conservative. In addition, tidal activity was also the important factor influencing energy closure and energy partitioning. Tidal activity can significantly reduced the bowen ratio and energy closure in winter, whereas it would dramatically increased the bowen ratio, and at the same time enhanced the energy closure to some extent in summer. The low value of LE/LEeq all year and low Ω value in winter and summer after indicated the stomata and VPD mostly controlled ET in any hydraulic or salinity stress condition specifically during dry season. And the low canopy surface conductivity (gc-e) showed that transpiration might be reduced though stomatal closure under sever water stress, and the reduced stomatal conductivity can limited energy partitioning to latent heat.
     3. ET variation had regular diurnal process, and presented obvious seasonal dynamic with the seasonal change. Compared with the other terrestrial ecosystems using eddy covariance system, it had more water consumption in summer with the mean daily value of3.4mm d-1and the whole year ET value of838-1062mm during2009-2011. Both the Priestly-Taylor and Penman-Monteith models could perform well to ET for mangrove ecosystems. It was also seen that the environment factor could markedly effected ET. Net radiation and VPD were key factors to affect ET. In addition, tidal activity also adjusted the ET, which was reduced in summer and autumn, while was enhanced in winter and spring.
     4. Variations of sap flow density (SFD) following closely the variation in PAR and VPD showed regular single-peak curve. The peak value of SFD of Kandelia obovata and Avicennia marina of different diameter was15.37-38.21g m-2s-1and21.26-73.15g m-2s-1, respectively. Compare with the other species, sap flowwas fairly high in the outer xylem of mangroves in our sites. Maximum daily water use for Kandelia obovata and Avicennia marina was ranged from0.31-5.43kg d-1,2.01-10.61kg d-1. Further extrapolated to the whole stand transpiration (Es), Es was85.56mm for Kandelia obovata, and129.51mm for Avicennia marina during observation period (201006-201105), respectively. The percentage of Es/ET in four seasons in our sites was at the range of16-26%with mean value of23%, clearly indicating that the individual mangrove tree water use followed leaf-level mechanisms in being conservative.
     5. Different environmental factors had different influences on sap flow (SFD), daily water use (F) and ET in different season. Photosynthetically active radiation (PAR), vapor pressure deficit (VPD) and windspeed (v) were key factors to affect SFD in summer. While PAR, VPD and Tα were key factors to affect SFD in winter. For daily water use, relative humility was also the key factor beside of PAR and VPD. Among those factors, PAR and VPD were major factors affecting mangrove transpiration. However, except for PAR, the dependence of ET on environmental factors was weaker.
     6. The gc-t decreased with VPD increasing, increased linearly with PAR increasing. And with the increased level of VPD, the sensitivity of gc-t to PAR decreased gradually. Like gc-t, the gc-e also decreased with VPD increasing, and increased linearly with PAR increasing. Compared with gc-t, its correlation coefficient was lower, indicating the lower sensitivity of gc-e to environmental factors.
     7. Periodic flooding reduced ET and stand transpiration (Es) in mature trees of K. obovata and A. marina in our study. The mean daily water use was reduced by16.83%for A. marina trees,12.35%for K. obovata and10.26%for daily ET, respectively. Meanwhile, ecosystem GEP, NEE and ER were reduced by6.56%,6.84%, and12.08%under tidal flooding.
     The above results suggest that, due to the unique geographical location, the mangrove plants are water conservative under tidal flooding and salinity stress in subtropical zone, so their transpiration are mainly regulated by plant physiological processes. Moreover, tidal activities exerte significant impact on the water heat balance of mangrove ecosystems and the water use patterns of mangrove forests. This study lays the foundation for further study of mechanism of high water efficiency and high productivity about mangrove ecosystem. Furthermore, this will be of great importance in studing of the relationship of ecosystem CO2exchange and water vapor flux, understanding of the characteristics of material cycle and energy exchange, grasping the carbon cycle and its driving mechanism in wetland.
引文
[1]高彦春,王长耀.水文循环的生物圈方面(BAHC计划)研究进展[J].地理科学进展,2000,19(2):97-103.
    [2]Brown, K. W., Rosenberg, N. J. A resistance model to predict evapotranspiration and its application to a sugar beet field [J]. Agronomy Journal,1973,65(3):341-347.
    [3]Wilson, K. B., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D. D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C, Grelle, A., Lbrom, A., Law, B. E., Kowalski, A., Meyer, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., valentini, R., Verma, A. Energy balance closure at FLUXNET sites [J]. Agricultural and Forest Meteorology,2002, 113(1-4):223-243.
    [4]Falge, E., Reth, S., Bruggemann, N., Butterbach-Bahl, K., Goldberg, V., Oltchev, A., Schaaf, S., Spindler, G., Stiller, B., Queck, R., Kostnerc, B., Bernhoferc, C. Comparison of surface energy exchange models with eddy flux data in forest and grassland ecosystems of Germany [J]. Ecological Modelling,2005,188(2):174-216.
    [5]Dennison, M. S., Berry, J. F. Wetlands:Guide to science, law, and technology [M]. Park Ridge: Noyes Publication,1993.
    [6]Baldocchi, D. D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S. B., Vesala, T., Wilson, K., Wofsy, S. FLUXNET:a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities [J]. Bulletin of the American Meteorological Society,2001,82(11): 2415-2434.
    [7]Anderson, D. E., Verma, S. B., Rosenberg, N. J. Eddy correlation measurements of CO2, latent heat, and sensible heat fluxes over a crop surface [J]. Boundary-Layer Meteorology,1984, 29(3):263-272.
    [8]Verma, S. B., Baldocchi, D. D., Anderson, D. E., Matt, D. R., Clement, R. J. Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest [J]. Boundary-Layer Meteorology, 1986,36(1):71-91.
    [9]LaMalfa, E. M., Ryle, R. Differential snowpack accumulation and water dynamics in aspen and conifer communities:Implications for water yield and ecosystem function [J]. Ecosystems, 2008,11(4):569-581.
    [10]Barr, A. G., Morgenstern, K., Black, T. A., McCaughey, J. H., Nesic, Z. Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux [J]. Agricultural and Forest Meteorology, 2006,140(1):322-337.
    [11]Barr, A. G., Griffis, T. J., Black, T. A., Lee, X., Staebler, R. M., Fuentes, J. D., Chen, Z., Morgenstern, K. Comparing the carbon budgets of boreal and temperate deciduous forest stands [J]. Canadian Journal of Forest Research,2002,32(5):813-822.
    [12]Anthoni, P. M., Law, B. E., Unsworth, M. H. Carbon and water vapor exchange of an open-canopied ponderosa pine ecosystem [J]. Agricultural and Forest Meteorology,1999, 95(3):151-168.
    [13]Goldstein, A. H., Hultman, N. E., Fracheboud, J. M., Bauer, M. R., Panek, J. A., Xu, M., Qi, Y., Guenther, A. B., Baugh, W. Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA) [J]. Agricultural and Forest Meteorology,2000,101(2):113-129.
    [14]Hollinger, D. Y., Goltz, S. M., Davidson, E. A., Lee, J. T., Tu, K., Valentine, H. T. Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest [J]. Global Change Biology,1999,5(8):891-902.
    [15]Schmid, H. P., Grimmond, C. S. B., Cropley, F., Offerle, B., Su, H. B. Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States [J]. Agricultural and Forest Meteorology,2000,103(4):357-374.
    [16]Barr, A. G., Black, T. A., Hogg, E. H., Kljun, N., Morgenstern, K., Nesic, Z. Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production [J]. Agricultural and Forest Meteorology,2004,126(3):237-255.
    [17]Baldocchi, D. D., Law, B. E., Anthoni, P. M. On measuring and modeling energy fluxes above the floor of a homogeneous and heterogeneous conifer forest [J]. Agricultural and Forest Meteorology,2000,102(2):187-206.
    [18]Li, Z. Q., Fu, Y. L., Wen, X. F., Zhang, L. M., Ren, C. Y. Energy balance closure at ChinaFLUX sites [J]. Science in china series D:Earth sciences,2005,48;51-62.
    [19]Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grunwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., VesalaT. Estimates of the annual net carbon and water exchange of forests:the EUROFLUX methodology [J]. Advances in Ecological Research,1999,30:113-175.
    [20]Foken, T., Wimmer, F., Mauder, M., Thomas, C., Liebethal, C. Some aspects of the energy balance closure problem [J]. Atmospheric Chemistry and Physics,2006,6(12):4395-4402.
    [21]Foken, T. The energy balance closure problem:an overview [J]. Ecological Applications,2008, 18(6):1351-1367.
    [22]Gao, Z., Chen, G. T. J., Hu, Y. B. Impact of soil vertical water movement on the energy balance of different land surface [J]. International Journal of Biometeorology 2007,51(6): 565-573.
    [23]Yang, K., Wang, J. M. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data [J]. Science in china series D:Earth sciences, 2008,51(5):721-729.
    [24]Moore, C. J. Frequency response corrections for eddy correlation systems [J]. Boundary-Layer Meteorology,1986,37(1):17-35.
    [25]Panin, G. N., Tetzlaff, G, Raabe, A. Inhomogeneity of the land surface and problems in the parameterization of surface fluxes in natural conditions [J]. Theoretical and Applied Climatology,1998,60(1):163-178.
    [26]Guo, H. Q., Zhao, B., Chen, J. Q., Yan, Y. E., Li, B., Chen, J. K. Seasonal changes of energy fluxes in an estuarine wetland of Shanghai, China [J]. Chinese Geographical Science,2009, 20(1):23-29.
    [27]Barr, D., Barr, J. G, Fuentes, J. D., Zieman, J. C., Grahl, T., Childars, D. Seasonal controls on energy partitioning patterns of a mangrove forest [Z]. Fairchild Tropical, Garden, Coral Gable, Florida:All Scientists Meeting,2005.
    [28]Kustas, W. P., Prueger, J. H., Hatfield, J. L., Ramalingam, K., Hipps, L. E. Variability in soil heat flux from a mesquite dune site [J]. Agricultural and Forest Meteorology,2000,103(3): 249-264.
    [29]Mayocchi, C. L., Bristow, K. L. Soil surface heat flux:some general questions and comments on measurements [J]. Agricultural and Forest Meteorology,1995,75(1):43-50.
    [30]Verhoef, A., Van den Hurk, B. J. J. M., Jacobs, A. F. G, Heusinkveld, B. G. Thermal soil properties for vineyard (EFEDA-I) and savanna (HAPEX-Sahel) sites [J]. Agricultural and Forest Meteorology,1996,78(1):1-18.
    [31]McCaughey, J. H. Energy balance storage terms in a mature mixed forest at Petawawa, Ontario-a case study [J]. Boundary-Layer Meteorology,1985,31(1):89-101.
    [32]Stannard, D. I., Blanford, J. H., Kustas, W. P., Nichols, W. D., Amer, S. A., Schmugge, T. J., Weltz, M. A. Interpretation of surface flux measurements in heterogeneous terrain during the Monsoon'90 experiment [J]. Water Resources Research,1994,30(5):1227-1239.
    [33]Sun, J., Desjardins, R., Mahrt, L., MacPherson, I. Transport of carbon dioxide, water vapor, and ozone by turbulence and local circulations [J]. Journal of Geophysical Research,1998, 103(D20):25873-25885.
    [34]Blanken, P. D. Turbulent flux measurements above and below the overstory of a boreal aspen forest [J]. Boundary-Layer Meteorology,1998,89(1):109-140.
    [35]Lee, X. H., Hu, X. Z. Forest-air fluxes of carbon, water and energy over non-flat terrain [J]. Boundary-Layer Meteorology,2002,103(2):277-301.
    [36]Li, Z. Q., Fu, Y. L., Wen, X. F., Zhang, L. M., Ren, C. Y. Energy balance closure at ChinaFLUX sites [J]. Science in china series D:Earth sciences,2005,4851-62.
    [37]沈荣开,任理.夏玉米麦秸全覆盖下土壤水热动态的田间试验和数值模拟[J].水利学报,1997,(2):14-21.
    [38]莫兴国,刘苏峡,于沪宁,刘昌明.冬小麦能量平衡及蒸散分配的季节变化分析[J].地理学报,1997,52(6):536-642.
    [39]刘昌明.土壤-植物-大气系统水分运行的界面过程研究[J].地理学报,1997,52(4):366-372.
    [40]刘树华,麻益民.农田近地面层CO2和湍流通量特征研究[J].气象学报,1997,55(2):187-199.
    [41]毛晓敏,杨诗秀,雷志栋.叶尔羌灌区冬小麦生育期SPAC水热传输的模拟研究[J].水利学报,1998,735-39.
    [42]Loescher, H. W., Gholz, H. L., Jacobs, J. M., Oberbauer, S. F. Energy dynamics and modeled evapotranspiration from a wet tropical forest in Costa Rica [J]. Journal of Hydrology,2005, 315(1-4):274-294.
    [43]McNaughton, K., Black, T. A. Study of Evapotranspiration from a douglas fir forest using the energy balance approach [J]. Water Resources Research,1973,9(6):1579-1590.
    [44]吴家兵,关德新,赵晓松,韩士杰,金昌杰,于贵瑞.东北阔叶红松林能量平衡特征[J].生态学报,2005,25(10):2520-2526.
    [45]Wang, X., Yin, G C., Zhou, G. Y. Dry season energy balance of a Coniferous and Broad-leaved Mix forest at Dinghushan Mountain Southern China [J]. Journan of Tropical and Subtropical Botany 2005,13(3):205-210.
    [46]Wu, L. L., Dong, J. W. Heat balance of the secondary oakery in urban forest [J]. Journal of Nanjing Forestry Unversity(Natural Science Edition),2002,26(2):1-3.
    [47]Zhu, Z. L., Sun, X. M., Zhang, R. H. Statistical analysis and comparative study of energy balance components estimated using micrometeorological techniques during HUBEX/IOP 1998/99 [J]. Advances in Atmospheric Sciences,2003,20(2):285-291.
    [48]Chen, S. P., Chen, J. Q., Lin, G. H., Zhang, W. L., Miao, H. X., Wei, L., Huang, J. H., Han, X. G Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types [J]. Agricultural and Forest Meteorology,2009,149(11):1800-1809.
    [49]Admiral, S. W., Lafleur, P. M. Partitioning of latent heat flux at a northern peatland [J]. Aquatic Botany,2007,86(2):107-116.
    [50]Admiral, S. W., Lafleur, P. M., Roulet, N. T. Controls on latent heat flux and energy partitioning at a peat bog in eastern Canada [J]. Agricultural and Forest Meteorology,2006, 140(1-4):308-321.
    [51]Kurbatova, J., Arneth, A., Vygodskaya, N. N., Kolle, O., Varlargin, A. V., Milyukova, I. M., Tchebakova, N. M., Schulze, E. D., Lloyd, J. Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog I. Interseasonal and interannual variability of energy and latent heat fluxes during the snowfree period [J]. Tellus B, 2002,54(5):497-513.
    [52]Burba, G G, Verma, S. B., Kim, J. Energy fluxes of an open water area in a mid-latitude prairie wetland [J]. Boundary-Layer Meteorology,1999,91(3):495-504.
    [53]Burba, G. G., Verma, S. B., Kim, J. Surface energy fluxes of Phragmites australis in a prairie wetland [J]. Agricultural and Forest Meteorology,1999,94(1):31-51.
    [54]Burba, G. G., Verma, S. B., Kim, J. A comparative study of surface energy fluxes of three communities (Phragmites australis, Scirpus acutus, and open water) in a prairie wetland ecosystem [J]. Wetlands,1999,19(2):451-457.
    [55]Jacobs, J. M., Mergelsberg, S. L., Lopera, F., Myers, D. A. Evapotranspiration from a wet prairie wetland under drought conditions:Paynes Prairie Preserve, Florida, USA [J]. Wetlands, 2002,22(2):374-385.
    [56]Lafleur, P. M., Rouse, W. R. The influence of surface cover and climate on energy partitioning and evaporation in a subarctic wetland [J]. Boundary-Layer Meteorology,1988,44(4): 327-347.
    [57]Silis, A., Rouse, W. R., Hardill, S. Energy balance of the intertidal zone of Western Hudson bay I:Ice-free period [J]. Atmosphere-Ocean,1989,27(2):327-345.
    [58]Newell, R. C., Johson, L. G., Kofoed, L. H. Adjustment of the components of energy balance in response to temperature change in Ostrea edulis [J]. Oecologia,1977,30(2):97-110.
    [59]Tanaka, K., Ishikawa, H., Hayashi, T., Tamagawa, I., Ma, Y. M. Surface energy budget at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 data [J]. Journal of the Meteorologiccal Society of Janpan. Ser. II,2001,79(1B):505-517.
    [60]Friedrich, K., Molders, N., Tetzlaff, G. On the influence of surface heterogeneity on the Bowen-ratio:A theoretical case study [J]. Theoretical and Applied Climatology,2000,65(3): 181-196.
    [61]Wilson, K. B., Baldocchi, D. D. Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America [J]. Agricultural and Forest Meteorology,2000,100(1):1-18.
    [62]Zhou, J., Wang, G. X., Li, X., Yang, Y. M., Pan, X. D. Energy-water balance of meadow ecosystem in cold frozen soil areas [J]. Journal of Glaciology and Geocryology,2008,30(3): 398-407.
    [63]刘苏峡,莫兴国,李俊,刘伟东.土壤水分及土壤-大气界面对麦田水热传输的作用[J].地理研究,1999,18(1):24-29.
    [64]Heilman, J. L., Heinsch, F., Cobos, D. R., Mclnnes, K. J. Energy balance of a high marsh on the Texas Gulf Coast-Effect of water availability [J]. Journal of Geophysical Research,2000, 105(D17):22371-22377.
    [65]Souch, C., Wolfe, C. P., Grimmond, C. S. B. Wetland evaporation and energy partitioning: Indiana dunes national lakeshore [J]. Journal of Hydrology,1996,184(3):189-208.
    [66]孙丽,宋长春.三江平原典型沼泽湿地能量平衡和蒸散发研究[J].水科学进展,2008,19(1):43-48.
    [67]司建华,冯起,张小由,张艳武,苏永红.植物蒸散耗水量测定方法研究进展[J].水科学进展,2005,16(3):450-459.
    [68]Reginato, R. J., Jackson, R. D., Pinter, P. J. Evapotranspiration calculated from remote multispectral and ground station meteorological data [J]. Remote Sensing of Environment, 1985,18(1):75-89.
    [69]Loustau, D., Berbigier, P., Roumagnac, P., Arruda-Pacheco, C., David, J. S., Ferreira, M. I., Pereira, J. S., Tavares, R. Transpiration of a 64-year-old maritime pine stand in Portugal [J]. Oecologia,1996,107(1):33-42.
    [70]Hogg, E. H., Black, T. A., Den Hartog, G., Neumann, H. H., Zimmermann, R., Hurdle, P. A., Blanken, P. D., Nesic, Z., Yang, P. C., Staebler, R. M., McDonald, K. C., Oren, R. A comparison of sap flow and eddy fluxes of water vapor from a boreal deciduous forest [J]. Journal of Geophysical Research,1997,102(D24):28929-28937.
    [71]Granier, A., Biron, P., Lemoine, D. Water balance, transpiration and canopy conductance in two beech stands [J]. Agricultural and Forest Meteorology,2000,100(4):291-308.
    [72]Baldocchi, D. D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past, present and future [J]. Global Change Biology,2003,9(4): 479-492.
    [73]Chen, J. Q., Paw U, K. T., Ustin, S. L., Suchanek, T. H., Bond, B. J., Brosofske, K. D., Falk, M. Net ecosystem exchanges of carbon, water, and energy in young and old-growth Douglas-fir forests [J]. Ecosystems,2004,7(5):534-544.
    [74]Saugier, B., Granier, A., Pontailler, J. Y., Dufrene, E., Baldocchi, D. D. Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods [J]. Tree Physiology,1997,17(8-9):511-519.
    [75]Williams, D. G., Cable, W., Hultine, K., Hoedjes, J. C. B., Yepez, E., Simonneaux, V., Er-Raki, S., Boulet, G., De Bruin, H. A. R., Chehbouni, A. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques [J]. Agricultural and Forest Meteorology,2004,125(3-4):241-258.
    [76]Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., Wullschleger, S. D. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance [J]. Agricultural and Forest Meteorology,2001,106(2):153-168.
    [77]邓伟,潘响亮,栾兆擎.湿地水文学研究进展[J].水科学进展,2003,14(4):521-527.
    [78]Mitsch, W. J., Gosselink, J. G. Wetlands [M]. New York:Van Nostrand Reinhold Company, 1986.
    [79]Wessel, D. A., Rouse, W. R. Modelling evaporation from wetland tundra [J]. Boundary-Layer Meteorology,1994,68(1):109-130.
    [80]Kellner, E. Surface energy fluxes and control of evapotranspiration from a Swedish Sphagnum mire [J]. Agricultural and Forest Meteorology,2001,110(2):101-123.
    [81]Zalewski, M. Ecohydrology-The use of ecological and hydrological processes for sustainable management of water resources/Ecohydrologie-La prise en compte de processus ecologiques et hydrologiques pour la gestion durable des ressources en eau [J]. Hydrological Sciences Journal,2002,47(5):823-832.
    [82]Hussey, B. H., Odum, W. E. Evapotranspiration in tidal marshes [J]. Estuaries and Coasts, 1992,15(1):59-67.
    [83]陈刚起,吕宪国,杨青.三江平原沼泽蒸发研究[J].地理科学,1993,13(3):220-226.
    [84]Priestley, C. H. B., Taylor, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters [J]. Monthly Weathe Review,1972,100(2):81-92.
    [85]McCarthy, E. J., Flewelling, J. W., Skaggs, R. W. Hydrologic model for drained forest watershed [J]. Journal of Irrigation and Drainage Engineering,1992,118(2):242-255.
    [86]Allen, R. G., Pereira, L. S., Raes, D., Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 [Z]. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO),1998.
    [87]孙丽,宋长春.三江平原典型沼泽湿地蒸散发估测[J].应用生态学报,2008,19(9):1925-1930.
    [88]Jacobs, J. M., Myers, D. A., Anderson, M. C., Diak, G. R. GOES surface insolation to estimate wetlands evapotranspiration [J]. Journal of Hydrology,2002,266(1):53-65.
    [89]Bidlake, W. R. Evarotranspiration from a bulrush-dominated wetland in the klamath basin, Oregon [J]. Journal of the American Water Resources Association,2000,36(6):1309-1320.
    [90]Stannard, D. I. Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland [J]. Water Resources Research,1993,29(5):1379-1392.
    [91]Fisher, J. B., DeBiase, T. A., Qi, Y., Xu, M., Goldstein, A. H. Evapotranspiration models compared on a Sierra Nevada forest ecosystem [J]. Environmental Modelling & Software, 2005,20(6):783-796.
    [92]司建华,冯起,张艳武,常宗强,张凯.荒漠-绿洲芦苇地蒸散量及能量平衡特征[J].干旱区研究,201O,27(2):160-168.
    [93]Goulden, M. L., Litvak, M., Miller, S. D. Factors that control Typha marsh evapotranspiration [J]. Aquatic Botany,2007,86(2):97-106.
    [94]Sanchez-Carrillo, S., Angeler, D. G, Sanchez-Andres, R., Alvarez-Cobelas, M., Garatuza-Payan, J. Evapotranspiration in semi-arid wetlands:relationships between inundation and the macrophyte-cover:open-water ratio [J]. Advances in Water Resources, 2004,27(6):643-655.
    [95]Acreman, M. C., Harding, R. J., Lloyd, C. R., McNeil, D. D. Evaporation characteristics of wetlands:experience from a wetgrassland and a reedbed using eddy correlation measurements [J]. Hydrology and Earth System Sciences,2003,7(1):11-21.
    [96]Kaufmann, M. R. Automatic determination of conductance, transpiration, and environmental conditions in forest trees [J]. Forest Science,1981,27(4):817-827.
    [97]林鹏,陈荣华,雷泽湘.红海榄红树林的蒸腾作用与生态因子的关系[J].华南植物学报,1992,试刊1;101-106.
    [98]雷泽湘,林鹏.秋茄红树林蒸腾作用季节性变化的研究[J].湖北农学院学报,1995,15(3):173-179.
    [99]Greenwood, E. A. N., Beresford, J. D. Evaporation from vegetation in landscapes developing secondary salinity using the ventilated-chamber technique:I. Comparative transpiration from juvenile Eucalyptus above saline groundwater seeps [J]. Journal of Hydrology,1979,42(3): 369-382.
    [100]Franco, C. M., Magalhaes, A. C. Techniques for the measurement of transpiration of individual plants [Z]. Montpellier (Francia):Symposium of the Methodology of Plant Eco-physiology, United Nations Educational, Scientific and Cultural Organization (UNESCO),1965.
    [101]熊伟.六盘山北侧主要造林树种耗水特性研究[D].中国林业科学研究院博士学位论文,2003.
    [102]刘奉觉,郑世锴,巨关升.树木蒸腾耗水测算技术的比较研究[J].林业科学,1997,33(2):117-126.
    [103]罗中岭.热量法茎流测定技术的发展及应用[J].中国农业气象,1997,18(3):52-56.
    [104]Huber, B. Observation and Measurement of Sap Flow in Plants [J]. Berichte der Deutscher Botanishcen Ges- sellschaft,1932,50;89-109.
    [105]Zimmermann, M. H. Xylem structure and the ascent of sap [M]. Berlin Heideberg New York Tokyo:Springer-Verlag,1983.
    [106]Marshall, D. C. Measurement of sap flow in conifers by heat transport [J]. Plant Physiology, 1958,33(6):385-396.
    [107]Swanson, R. H., Sopper, W. E., Lull, H. W. Seasonal course of transpiration of lodgepole pine and Engelmann spruce [Z]. Pergamon, London:International Symposium on Forest Hydrology,1967.
    [108]Edwards, W. R. N., Booker, R. E. Radial variation in the axial conductivity of Populus and its significance in heat pulse velocity measurement [J]. Journal of Experimental Botany,1984, 35(4):551-561.
    [109]Baker, J. M., Bavel, C. H. M. Measurement of mass flow of water in the stems of herbaceous plants [J]. Plant, Cell and Environment,1987,10(9):777-782.
    [110]Sakuratani, T. A heat balance method for measuring water flux in the stem of intact plants [J]. Journal of Agricultural Meteorology,1981,37(1):9-17.
    [I11]Granier, A. Une nouvelle methode pour la mesure du flux de seve brute dans le tronc des arbres [J]. Annual of Forest Science,1985,42(2):193-200.
    [112]Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements [J]. Tree Physiology,1987,3(4):309-320.
    [113]Cermak, J., Deml, M., Penka, M. A new method of sap flow rate determination in trees [J]. Biologia Plantarum,1973,15(3):171-178.
    [114]Lassoie, J. P., Scott, D. R. M., Fritschen, L. J. Transpiration studies in Douglas-fir using the heat pulse technique [J]. Forest Science,1977,23(3):377-390.
    [115]Yunusa, I. A. M., Walker, R. R., Loveys, B. R., Blackmore, D. H. Determination of transpiration in irrigated grapevines:comparison of the heat-pulse technique with gravimetric and micrometeorological methods [J]. Irrigation Science,2000,20(1):1-8.
    [116]Green, S. R., Clothier, B. E. Water use of kiwifruit vines and apple trees by the heat-pulse technique [J]. Journal of Experimental Botany,1988,39(1):115-123.
    [117]Kostner, B., Granier, A., Cermak, J. Sapflow measurements in forest stands:methods and uncertainties [J]. Annual of Forest Science,1998,55(1-2):13-27.
    [118]巨关升,吴晓春.稳态气孔计与其它3种方法蒸腾测值的比较研究[J].林业科学研究,2000,13(4):360-365.
    [119]张宁南,徐大平,Morris, J.,周光益,周国逸,吴仲民.雷州半岛尾叶桉人工林树液茎流特征的研究[J].林业科学研究,2003,16(6):661-667.
    [120]Granier, A., Bobay, V., Gash, J. H. C., Gelpe, J., Saugier, B., Shuttleworth, W. J. Vapour flux density and transpiration rate comparisons in a stand of Maritime pine (Pinus pinaster) in Les Landes forest [J]. Agricultural and Forest Meteorology,1990,51(3):309-319.
    [121]Dugas, W. A., Wallace, J. S., Allen, S. J., Roberts, J. M. Heat balance, porometer and deuterium estimates of transpiration from potted trees [J]. Agricultural and Forest Meteorology, 1993,64(1):47-62.
    [122]Ansley, R. J., Dugas, W. A., Heuer, M. L., Trevino, B. A. Stem flow and porometer measurements of transpiration from honey mesquite (Prosopis glandulosa) [J]. Journal of Experimental Botany,1994,45(6):847-856.
    [123]Kalma, S. J., Thorburn, P. J., Dunn, G. M. A comparison of heat pulse and deuterium tracing techniques for estimating sap flow in Eucalyptus grandis trees [J]. Tree Physiology,1998, 18(10):697-705.
    [124]孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究[J].生态学报,2002,22(9):1387-1391.
    [125]张小由,龚家栋,周茅先,司建华.胡杨树干液流的时空变异性研究[J].中国沙漠,2004, 24(4):489-492.
    [126]奚如春,马履,王瑞辉,徐军亮,李丽萍,樊敏,孔俊杰.元宝枫等3个树种枝干水容特征[J].中南林学院学报,2006,26(4):22-26.
    [127]鲁小珍.马尾松,栓皮栎生长盛期树干液流的研究[J].安徽农业大学学报,2001,28(004):401-404.
    [128]林平,李吉跃,马达.北京山区油松林蒸腾耗水特性研究[J].北京林业大学学报,2008,28(S1):47-50.
    [129]张友焱,周泽福,党宏忠,李卫.利用TDP茎流计研究沙地樟子松的树干液流[J].水土保持研究,2006,13(4):78-80.
    [130]马达,李吉跃,林平.北京山区造林树种耗水规律初探[J].山西农业大学学报:自然科学版,2006,26(1):48-51.
    [131]马玲,赵平,饶兴权,蔡锡安,曾小平,陆平.马占相思树干液流特征及其与环境因子的关系[J].生态学报,2005,25(9):2145-2151.
    [132]王华田,马履一,孙鹏森.油松、侧柏深秋边材木质部液流变化规律的研究[J].林业科学,2002,38(5):31-37.
    [133]Granier, A., Claustres, J. P. Water relations of a Norway spruce (Picea abies) tree growing in natural condition:Variation within the tree [J]. Acta Oecologica-International Journal of Ecology,1989,10(3):295-310.
    [134]Martin, T. A. Winter season tree sap flow and stand transpiration in an intensively-managed loblolly and slash pine plantation [J]. Journal of Sustainable Forestry,1999,10(1-2):155-163.
    [135]Dye, P. J., Olbrich, B. W., Poulter, A. G The influence of growth rings in Pinus patula on heat pulse velocity and sap flow measurement [J]. Journal of Experimental Botany,1991,42(7): 867-870.
    [136]孙鹏森,马履一,王小平,翟明普.油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5):1-6.
    [137]Bush, S. E., Hultine, K. R., Sperry, J. S., Ehleringer, J. R. Calibration of thermal dissipation sap flow probes for ring-and diffuse-porous trees [J]. Tree Physiology,2010,30(12): 1545-1554.
    [138]Gebauer, T., Horna, V., Leuschner, C. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species [J]. Tree Physiology,2008,28(12):1821-1830.
    [139]James, S. A., Meinzer, F. C., Goldstein, G, Woodruff, D., Jones, T., Restom, T., Mejia, M., Clearwater, M., Campanello, P. Axial and radial water transport and internal water storage in tropical forest canopy trees [J]. Oecologia,2003,134(1):37-45.
    [140]Kumagai, T., Aoki, S., Nagasawa, H., Mabuchi, T., Kubota, K., Inoue, S., Utsumi, Y., Otsuki, K. Effects of tree-to-tree and radial variations on sap flow estimates of transpiration in Japanese cedar [J]. Agricultural and Forest Meteorology,2005,135(1):110-116.
    [141]Tateishi, M., Kumagai, T., Utsumi, Y., Umebayashi, T., Shiiba, Y., Inoue, K., Kaji, K., Cho, K., Otsuki, K. Spatial variations in xylem sap flux density in evergreen oak trees with radial-porous wood:comparisons with anatomical observations [J]. Trees-Structure and Function,2008,22(1):23-30.
    [142]Wullschleger, S. D., King, A. W. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees [J]. Tree Physiology,2000,20(8): 511-518.
    [143]Ford, C. R., McGuire, M. A., Mitchell, R. J., Teskey, R. O. Assessing variation in the radial profile of sap flux density in Pints species and its effect on daily water use [J]. Tree Physiology,2004,24(3):241-249.
    [144]Delzon, S., Sartore, M., Granier, A., Loustau, D. Radial profiles of sap flow with increasing tree size in maritime pine [J]. Tree Physiology,2004,24(11):1285-1293.
    [145]Vertessy, R. A., Benyon, R. G, O'sullivan, S. K., Gribben, P. R. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest [J]. Tree Physiology,1995,15(9):559-567.
    [146]Hatton, T. J., Moore, S. J., Reece, P. H. Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method:measurement errors and sampling strategies [J]. Tree Physiology,1995,15(4):219-227.
    [147]Cermak, J., Nadezhdina, N. Sapwood as the scaling parameter-defining according to xylem water content or radial pattern of sap flow? [J]. Annual of Forest Sciences 1998,55(5): 509-521.
    [148]马李一,孙鹏森,马履一.油松,刺槐单木与林分水平耗水量的尺度转换[J].北京林业大学学报,2001,23(4):1-5.
    [149]王华田,邢黎峰,马履一,孙鹏森.栓皮栎水源林林木耗水尺度扩展方法研究[J].林业科学,2004,40(6):170-175.
    [150]Nellemann, C., Corcoran, E., Duarte, C. M., Valdes, L., DeYoung, C., Fonseca, L., Grimsditch, G. Blue carbon:the role of healthy oceans in binding carbon:a rapid response assessment [Z]. GRID-Arendal, Norway:United Nations Environment Programme,2009.
    [151]Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Bj6rk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., Silliman, B. R. A blueprint for blue carbon:toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 [J]. Frontiers in Ecology and the Environment,2011,9(10):552-560.
    [152]林鹏.中国红树林生态系(第一版)[M].北京:科学出版社,1997.
    [153]林鹏.中国红树林研究进展[J].厦门大学学报:自然科学版,2001,40(2):592-603.
    [154]陈宜瑜.湿地功能与湿地科学研究的方向[J].中国基础科学,2002,(1):17-19.
    [155]林鹏.红树林的种类及其分布[J].林业科学,1987,23(4):481-490.
    [156]Wilkie, M. L., Fortuna, S. Status and trends in mangrove area extent worldwide [Z]. FAO, Rome, Italy:Forest Resources Assessment Programme,2003.
    [157]牛文元.生态环境脆弱带ECOTONE的基础判定[J].生态学报,1989,9(2):97-105.
    [158]Alongi, D. M. Carbon sequestration in mangrove forests [J]. Carbon,2012,3(3):313-322.
    [159]张乔民,于红兵,陈欣树,郑德璋.红树林生长带与潮汐水位关系的研究[J].生态学报,1997,17(3):258-265.
    [160]Hsu, S. A., Giglioli, M. E. C., Reiter, P., Davies, J. Heat and water balance studies on Grand Cayman [J]. Caribbean Journal of Science,1972,12(1-2):9-22.
    [161]Ganguly, D., Dey, M., Mandal, S. K., De, T. K., Jana, T. K. Energy dynamics and its implication to biosphere-atmosphere exchange of CO2, H2O and CH, in a tropical mangrove forest canopy [J]. Atmospheric Environment,2008,42(18):4172-4184.
    [162]Kim, J., Verma, S. B. Surface exchange of water vapour between an open Sphagnum fen and the atmosphere [J]. Boundary-Layer Meteorology,1996,79(3):243-264.
    [163]Sobrado, M. A. Relation of water transport to leaf gas exchange properties in three mangrove species [J]. Trees-Structure and Function,2000,14(5):258-262.
    [164]Krauss, K. W., Young, P. J., Chambers, J. L., Doyle, T. W., Twilley, R. R. Sap flow characteristics of neotropical mangroves in flooded and drained soils [J]. Tree Physiology, 2007,27(5):775-783.
    [165]陈鹭真,林鹏,王文卿.红树植物淹水胁迫响应研究进展[J].生态学报,2006,26(2):586-593.
    [166]李元跃,林鹏.3种红树植物叶片结构及其生态适应[J].海洋科学,2006,30(7):53-57.
    [167]李元跃,林鹏.三种红树植物叶片的比较解剖学研究[J].热带亚热带植物通报,2006,14(4):301-306.
    [168]黄丽,谭芳林,吴秋城,林捷,黄石德,方柏州,赵凯.福建漳江口3种红树植物光合作用日变化特性研究[J].福建林业科技,2012,39(2):28-34.
    [169]林益明,林鹏.中国红树林生态系统的植物种类,多样性,功能及其保护[J].海洋湖沼通报,2001,(3):8-16.
    [170]Scholander, P. F., Bradstreet, E. D., Hemmingsen, E. A., Hammel, H. T. Sap pressure in vascular plants [J]. Science,1965,148(3668):339-346.
    [171]Lugo, A. E., Evink, G. L., Brinson, M. M., Broce, A. B., Snedaker, S. C. Diurnal rates of photosynthesis, respiration and transpiration in mangrove forests of south Florida [M]. New York:Springer 1975.
    [172]Waisel, Y., Eshel, A., Agami, M. Salt balance of leaves of the mangrove Avicennia marina [J]. Physiologia Plantarum,1986,67(1):67-72.
    [173]雷泽湘,林鹏.秋茄幼枝水势动态及其与生态因子的关系[J].厦门大学学报:自然科学版,1996,35(2):276-282.
    [174]雷泽湘,林鹏.秋茄蒸腾作用日变化及其与生态因子的相关分析[J].湖北农学院学报,1998,18(3):204-208.
    [175]Ma, L., Lu, P., Zhao, P., Rao, X. Q., Cai, X. A., Zeng, X. P. Diurnal, daily, seasonal and annual patterns of sap-flux-scaled transpiration from an Acacia mangium plantation in South China [J]. Annual of Forest Science,2008,65(4):402-402.
    [176]Muller, E., Lambs, L., Fromard, F. Variations in water use by a mature mangrove of Avicennia germinans, French Guiana [J]. Annual of Forest Science,2009,66(8):803.
    [177]Oren, R., Zimmermann, R., Terbough, J. Transpiration in upper Amazonia floodplain and upland forests in response to drought-breaking rains [J]. Ecology,1996,77(3):968-973.
    [178]Becker, P., Asmat, A., Mohamad, J., Moksin, M., Tyree, M. T. Sap flow rates of mangrove trees are not unusually low [J]. Trees-Structure and Function,1997,11(7):432-435.
    [179]拉夏埃尔,W.植物生理生态学[M].李博等译,北京:科学出版社,1980.
    [180]Zeppel, M. J. B., Yunusa, I. A. M., Eamus, D. Daily, seasonal and annual patterns of transpiration from a stand of remnant vegetation dominated by a coniferous Callitris species and a broad-leaved Eucalyptus species [J]. Physiologia Plantarum,2006,127(3):413-422.
    [181]Running, S. W., Nemani, R. R., Peterson, D. L., Band, L. E., Potts, D. F., Pierce, L. L. Spanner, M. A. Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation [J]. Ecology,1989,70(4):1090-1101.
    [182]Pataki, D. E., Oren, R., Tissue, D. T. Elevated carbon dioxide does not affect average canopy stomatal conductance of Pinus taeda L. [J]. Oecologia,1998,117(1-2):47-52.
    [183]Schafer, K. V. R., Oren, R., Ellsworth, D. S., Lai, C. T., Herrick, J. D., Finzi, A. C., Richter, D. D., Katul, G. G. Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem [J]. Global Change Biology,2003,9(10):1378-1400.
    [184]Kostner, B. M. M., Schulze, E. D., Kelliher, F. M., Hollinger, D. Y., Byers, J. N., Hunt, J. E., McSeveny, T. M., Meserth, R., Weir, P. L. Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus:an analysis of xylem sap flow and eddy correlation measurements [J]. Oecologia,1992,91(3):350-359.
    [185]Lu, P., Urban, L., Zhao, P. Granier's Thermal Dissipation Probre (TDP) method for measuring sap flow in trees:theory and practice [J]. Acta Botanica Sinica,2004,46(6):631-646.
    [186]Granier, A., Breda, N. Modelling canopy conductance and stand transpiration of an oak forest from sap flow measurements [J]. Annual of Forest Science,1996,53(2-3):537-546.
    [187]Tomlinson, P. B. The botany of mangroves [M]. Cambridge:Cambridge University Press, 1986.
    [188]Watson, J. G. Mangrove forests of the Malay Peninsula, Malay forest record 6 [M]. Singapore: Fraser & Neave, Ltd,1928.
    [189]Chapman, V. J. Mangrove vegetation [M]. Vaduz, Liechtenstein:Cramer 1976.
    [190]Davis, J. H. The ecology and geologic role of mangroves in Florida [J]. Publications of the Carnegie Institution of Washington,1940, (517):303-412.
    [191]Chen, L. Z., Wang, W. Q., Lin, P. Photosynthetic and physiological responses of Kandelia candel L. Druce seedlings to duration of tidal immersion in artificial seawater [J]. Environmental and Experimental Botany,2005,54(3):256-266.
    [192]Ellison, A. M., Farnsworth, E. J. Simulated sea level change alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.) [J]. Oecologia,1997, 112(4):435-446.
    [193]Pezeshki, S. R., DeLaune, R. D., Meeder, J. F. Carbon assimilation and biomass partitioning in Avicennia germinans and Rhizophora mangle seedlings in response to soil redox conditions [J]. Environmental and Experimental Botany,1997,37(2):161-171.
    [194]Naidoo, G, Rogalla, H., Willert, D. J. Gas exchange responses of a mangrove species, Avicennia marina, to waterlogged and drained conditions [J]. Hydrobiologia,1997,352(1-3): 39-47.
    [195]Krauss, K. W., Doyle, T. W., Twilley, R. R., Rivera-Monroy, V. H., Sullivan, J. K. Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves [J]. Hydrobiologia,2006,569(1):311-324.
    [196]Pezeshki, S. R., DeLaune, R. D., Patrick Jr, W. H. Differential response of selected mangroves to soil flooding and salinity:gas exchange and biomass partitioning [J]. Canadian Journal of Forest Research,1990,20(7):869-874.
    [197]Naidoo, G. Effects of flooding on leaf water potential and stomatal resistance in Bruguiera gymnorrhiza (L.) Lam [J]. New Phytologist,1983,93(3):369-376.
    [198]Sayed, O. H. Effects of the expected sea level rise on Avicennia marina L:a case study in Qatar [J]. Qatar University Science Journal,1995,15;91-94.
    [199]林鹏.红树林[M].北京:海洋出版社,1984.
    [200]林鹏.红树林研究论文集:1980-1989[M].厦门大学出版社,1990.
    [201]梁士楚.广西红树群落的数量分类[J].广西科学院学报,1993,9(2):8-12.
    [202]李信贤,温远光,何妙光.广西红树林类型及生态[J].广西农业生物科学,1991,10(4):70-81.
    [203]Running, S. W., Baldocchi, D. D., Turner, D. P., Gower, S. T., Bakwin, P. S., Hibbard, K. A. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data [J]. Remote Sensing of Environment,1999,70(1):108-127.
    [204]Canadell, J. G, Mooney, H. A., Baldocchi, D. D., Berry, J. A., Ehleringer, J. R., Field, C. B., Gower, S. T., Hollinger, D. Y., Hunt, J. E., Jackson, R. B., Running, S. W., Shaver, G. R., Steffen, W., Trumbore, S. E., Valentini, R., Bond, B. Y. Commentary:Carbon metabolism of the terrestrial biosphere:A multitechnique approach for improved understanding [J]. Ecosystems,2000,3(2):115-130.
    [205]Geider, R. J., Delucia, E. H., Falkowski, P. G., Finzi, A. C., Grime, J. P., Grace, J., Kana, T. M., La Roche, J., Long, S. P., Osborne, B. A., Platt, T., Prentice, I. C., Raven, J. A., Schlesinger, W. H., Smetacek, V., Stuart, V., Sathyendranath, S., Thomas, R. B., Vogelmann, T. C., Williams, P., Woodward, F. I. Primary productivity of planet earth:biological determinants and physical constraints in terrestrial and aquatic habitats [J]. Global Change Biology,2002,7(8):849-882.
    [206]Baldocchi, D. D., Hincks, B. B., Meyers, T. P. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods [J]. Ecology,1988,69(5): 1331-1340.
    [207]Baldocchi, D. D., Valentini, R., Running, S., Oechel, W., Dahlman, R. Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems [J]. Global Change Biology,1996,2(3):159-168.
    [208]于贵瑞,伏玉玲,孙晓敏,温学发,张雷明.中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路[J].中国科学:D辑,2006,36(A01):1-21.
    [209]于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006.
    [210]Webb, E. K., Pearman, G. I., Leuning, R. Correction of flux measurements for density effects due to heat and water vapour transfer [J]. Quarterly Journal of the Royal Meteorological Society,1980,106(447):85-100.
    [211]Falge, E., Baldocchi, D., Olson, R. J., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grunwald, T., Hollinger, D., Jensen, N. O., Katul, G., Keronen, P., Kowalski, A., Ta Lai, C., Law, B. E., Meyers, T., Moncrieff, J., Moors, E., Munger, J. W., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S. B., Vesala, T., Wilson, K., Wofsy, S. Gap filling strategies for long term energy flux data sets [J]. Agricultural and Forest Meteorology,2001,107(1):71-77.
    [212]Alavi, N., Warland, J. S., Berg, A. A. Filling gaps in evapotranspiration measurements for water budget studies:Evaluation of a Kalman filtering approach [J]. Agricultural and Forest Meteorology,2006,141(1):57-66.
    [213]Berbigier, P., Bonnefond, J. M., Mellmann, P. CO2 and water vapour fluxes for 2 years above Euroflux forest site [J]. Agricultural and Forest Meteorology,2001,108(3):183-197.
    [214]Greco, S., Baldocchi, D. D. Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest [J]. Global Change Biology,2006,2(3):183-197.
    [215]Foken, T., Wichura, B. Tools for quality assessment of surface-based flux measurements [J]. Agricultural and Forest Meteorology,1996,78(1):83-105.
    [216]马雪华,张增哲,张仰渠.森林水文学[M].北京:中国林业出版社,1993.
    [217]Mahrt, L. Flux sampling errors for aircraft and towers [J]. Journal of Atmospheric and Oceanic technology,1998,15(2):416-429.
    [218]李正泉,于贵瑞,温学发,张雷明,任传友,伏玉玲.中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价[J].中国科学D辑,2004,34(S2):46-56.
    [219]Monteith, J. L. Evaporation and environment [Z]. New York:Proceeding of the 19 th Symposim of the Society for Experimental Biology,1965.
    [220]Monteith, J. L., Unsworth, M. H. Principles of environmental physics (2nd) [M]. Chapman and Hall, New York, USA:Academic Press,1990.
    [221]Gu, S., Tang, Y. H., Cui, X. Y, Kato, T., Du, M. Y, Li, Y. N., Zhao, X. Q. Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai-Tibetan Plateau [J]. Agricultural and Forest Meteorology,2005,129(3):175-185.
    [222]Jarvis, P. G., McNaughton, K. G Stomatal control of transpiration:scaling up from leaf to region [M]. Orlando, Florida:Academic Press INC (Londeon),1986.
    [223]Souch, C., Susan, C., Grimmond, C. S. B., Wolfe, C. P. Evapotranspiration rates from wetlands with different disturbance histories:Indiana Dunes National Lakeshore [J]. Wetlands, 1998,18(2):216-229.
    [224]Gavin, H., Agnew, C. A. Modelling actual, reference and equilibrium evaporation from a temperate wet grassland [J]. Hydrological Processes,2004,18(2):229-246.
    [225]Abtew, W., Obeysekera, J. Lysimeter study of evapotranspiration of cattails and comparison of three estimation methods [J]. Transactions of the American Society of Agricultural Engineers, 1995,38(1):121-129.
    [226]Wilson, K. B., Baldocchi, D. D., Aubinet, M., Berbigier, P., Bernhofer, C, Dolman, H., Falge, E., Field, C., Goldstein, A., Granier, A., Grelle, A., Halldor, T., Hollinger, D., Katul, G., Law, B. E., Lindroth, A., Meyer, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Vesala, T., Wofsy, S. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites [J]. Water Resources Research,2002,38(12):1294.
    [227]康绍忠.土壤-植物-大气连续体水热动态模拟的研究[J].生态学报,1991,11(3):256-260.
    [228]朱治林,左大康,谢贤群.用波文比-能量平衡法估算农田蒸发量与Lysimeter的比较[A].农田蒸发研究[M].北京:气象出版社,1991.
    [229]颜春燕,牛铮.非单一地表对AVHRR图像计算所得蒸散的影响分析[J].遥感学报,2001,5(2):81-85.
    [230]Lagouarde, J. P. Use of NOAA AVHRR data combined with an agrometeorological model for evaporation mapping [J]. International Journal of Remote Sensing,1991,12(9):1853-1864.
    [231]Lindroth, A., Iritz, Z. Surface energy budget dynamics of short-rotation willow forest [J]. Theoretical and Applied Climatology,1993,47(3):175-185.
    [232]Monteith, J. L. Principles of environmental physics (1st) [M]. London:Edward Arnold Press, 1973.
    [233]Kozlowski, T. T., Pallardy, S. G. Physiology of woody plants (3rd) [M]. Burlington, MA, USA: Academic Press,1997.
    [234]林益明,林建辉.海莲和木榄次生木质部的生态解剖[J].海洋湖沼通报,1998,(4):23-31.
    [235]林益明,林建辉.红树植物秋茄次生木质部生态解剖学的比较[J].台湾海峡,1998,17(2):219-223.
    [236]林鹏,林益明,林建辉.红树植物次生木质部的结构与进化[J].海洋学报,1998,20(4):97-102.
    [237]林鹏,林建辉.角果木和白骨壤次生木质部的生态解剖[J].台湾海峡,1999,18(4):413-417.
    [238]邓传远,林清贤.海桑属(Sonneratia) 6种红树植物的木材解剖特性及其应用[J].福建林业科技,2000,27(3):1-5.
    [239]邓传远.几种红树植物的木材解剖学研究[D].厦门大学博士论文,2001.
    [240]邓传远,林鹏,郭素枝.榄李属(Lumnitzera)红树植物的木材解剖学研究[J].厦门大学学报,2004,43(3):406-411.
    [241]邓传远,林鹏,洪志同.不同生境下角果木木材结构变化的适应意义[J].福建林业科技, 2005,32(1):4-6.
    [242]Phillips, N., Oren, R., Zimmermann, R. Radial patterns of xylem sap flow in non-, diffuse-and ring- porous tree species [J]. Plant, Cell and Environment,1996,19(8):983-990.
    [243]Schafer, K. V. R., Oren, R., Tenhunen, J. D. The effect of tree height on crown level stomatal conductance [J]. Plant, Cell & Environment,2000,23(4):365-375.
    [244]Amiro, B. Measuring boreal forest evapotranspiration using the energy balance residual [J]. Journal of Hydrology,2009,366(1-4):112-118.
    [245]刘晨峰,张志强,查同刚,Sun, G,朱金兆,申李华,张津林,陈军,崔令军.涡度相关法研究土壤水分状况对沙地杨树人工林生态系统能量分配和蒸散日变化的影响[J].生态学报,2006,26(8):2549-2557.
    [246]王旭,尹光彩,周国逸,闫俊华,王春林.鼎湖山针阔混交林旱季能量平衡研究[J].热带亚热带植物学报,2005,13(3):205-210.
    [247]Restrepo, N. C., Arain, M. A. Energy and water exchanges from a temperate pine plantation forest [J]. Hydrological Processes,2005,19(1):27-49.
    [248]Smith, E. A., Hodges, G. B., Bacrania, M., Cooper, H. J., Owens, M. A., Chappel, R., Kincannon, W. BOREAS Net radiometer engineering study [Z]. Greenbelt, MD: NASA-Goddard Space Flight Center,1997.
    [249]Stoy, P. C., Katul, G G, Siqueira, M., Juang, J. Y. I. H., Novick, K. A., McCARTHY, H. R., Christopher Oishi, A., Uebelherr, J. M., Kim, H. S., Oren, R. A. M. Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US [J]. Global Change Biology,2006,12(11):2115-2135.
    [250]王昭艳.长江滩地抑螺防病林生态系统能量平衡和与水汽通量研究[D].中国林业科学研究院博士学位论文,2008.
    [251]Song, X., Liu, Y. F., Xu, X. F., Yu, G R., Wen, X. F. Comparison study on carbon dioxide, water and heat fluxes of the forest ecosystem in red earth hilly zone over winter and spring [J]. Resources Science,2004,26(3):96-104.
    [252]Abtew, W. Evapotranspiration in the everglades:comparison of Bowen ratio measurements and model estimations [Z]. Tampa, Florida, USA:Proceedings of the Annual International Meeting of American Society of Agricultural Engineers,2005,17-20.
    [253]Arain, M. A., Black, T. A., Barr, A. G., Griffis, T. J., Morgenstern, K., Nesic, Z. Year-round observations of the energy and water vapour fluxes above a boreal black spruce forest [J]. Hydrological Processes,2003,17(18):3581-3600.
    [254]Meyers, T. P. A comparison of summertime water and CO2 fluxes over rangeland for well watered and drought conditions [J]. Agricultural and Forest Meteorology,2001,106(3): 205-214.
    [255]Meinzer, F. C., Goldstein, G., Holbrook, N. M., Jackson, P., Cavelier, J. Stomatal and environmental control of transpiration in a lowland tropical forest tree [J]. Plant Cell and Environment,1993,16;429-436.
    [256]Li, S. G., Lai, C. T., Yokoyama, T., Oikawa, T. Seasonal variation in energy budget and net ecosystem CO2 exchange over a wet C3/C4 co-occurring grassland:effects of development of the canopy [J]. Ecological Research,2003,18;661-675.
    [257]Jia, Z. J., Song, C. C., Wang, Y. S., Huang, Y., Shi, L. Q. Studies on Evapotranspiration over Mire in the Sanjiang Plain [J]. Climatic and Environmental Research,2007,12(4):496-503.
    [258]张燕.北京地区杨树人工林能量平衡和水量平衡[D].北京林业大学博士学位论文,2010.
    [259]孙雪峰,陈灵芝.暖温带落叶阔叶林辐射能量环境初步研究[J].生态学报,1995,15(3):278-286.
    [260]李菊,刘允芬,杨晓光,李俊.千烟洲人工林水汽通量特征及其与环境因子的关系[J].生态学报,2006,26(8):2449-2456.
    [261]章国威,申雍,高文媛.不同土地利用型态下潜在蒸散发量比较-以二次林生态系统与茶园生态系统为例[J].水科学进展,2008,19(3):407-411.
    [262]韩松俊,胡和平,田富强.三种通过常规气象变量估算实际蒸散量模型的适用性比较[J].水利学报,2009,40(1):75-81.
    [263]Gunston, H., Batchelor, C. H. A comparison of the Priestley-Taylor and Penman methods for estimating reference crop evapotranspiration in tropical countries [J]. Agricultural Water Management,1983,6(1):65-77.
    [264]刘晓英,林而达,刘培军.Priestley-Taylor与Penman法计算参照作物腾发量的结果比较[J].农业工程学报,2003,19(1):32-36.
    [265]Kato, T., Kimura, R., Kamichika, M. Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model [J]. Agricultural Water Management,2004,65(3):173-191.
    [266]Farahani, H. J., Bausch, W. C. Performance of evapotranspiration models for maize-bare soil to closed canopy [J]. Transactions of the American Society of Agricultural Engineers,1995, 38(4):1049-1059.
    [267]Chuang, Y. L., Oren, R., Bertozzi, A. L., Phillips, N., Katul, G G The porous media model for the hydraulic system of a conifer tree:Linking sap flux data to transpiration rate [J]. Ecological Modelling,2006,191(3):447-468.
    [268]Hinckley, T. M., Brooks, J. R., Cermak, J., Ceulemans, R., Kucera, J., Meinzer, F. C., Roberts, D. A. Water flux in a hybrid poplar stand [J]. Tree Physiology,1994,14(7-8-9):1005-1018.
    [269]Peramaki, M., Nikinmaa, E., Sevanto, S., Ilvesniemi, H., Siivola, E., Hari, P., Vesala, T. Tree stem diameter variations and transpiration in Scots pine:an analysis using a dynamic sap flow model [J]. Tree Physiology,2001,21(12-13):889-897.
    [270]王华,赵平,蔡锡安,马玲,饶兴权,曾小平.马占相思树干液流与光合有效辐射和水汽压亏缺间的时滞效应[J].应用生态学报,2008,19(2):225-230.
    [271]常学向,赵文智,张智慧.荒漠区固沙植物梭梭(Haloxylon ammodendron)耗水特征[J].生态学报,2007,27(5):1826-1837.
    [272]刘敏,贺康宁,于洋,贺永元.青海云杉茎流特性及其影响因子研究[J].水土保持通报,2009,29(4):26-30.
    [273]张小由,龚家栋,周茂先,司建华.应用热脉冲技术对胡杨和柽柳树干液流的研究[J].冰川冻土,2003,25(5):585-590.
    [274]赵奎,丁国栋,吴斌,张宇清,段玉玺,张静虎,孙毅.宁夏盐池毛乌素沙地柠条锦鸡儿茎流及蒸腾特征[J].干旱区研究,2009,(3):390-395.
    [275]虞沐奎,姜志林,鲁小珍,胡一民,朱永林.火炬松树干液流的研究[J].南京林业大学学报:自然科学版,2004,27(3):7-10.
    [276]Chang, X. X., Zhao, W. Z., Zhang, Z. H., Su, Y. Z. Sap flow and tree conductance of shelter-belt in arid region of China [J]. Agricultural and Forest Meteorology,2006,138(1-4): 132-141.
    [277]严昌荣,Downey, A.,韩兴国,陈灵芝.北京山区落叶阔叶林中核桃楸在生长中期的树干液流研究[J].生态学报,1999,19(6):793-797.
    [278]Oishi, A. C., Oren, R., Stoy, P. C. Estimating components of forest evapotranspiration:a footprint approach for scaling sap flux measurements [J]. Agricultural and Forest Meteorology, 2008,148(11):1719-1732.
    [279]Vertessy, R. A., Hatton, T. J., Reece, P., O'sullivan, S. K., Benyon, R. G. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique [J]. Tree Physiology,1997,17(12):747-756.
    [280]Lundblad, M., Lindroth, A. Stand transpiration and sapflow density in relation to weather, soil moisture and stand characteristics [J]. Basic and Applied Ecology,2002,3(3):229-243.
    [281]刘超,李春友,张劲松,任迎丰.秋季大叶女贞树干液流径向变化特征[J].安徽农业科学,2011,39(13):7753-7756.
    [282]Kunert, N., Schwendenmann, L., Holscher, D. Seasonal dynamics of tree sap flux and water use in nine species in Panamanian forest plantations [J]. Agricultural and Forest Meteorology, 2010,150(3):411-419.
    [283]涂洁,刘琪,李海涛,林耀明.江西千烟洲湿地松生长旺季树干液流动态及影响因素分析[J].林业科学,2008,44(1):46-51.
    [284]Oren, R., Phillips, N., Ewers, B. E., Pataki, D. E., Megonigal, J. P. Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest [J]. Tree Physiology,1999,19(6):337-347.
    [285]Horna-de-Zimmermannn, J. V. Effects of soil waterlogging on xylem flux density of two bottomland hardwood species [D]. LA:Louisiana State University M.S. Thesis,1997.
    [286]Krauss, K. W., Duberstein, J. A. Sapflow and water use of freshwater wetland trees exposed to saltwater incursion in a tidally influenced South Carolina watershed [J]. Canadian Journal of Forest Research,2010,40(3):525-535.
    [287]Passioura, J. B., Ball, M. C., Knight, J. H. Mangroves may salinize the soil and in so doing limit their transpiration rate [J]. Functional Ecology,1992,6(4):476-481.
    [288]Sobrado, M. A. Drought effects on photosynthesis of the mangrove, Avicennia germinans, under contrasting salinities [J]. Trees-Structure and Function,1999,13(3):125-130.
    [289]Granier, A., Huc, R., Barigah, S. T. Transpiration of natural rain forest and its dependence on climatic factors [J]. Agricultural and Forest Meteorology,1996,78(1-2):19-29.
    [290]Wullschleger, S. D., Meinzer, F. C., Vertessy, R. A. A review of whole-plant water use studies in tree [J]. Tree Physiology,1998,18(8-9):499-512.
    [291]Miller, P. C. Bioclimate, leaf temperature, and primary production in red mangrove canopies in south Florida [J]. Ecology,1972,53(1):22-45.
    [292]Moran, M. S., Scott, R. L., Keefer, T. O., Emmerich, W. E., Hernandez, M., Nearing, G S., Paige, G B., Cosh, M. H., O'Neill, P. E. Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature [J]. Agricultural and Forest Meteorology,2009,149(1):59-72.
    [293]阮宏华,郑阿宝,钟育谦.次生栎林蒸腾强度与蒸腾量的研究[J].南京林业大学学报,1999,23(4):32-35.
    [294]Paco, T. A., David, T. S., Henriques, M. O., Pereira, J. S., Valente, F., Banza, J., Pereira, F. L., Pinto, C., David, J. S. Evapotranspiration from a Mediterranean evergreen oak savannah:The role of trees and pasture [J]. Journal of Hydrology,2009,369(1-2):98-106.
    [295]Lane, P. N. J., Morris, J., Ningnan, Z., Guangyi, Z., Guoyi, Z., Daping, X. Water balance of tropical eucalypt plantations in south-eastern China [J]. Agricultural and Forest Meteorology, 2004,124(3-4):253-267.
    [296]Roupsard, O., Bonnefond, J. M., Irvine, M., Berbigier, P., Nouvellon, Y., Dauzat, J., Taga, S., Hamel, O., Jourdan, C., Saint-Andre, L. Partitioning energy and evapo-transpiration above and below a tropical palm canopy [J]. Agricultural and Forest Meteorology,2006,139(3): 252-268.
    [297]Giambelluca, T. W., Ziegler, A. D., Nullet, M. A., Truong, D. M., Tran, L. T. Transpiration in a small tropical forest patch [J]. Agricultural and Forest Meteorology,2003,117(1-2):1-22.
    [298]岳广阳,赵哈林,张铜会,云建英,牛丽,何玉惠.不同天气条件下小叶锦鸡儿茎流及耗水特性[J].应用生态学报,2007,18(10):2173-2178.
    [299]赵平,饶兴权,马玲,蔡锡安,曾小平.基于树干液流测定值进行尺度扩展的马占相思林段蒸腾和冠层气孔导度[J].植物生态学报,2006,30(4):655-665.
    [300]Kubota, M., Tenhunen, J., Zimmermann, R., Schmidt, M., Adiku, S., Kakubari, Y. Influences of environmental factors on the radial profile of sap flux density in Fagus crenata growing at different elevations in the Naeba Mountains, Japan [J]. Tree Physiology,2005,25(5):545-556.
    [301]赵平,饶兴权,马玲,蔡锡安,曾小平.马占相思林冠层气孔导度对环境驱动因子的响应[J].应用生态学报,2006,17(7):1149-1156.
    [302]Krauss, K. W., Lovelock, C. E., McKee, K. L., Lopez-Hoffman, L., Ewe, S. M. L., Sousa, W. P. Environmental drivers in mangrove establishment and early development:a review [J]. Aquatic Botany,2008,89(2):105-127.
    [303]Cheeseman, J. M., Clough, B. F., Carter, D. R., Lovelock, C. E., Eong, O. J., Sim, R. G The analysis of photosynthetic performance in leaves under field conditions:A case study using Bruguiera mangroves [J]. Photosynthesis Research,1991,29(1):11-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700