用户名: 密码: 验证码:
高层结构基于整体及构件损伤指标的地震失效评价方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高层结构大震失效的损伤演化量化描述是实现基于性能抗震设计方法的关键。为描述高层建筑结构的地震失效机理,本文从结构大震下整体稳定失效过程及构件损伤发展累积两个角度出发,研究高层建筑结构大震失效演化过程及损伤状态的量化,实现了从结构整体稳定失效判别指标、基于材料损伤的构件损伤到结构整体损伤的失效演化过程量化评价,具体的研究工作如下:
     (1)高层建筑结构整体稳定分析。通过连续化方法的体系变形分析,建立了高层建筑结构的初始等效抗侧刚度求解方法,明确了结构变形的分布形态,在此基础上研究了结构的重力二阶效应及其与结构刚重比的关系,并给出了结构体系整体稳定的限定条件。
     (2)基于整体稳定的失效判别方法研究。通过整体稳定平衡分析提出了瞬时等效刚重比的概念,揭示了瞬时等效刚重比与结构非线性响应之间的关系,给出了基于瞬时等效刚重比变化的结构整体失效判别方法,得到了失效判别指标与结构失效状态的量化关系,并通过模型试验,验证了该失效判别方法的正确性。
     (3)基于材料损伤的剪力墙墙肢构件失效研究。通过不同设计参数的钢筋混凝土剪力墙低周往复试验结果分析及失效演化过程的有限元模拟分析,得到了影响钢筋混凝土剪力墙材料损伤演化特点的高宽比和轴压比等主要参数。基于构件的材料损伤发展特点给出了钢筋混凝土剪力墙弯曲型失效和剪切型失效两种失效模式分类。通过材料损伤信息与构件性能阶段性变化的关系,以材料竖向损伤发展信息为主,对损伤信息进行提取分类得到能够合理表征剪力墙构件损伤演化特点的损伤指标;针对不同失效模式给出了量化墙肢失效演化过程中各损伤状态的损伤指标值的确定方法。
     (4)基于材料损伤的连梁构件失效研究。明确了影响钢筋混凝土连梁材料损伤发展演化特点的主要影响因素为剪跨比、广义剪压比及剪箍比。基于连梁水平向材料损伤发展规律给出了弯曲型失效、剪切型失效和弯剪型失效三种失效模式的分类。通过材料损伤发展特点的研究,将能够合理反映连梁性能变化及损伤特点的损伤信息转化成构件损伤指标。针对不同失效模式给出了定量描述连梁失效演化过程中各损伤状态的损伤指标值确定方法。
     (5)基于材料损伤的钢筋混凝土梁柱构件失效研究。通过不同设计参数对钢筋混凝土材料损伤发展演化特点的影响分析,明确了失效模式关键影响因素。基于材料损伤发展特点给出了钢筋混凝土梁柱失效模式的分类。通过材料损伤发展与构件性能阶段性变化的关系划分构件性能阶段,以沿轴向发展的损伤为主,分别选取了不同区域的材料平均受压损伤为损伤指标,表征梁柱不同的失效模式,针对不同失效模式明确了各阶段临界状态的损伤指标值,并给出了定量描述构件失效演化过程中各损伤状态的损伤指标值确定方法。
     (6)高层建筑结构基于构件损伤的整体失效研究。基于构件失效演化过程的损伤模型,以构件类型、构件损伤程度及位置的重要性为依据定义了构件损伤到结构损伤信息传递系数,实现了由材料损伤累积发展到结构整体损伤的结构大震失效演化全过程量化描述,并将该方法应用到实际工程中。
Quantitative analysis of failure evolution process is one of the critical steps to achieve performance based seismic design of high-rise buildings. In order to describe the failure mechanism of high-rise buildings more efficiently, the quantitative analysis of failure evolution process was studied through overall stability failure process of structures and damage accumulation. Quantitative description of failure evolution process of high-rise buildings was realized, which was based on the overall stability failure index and the damage index. The main contents of the thesis were as follows:
     (1) Overall stability analysis of structures. Approximate equivalent lateral stiffness of high-rise buildings was given by deformation analysis and the deformation patterns were discussed. In addition, gravity second-order effects of high-rise buildings were studied; and the influence of stiffness-weight ratio was obtained by analysis of overall stability of the high-rise buildings.
     (2) Research on the identification method of structural failure based on overall stability. Instantaneous equivalent stiffness-weight ratio was defined by equilibrium analysis of overall stability. The relationship of non-linear structural responses and instantaneous equivalent stiffness-weight ratio was deduced, and the identification method of structural failure was given based on degenerate of instantaneous equivalent stiffness-weight ratio. Then the relationship between failure indices and failure states was determined. And the identification method was verified by experimental tests and elastic-plastic time-history numerical simulations of high-rise buildings.
     (3) Research on failure behavior of shear walls based on material damage. The major parameters affecting failure states of shear walls, including depth-width ratio and axial compression ratio, were obtained by discussion of cyclic load test results and numerical simulation of failure evolution process of shear walls with different design parameters. According to the characteristics of material damage, the failure modes of RC shear walls were classified as shear-type and bending-type. The damage indices, reflecting damage of shear wall components, were achieved by damage information fusion based on material damage mechanics. Also, the identification methods of damage indices, corresponding to different failure modes of shear walls in failure evolution processes, were described.
     (4) Research on failure behavior of RC coupling beams based on material damage. The major parameters affecting failure states of RC coupling beams under rare earthquakes, including shear span ratio, shear compression ratio and stirrup characteristic value, were determined. According to the feature of material damage, the failure modes of RC coupling beams were classified as shear-type, bending-type and bending-shear type. The damage indices, reflecting damage of coupling beam components, were achieved by damage information fusion based on material damage mechanics. Also, the identification methods of damage indices, corresponding to different failure modes of RC coupling beams, ware described.
     (5) Research on failure behavior of RC columns and frame beams based on material damage. The major parameters affecting failure states of RC columns and frame beams were proposed by discussion of cyclic load test results of RC columns and frame beams with different design parameters and numerical simulation of failure evolution processes. The failure modes of RC columns and frames beams were classified. The damage indices, reflecting damage of columns and beams components, were achieved by damage information fusion based on material damage mechanics. The identification methods of damage indices were described for different failure modes of RC columns and frame beams.
     (6) Research on failure behavior of high-rise buildings based on damage. The damage evolution transfer coefficients were obtained in the processes of damage evolution from material degradation to structural failure, which were based on the damage models in components and were justified by the types of the components, the importance of the components, the damage degrees and locations of the components. In this way, the damage evaluation was realized, which can transfer from material failure to structural failure. Finally, the engineering practice verified that the method was feasible.
引文
[1]徐培福,傅学怡,王翠坤,等.复杂高层建筑结构设计[M].北京:中国建筑工业出版社,2005:103-136.
    [2]中华人民共和国行业标准. JCJ3-2010.高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2008:48-258.
    [3]傅学怡.实用高层建筑结构设计[M].北京:中国建筑工业出版社,2010.34-129
    [4] Bazant Z P, Cedolin L. Stability of Structures: Elastic, Inelastic, Fracture andDamage Theories[M]. World Scientific Pub, Hackensack,2010:144-294.
    [5] Iu C K, Bradford M A, Chen W F. Second-order Inelastic Analysis of CompositeFramed Structures Based on The Refined Plastic Hinge Method[J]. EngineeringStructures,2009,31(3):799-813.
    [6] Shafei B, Zareian F, Lignos D G. A Simplified Method for Collapse CapacityAssessment of Moment-resisting Frame and Shear Wall Structural Systems[J].Engineering Structures,2011,33(4):1107-1116.
    [7] Kim S, Lee J, Choi S, et al. Practical Second-order Inelastic Analysis for SteelFrames Subjected to Distributed Load[J]. Engineering Structures,2004,26(1):51-61.
    [8] Kim, S, Ngo-Huu C, and Lee D. Second-order Inelastic Dynamic Analysis of3-DSteel Frames[J]. International Journal of Solids and Structures,2006,43(6):1693-1709.
    [9]梁启智,陈加猛.高层框筒结构的整体稳定和二阶分析[J].华南理工大学学报(自然科学版),1997(11):37-43.
    [10]徐彬,梁启智.高层框筒结构二阶分析变分摄动法[J].华南理工大学学报(自然科学版),2000(02):100-106.
    [11]辛克贵,钱良忠.高层筒体结构的整体稳定及二阶位移分析[J].清华大学学报(自然科学版),2003(10):1386-1389.
    [12]陆铁坚,余志武,李芳.高层筒体结构整体稳定及二阶位移分析的改进条元法[J].计算力学学报,2006(01):29-33.
    [13]陈加猛,梁启智.高层筒中筒结构的整体稳定简化分析[J].华南理工大学学报(自然科学版),1998(03):33-39.
    [14]梁启智,傅赣清.筒中筒结构在竖向地震作用下的整体稳定分析[J].华南理工大学学报(自然科学版),2000(01):61-65.
    [15]朱杰江,吕西林,容柏生.高层混凝土结构重力二阶效应的影响分析[J].建筑结构学报,2003(06):38-43.
    [16]徐培福,肖从真.高层建筑混凝土结构的稳定设计[J].建筑结构,2001(08):69-72.
    [17]李云贵,黄吉锋.钢筋混凝土结构重力二阶效应分析[J].建筑结构学报,2009(S1):208-212.
    [18]包世华,龚耀清.超高层建筑空间巨型框架的水平力和重力二阶效应分析新方法[J].计算力学学报,2010(01):40-46.
    [19]侯小美,宋宝东.复杂高层的整体稳定性分析[J].结构工程师,2008(06):51-56.
    [20]童根树,翁赟.顶部带伸臂的框架-核心筒结构的稳定性和位移、弯矩放大系数[J].工程力学,2008(03):132-138.
    [21] Tong G, Pi Y, Bradford M, et al. Buckling and Second-order Effects in DualShear-flexural Systems[J]. Journal of Structural Engineering,2008,134(11):1726-1732.
    [22] Bozdogan, K B, and Ozturk D. An Approximate Method for Lateral StabilityAnalysis of Wall-frame Buildings Including Shear Deformations of Walls[J].Sadhana,2010,35(3):241-253.
    [23] Tuba E, Sinan A. Lateral Stiffness Estimation in Frames and Its Implementation toContinuum Models for Linear and Nonlinear Static Analysis[J]. Bulletin ofEarthquake Engineering,2011,9(4):1097-1114.
    [24]尧国皇,孙占琦,孙素文等.某超高层钢管混凝土框架-核心筒结构的整体稳定性分析[J].钢结构,2010(06):35-38.
    [25]童根树,俞一弓.弯曲型支撑-框架弹塑性稳定的简化分析[J].工程力学,2011(01):186-191.
    [26]王国安,高层建筑结构整体稳定性研究[J].建筑结构,2012(06):127-131.
    [27]童根树,苏健.联肢剪力墙的刚度、稳定性以及二阶效应[J].工程力学,2012(11):115-122.
    [28]翁赟,童根树.非等高双重抗侧力体系的稳定性[J].工程力学,2012(10):162-169.
    [29] Hatzigeorgiou G D, Beskos D E. Inelastic Displacement Ratios for SDOFStructures Subjected to Repeated Earthquakes[J]. Engineering Structures,2009(31):2744-2755.
    [30] Hatzigeorgiou G D. Ductility Demand Spectra for Multiple Near and Far-faultEarthquakes[J]. Soil Dynamics and Earthquake Engineering,2010(30):170-183.
    [31] Mollaioli F, Bruno S. Influence of Site Effects on Inelastic Displacement Ratios forSDOF and MDOF Systems[J]. Computers and Mathematics with Applications,2008(55):184-207.
    [32] Giaralis A, Spanos P D. Effective Linear Damping and Stiffness Coefficients ofNonlinear Systems for Design Spectrum Based Analysis[J]. Soil Dynamics andEarthquake Engineering,2010(30):798-810.
    [33] Benavent-Climent A, Lopez-Almansa F, Bravo-Gonzalez D A. Design EnergyInput Spectra for Moderate-to-high Seismicity Regions Based on ColombianEarthquakes[J]. Soil Dynamics and Earthquake Engineering,2010(30):1129-1148.
    [34] Benavent-Climent A, Zahran R. An Energy-based Procedure for the Assessment ofSeismic Capacity of Existing Frames: Application to RC Wide Beam Systems inSpain[J]. Soil Dynamics and Earthquake Engineering,2010(30):354-367.
    [35] Jiang Y, Li G, Yang D X. A Modified Approach of Energy Balance Concept BasedMultimode Pushover Analysis to Estimate Seismic Demands for Buildings[J].Engineering Structures,2010(32):1272-1283.
    [36]陆铁坚,许军.高层钢框架-钢筋混凝土核心筒混合结构破坏过程的数值模拟[J].建筑科学与工程学报,2008,25(1):32-37
    [37]杜修力,高艳春,杨淑玲.横向钢梁空间约束作用对钢框架-混凝土核心筒结构弹塑性地震反应的影响[J].地震工程与工程振动,2008,28(4):76-81.
    [38]韩小雷,唐剑秋,黄艺燕.钢管混凝土巨型斜交网格筒体结构非线性分析[J].地震工程与工程振动,2009,29(4):77-84.
    [39]卜一,吕西林,周颖,黄志华.采用增量动力分析方法确定高层混合结构的性能水准[J].结构工程师,2009,25(2):77-84.
    [40]门进杰,史庆轩.框架结构基于性能的抗震设防目标和性能指标的量化[J].土木工程学报,2008,41(9):76-82.
    [41]陆铁坚,秦素娟,罗应松,余志武.高层钢-混凝土混合结构拟动力试验研究[J].建筑结构学报,2009,30(3):27-35.
    [42] Kachanov L. Crack and Damage Growth in Creep-A Combined Approach[J].International Journal of Fracture,1980,16(4):179-181.
    [43] Rabotnov Y N. Creep Rupture[M]. Springer Berlin,1969:50-56
    [44] Cordebois J P, Sidoroff F. Anisotropic Damage in Elasticity and Plasticity[J].Journal De Mecanique Theorique Appliquee,1980:45-59.
    [45] Lemaitre J. Application of Damage Concepts to Predict Creep-fatigue Failure[J]. J.Eng. Mat. Teeh, ASME,1979,101(1):202-209.
    [46] Chaboche J L. Continuum Damage Mechanics: Present State and Future Trends[J].Nucl. Eng. Design,1987,105(6):19-33.
    [47] Loland K E. Continuous Damage Model for Load-response Estimation ofConcrete[D].1980:30-38
    [48] Lubliner J, Oliver J, Oiler S, Onate. A Plastic Damage Model for Concrete[J].International Journal of Solid Structures,1989,25(3):299-326.
    [49] Faria R, Oliver J, Cervera M. A Strain-based Plastic Viscous-damage Model forMassive Concrete Structures[J]. International Journal of Solids and Structures,1998,35(14):1533-1558.
    [50] Lee J, Fenves G L. A Plastic-damage Concrete Model for Earthquake Analysis ofDams[J]. Earthquake Engineering and Structural Dynamics,1998,27(9):937-956.
    [51] Kotronis P, Mazars J, Davenne. The Equivalent Reinforced Concrete Model forSimulating the Behavior of Walls under Dynamic Shear Loading[J]. EngineeringFracture Mechanics,2003,70(7-8):1085-1097.
    [52] Salari M R, Saeb S, Willam K J, et al. A Coupled Elastoplastic Damage Model forGeomaterials[J]. Computer Methods in Applied Mechanics and Engineering,2004,193(27-29):2625-2643.
    [53]李杰,吴建营.混凝土弹塑性损伤本构模型研究Ⅰ:基本公式[J].土木工程学报,2005,38(9):14-20.
    [54]吴建营,李杰.混凝土弹塑性损伤本构模型研究Ⅱ:数值计算和试验验证[J].土木工程学报,2005,38(9):21-27.
    [55]杨璐,沈新普,孙光.混凝土弹塑性损伤本构理论的研究[J].沈阳工业大学学报,2005,27(3):321-324.
    [56]杨卫忠,樊濬.混凝土单轴受压本构模型及其应用[J].郑州大学学报:工学版,2006,27(1):1-4.
    [57]王怀亮,宋玉普.混凝土的弹塑性损伤双面本构模型[J].计算力学学报,2008,25(2):218-223.
    [58]邵长江,钱永久.混凝土的一种标量损伤弹塑性本构模型[J].计算力学学报,2010(2):298-302.
    [59] Li Z, Hatzigeorgiou G D. Seismic Damage Analysis of RC Structures Using FiberBeam-column Elements[J]. Soil Dynamics and Earthquake Engineering,2012,32(1):103-110.
    [60] Cipollina A, Lopez-Inojosa A, Florez-Lopez J. A Simplified Damage MechanicsApproach to Nonlinear Analysis of Frames[J]. Computer&Structures,1995,54(6):1113-1126.
    [61]李祚华.高层钢筋混凝土结构损伤模型及地震损伤描述[D].哈尔滨工业大学结构工程,2010:118-142.
    [62] Kent D C, Park R. Flexural Members with Confined Concrete[J]. ASCE, Journal ofthe Structural Division,1971,7(97):1969-1990.
    [63] Chan W. The Ultimate Strength and Deformation of Plastic Hinges in ReinforcedConcrete Frameworks[J]. Magazine of Concrete Research,1955,7(21):121-132.
    [64] Soliman, Y. The Flexural Stress-strain Relationship of Concrete Confined byRectangular Transverse Reinforcement[J]. Magazine of Concrete Research,1982,3(79):296-306.
    [65] Sheikh S A, Uzumeri S M. Analytical Model for Concrete Confinement in TiedColumns[J]. Journal of the Structural Division,1982,108(12):2703-2722.
    [66] Mander J B, Priesley M J N, Park R. Theoretical Stress-strain Model for ConfinedConcrete[J]. Journal of Structural Engineering,1988(114):1804-1826.
    [67] Martinez-Rueda J E, Elnashai A S. Confined Concrete Model under Cyclic Load[J]. Materials and Structures,1997,30:139-147.
    [68] Geron L E, Paultre P. Uniaxial Confinement Model for Normal and High-strengthConcrete Columns[J]. Journal of Structure Engineering. ACSE,2003,129(2):241-252.
    [69] Sakai J, Kawashima K. Unloading and Reloading Stress-strain Model for ConfinedConcrete [J]. Journal of Structural Engineering,2006,(1):112-122.
    [70]张秀琴,过镇海,王传志.反复荷载下箍筋约束混凝土的应力-应变全曲线方程[J].工业建筑,1985(12):16-20.
    [71]聂建国,柏宇,李盛勇,等.约束混凝土的有效约束半径[J].清华大学学报(自然科学版),2005(3):289-292.
    [72]王怀亮,宋玉普.受侧向约束混凝土的内时损伤本构模型[J].工程力学,2007(12):120-127.
    [73] Tomii M, Yoshimura K, Morishita Y. Experimental Studies on Concrete FilledSteel Tubular Stub Columns under Concentric Loading[J].1977:718-741.
    [74]蔡健,孙刚.方形钢管约束下核心混凝土的本构关系[J].华南理工大学学报(自然科学版),2008(1):105-109.
    [75]李祚华,李安,滕军.基于能量的混凝土单轴受压塑性损伤本构模型[J].土木工程学报,2012(S2):182-186.
    [76] Banon H, Irvine H M, Biggs J M. Seismic Damage in Reinforced ConcreteFrames[J]. Journal of the Structural Division,1981,107(9):1713-1729.
    [77] Stephens J E, Yao J T P. Damage Assessment Using Response Measurements[J].Journal of Structural Engineering,1987,113(4):787-801.
    [78] Park Y, Ang A H, Wen Y K. Seismic Damage Analysis of Reinforced ConcreteBuildings[J]. Journal of Structural Engineering,1985,111(4):740-757.
    [79] Park Y J, Ang A H. Mechanistic Seismic Damage Model for ReinforcedConcrete[J]. Journal of Structural Engineering,1985,111-122.
    [80]杜修力,欧进萍.建筑结构地震破坏评估模型[J].世界地震工程,1991(3):52-58.
    [81]王东升,冯启民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报,2004(11):41-49.
    [82]李军旗,赵世春.钢筋混凝土构件损伤模型[J].兰州铁道学院学报,2000(3):25-27.
    [83] Chai Y H, Romstad K M, Bird S M. Energy-Based Linear Damage Model forHigh-Intensity Seismic Loading[J]. Journal of Structural Engineering,1995,121(5):857-864.
    [84]陈林之,蒋欢军,吕西林.修正的钢筋混凝土结构Park-Ang损伤模型[J].同济大学学报(自然科学版),2010(8):1103-1107.
    [85] Chung Y S, Meyer C, Shinozuka M. Modeling of Concrete Damage[J]. ACIStructural Journal,1989,86(3):259-271.
    [86] Sozen M A. Review of Earthquake Response of Reinforced Concrete Buildingswith a View to Drift Control[C]//State of the Art in Earthquake Engineering,7thWorld Conference on Earthquake Engineering, Istanbul:[s. n.],1980.119-174.
    [87] Stephens J E, Yao J T P. Damage Assessment Using Response Measurements[J].Journal of Structural Engineering,1987,113(4):787-801.
    [88] Ghobarah A, Abou-Elfath H, Biddah A. Response-Based Damage Assessment ofStructures[J]. Earthquake Engineering&Structural Dynamics,1999,28(1):9-104.
    [89]朱红武,王孔藩,唐寿高.模态损伤指标及其在结构损伤评估中的应用[J].同济大学学报(自然科学版),2004(12):1589-1592.
    [90] Gu X, Yan Z. Damage Analysis on Reinforced Conctrete Structures underEarthquake Series[C]//Proceeding of ICCBE-Ⅶ, Seoul Korea,1997:1019-1024.
    [91]刘毅.钢筋混凝土结构二阶效应及设计方法的研究[D].重庆:重庆大学,2007.80-121.
    [92] Kyoung S M, Jerome J. Diagrid structural Systems for Tall BuildingsCharacteristics and Methodology for Preliminary Design[J]. The Structural Designof Tall and Special Buildings.2007,16:205-230.
    [93] Kyoung S M. Sustainable Structural Engineering Strategies for Tall Buildings [J].The Structural Design of Tall and Special Buildings,2008,17:895-914.
    [94] Kyoung S M. Optimal Grid Geometry of Diagrid Structure for Tall Buildings[J].Architectural Science Review,2008,51(3):239-251.
    [95] Kyoung S M. Stiffness-Based Design Methodology for Steel Braced TubeStructures: a Sustainable Approach[J]. Engineering Structures,2010,32:3163-3170.
    [96] Zhang C H, Zhao F, Liu Y S. Diagrid Tube Structures Composed of StraightDiagonals with Gradually Varying Angles[J]. The Structure Design of Tall andSpecial Buildings,2010:25-34.
    [97] Han X L, Huang C, Ji J. Experimental and Numerical Investigation of the AxialBehavior of Connection in CFST Diagrid Structures[J]. Tsinghua Science andTechnology,2008,12(S1):108-113.
    [98]黄志华.钢框架—钢筋混凝土核心筒高层混合结构基于性能的抗震设计方法研究[D].上海:同济大学,2010:89-156.
    [99]黄志华,吕西林,周颖,卜一.高层混合结构地震整体损伤指标研究[J].同济大学学报(自然科学版),2010,38(2):170-177.
    [100] Kim J, Park J. Design of Steel Moment Frames Considering ProgressiveCollapse[J]. Steel and Composite Structures,2008,8(1):85-98.
    [101] Jinkoo K, Yong H L. Progressive Collapse Resisting Capacity of Tube-TypeStructures[J]. The Structural Design of Tall and Special Buildings,2010,19:761-777.
    [102]李兵,李宏男,曹敬党.钢筋混凝土高剪力墙拟静力试验[J].沈阳建筑大学学报(自然科学版),2009,25(2):230-234.
    [103]鹏飞,程文瀼,陆和燕等.对称双肢短肢剪力墙的拟静力试验研究[J].建筑结构学报,2008,29(1):64-69
    [104]李兵,李宏男.不同剪跨比钢筋混凝土剪力墙拟静力试验研究[J].工业建筑,2010,40(9):32-36
    [105] Kotronis P, Mazars J, Davenne L. The Equivalent Rreinforced Concrete Model forSimulating the Behavior of Walls under Dynamic Shear Loading[J]. EngineeringFracture Mechanics,2003,70(7-8):1085-1097.
    [106]章红梅.剪力墙结构基于性态的抗震设计方法研究[D].上海:同济大学,2007:20-105.
    [107] Chandler A M, Mendis P A. Performance of Reinforced Concrete Frames UsingForce and Displacement Based Seismic Assessment Methods[J]. EngineeringStructures,2000,22(5):352-363.
    [108] Lefas I D, Kotsovos M D, Ambraseys N N. Behavior of Reinforced ConcreteStructural Walls: Strength, Deformation, and Failure Mechanism[J]. ACI StructuralJournal,1990,87(1):12-31.
    [109]肖启艳,基于性能的RC剪力墙抗震设计关键技术研究[D].广州:华南理工大学,2010:35-73.
    [110] Mostafaei, H, Vecchio F J, Kabeyasawa T. Deformation Capacity of ReinforcedConcrete Columns[J]. ACI Structural Journal,2010,107(1):126-127.
    [111]陈勤,钱稼茹,李耕勤.剪力墙受力性能的宏观模型静力弹塑性分析[J].土木工程学报,2004,37(3):35-43.
    [112]中国建筑科学研究院. GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社.2010:67-69.
    [113]应勇,蒋欢军,王斌,张永鑫.钢筋混凝土剪力墙构件双参数地震损伤模型研究[J].结构工程师,2010,26:61-65.
    [114] Zhou X, Satoh T, Jiang W, et al. Behavior of Reinforced Concrete Short Columnunder High Axial Load[J]. Transactions of the Japan Concrete Institute,1987,9(6):541-548.
    [115] Mo Y, Wang S J. Seismic Behavior of RC Columns with Various TieConfigurations[J]. Journal of Structural Engineering,2000,126(10):1122-1130.
    [116]陈林之.钢筋混凝土框架结构基于性能的地震损伤控制研究[D].同济大学结构工程,2010:30.
    [117]邓艳青. HRB500钢筋混凝土柱的抗震性能试验研究[D].重庆大学,2010:32-37.
    [118]蒋欢军,王斌,吕西林.钢筋混凝土梁和柱性能界限状态及其变形限值[J].建筑结构,2010,(01):10-14.
    [119]马颖.钢筋混凝土柱地震破坏方式及性能研究[D].大连理工大学,2012:75-85.
    [120] Williams M S. Seismic Assessment of Concrete Bridges Using Inelastic DamageAnalysis[J]. Engineering Structures,1997,19(3):208-216.
    [121] Li Y X, Zhao S C. Seismic Damage Analysis of Concrete Members[J]. NuclearEngineering and Design,1996(160):262-266.
    [122] Chung Y S, Hatamoto H, Meyer C, etc. Seismic Safety Improvement ofDamage-controlled Reinforced Concrete Frames[J]. Advances in EngineeringSoftware,1993(18):95-102.
    [123]蔡茂,顾祥林,华晶晶,等.考虑剪切作用的钢筋混凝土柱地震反应分析[J].建筑结构学报,2011,(11):97-108.
    [124] Paulay T. Coupling Beams of Concrete Shear Walls[J]. Journal of the StructuralDivision, ACSE,1971,97(ST3):843-862.
    [125]龚炳年.钢筋混凝土连系梁的抗震性能[D].北京:清华大学,1986:10-31.
    [126]万海涛.钢筋混凝土梁、柱构件抗震性能试验及其基于变形性能的参数研究[D].华南理工大学,2010:105-110.
    [127]张桦.钢筋混凝土框架结构抗震性能等级研究[D].同济大学,2009:55-59.
    [128] Li Z, Hatzigeorgiou G D. Seismic Damage Analysis of RC Structures Using FiberBeam-Column Elements[J]. Soil Dynamics and Earthquake Engineering,2012,32(1):103-110.
    [129]韩艳波.基于构件尺度的斜交网格筒结构地震损伤评价方法研究[D].哈尔滨工业大学.2012:18-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700