用户名: 密码: 验证码:
杨树品系低温生理响应及相关差异蛋白分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杨树是我国北方重要的造林及城乡绿化树种,其冻害频繁发生及由冻害引发的病害是杨树产业发展的重要制约因素之一。因此,研究秋季自然低温胁迫下不同杨树品系(种)生理生化响应机制及差异蛋白的表达特性,对了解杨树抗寒调节机理具有重要的理论意义,对如何判别现有杨树品种在其栽培地点对低温变化的适应性;如何在育种中平衡生长量和适应性进行杂交亲本选配,以及杂种无性系对比试验和区域化试验地点的选择等生产实践问题具有一定指导作用。
     本研究选择适生区域不同的大青杨、小黑杨、黑林5号杨、1333杨等杨树品系(种)为研究材料,在哈尔滨地区就秋季低温胁迫下不同杨树品系(种)生长、物候、冻害发生,以及叶片细胞膜透性、叶绿素荧光参数、渗透调节物质、酚类物质、特异蛋白等变化规律,以探讨秋季自然低温胁迫下杨树抗寒响应机制。研究结果表明:
     (1)不同杨树品系(种)在同一栽培地点对低温变化的反应不同,遗传基础决定其生长、物候以及适应性差异。其中,大青杨为当地乡土树种,在其长期进化过程中适应了当地的气候特点,其封顶最早,顶芽越冬率最高,基本无冻害问题;黑林5号杨封顶略晚于大青杨,顶芽越冬率(97%)次之:小黑杨封顶晚于黑林5号杨,顶芽越冬率也随之下降(90.5%);1333杨封顶最晚,甚至未形成休眠顶芽,生长周期长,树叶宿存直至冻落,其光周期与当地气候适应性差,难以通过适时休眠规避低温伤害。
     (2)平均最低气温5℃时,相对电导率与叶绿素荧光参数表明杨树叶片遭受可逆胁迫,说明这两者能反映杨树受低温胁迫程度的重要生理指标。零上低温胁迫,大青杨表现受胁迫最重,其次为黑林5号杨与小黑杨,1333杨受害最轻,气温降至零下3.3℃,4个杨树品系(种)相对电导率均超过50%,大青杨表现为受害最轻,1333杨受害最严重,这表明零上低温时代谢旺盛的1333杨耐受低温胁迫能力强,零下低温时,及时休眠可能是杨树应对低温的更好方式。
     (3)遭受低温胁迫时杨树叶片中渗透调节物质与可溶性酚类物质表现不同程度上升,表明这些保护物质与杨树抗寒性关系密切。1333杨响应最强烈,其叶片中渗透调节物质、可溶性酚类物质随气温下降而上升,多表现为显著性负相关,其次是小黑杨与黑林5号杨,大青杨叶片中渗透调节物质与酚类物质多数对零上低温有一定响应,落叶前都出现大幅下降。这是不同品系(种)在低温胁迫中不同抗寒策略的体现,大青杨主要通过避逆的方式应对低温胁迫,1333杨主要通过提高保护物质含量来响应低温胁迫。
     (4)大青杨封顶早,落叶前渗透调节物质大量转移,电导率、Fv/Fm、Fv/F0在零下低温来临前平缓下降等都是大青杨在长期进化过程中与环境相互适应的一种表现,在哈尔滨地区适应性较好的小黑杨、黑林5号杨电导率、Fv/Fm、Fv/F0在零下低温来临前也表现为平缓下降,叶绿素荧光参数的测定具有快速、无伤害等优点,因此可以作为杨树生态适应性的生理指标继续进行研究。
     (5)低温胁迫对杨树蛋白质表达有显著影响,在pH 4~7范围内,大青杨蛋白质双向电泳表达图谱中发现94个蛋白质点在秋季低温胁迫下有丰度变化2倍以上,45个蛋白质被成功鉴定,GO分类结果表明23个(42%)蛋白是胁迫响应蛋白,12个(23%)蛋白与呼吸作用相关,9个(17%)蛋白与光合作用相关,5个(10%)蛋白参与其它生理过程,还有4个(8%)蛋白功能未知。鉴定的45个蛋白中,有41个表达量上调,4个表达量下调。这些蛋白表达丰度变化可能与大青杨特有的抗寒适应机制密切相关。
     (6)以大青杨凝胶图谱上已鉴定的45个蛋白为参照,将小黑杨、1333杨3个时期分别与大青杨凝胶图谱进行匹配,28个蛋白点与小黑杨、1333杨匹配良好,定量分析后与大青杨中同一蛋白点进行比较,结果15个蛋白点在3个品系(种)中表达量均上调,13个蛋白点变化规律不同,其中9个蛋白点在大青杨叶片中表达量上调,小黑杨、1333杨叶片中上调不显著,另外4个蛋白点在大青杨叶片中表达量下调,小黑杨、1333杨叶片中表达丰度变化未超过2倍。变化规律不同的蛋白可能与3个杨树品系(种)低温适应机制不同密切相关,有待于进一步研究。
     (7)热激蛋白(点4、10、67)、磷酸甘油酸变位酶(点21)、细胞质蛋白动力蛋白重链(点44)、ATP合酶δ链(点53)6个蛋白点在3个杨树品系(种)中表达差异可能与其应对低温胁迫机制密切相关。
Poplar is an important afforestation and greening tree species in Northern China. Frequent cold injury and the triggered disease are mainly limited factors for poplar industrial development. Therefore, it is necessary to study physiological and biochemical response of different cultivars to low temperature in autumn and specific expression of function proteins. It has the significance to elaborate the mechanism of cold resistance, distinguish the adaptability of different cultivars, and keep the balance of mass growth and adaptability for the selective breeding of cross parent, as well as select the sites for contrast test and compartmentation test of hybridal clones.
     Four poplar cultivars [P. ussuriensis Kom,populus simonii×P. nigra, (P. psudosimonii×P. nigra)×P. nigra CL.'A5'and populus alba×P. davidian CL.'1333'] grown in Harbin city were selected to investigate their cold resistance to natural low temperature in autumn; cold-resistance mechanisms were studied by investigating on the changes of growth, phenology, cell membrane permeability, chlorophyll fluorescence parameters, osmotic adjustment, phenolic compounds and changes of specific proteins in natural cooling process. The results were shown as follows:
     (1) Different poplar cultivars grown in the same site had various resistances to the changing temperature; genetic basis was a determining factor for the difference in growth, phenology, and adaptability. P. ussuriensis, belonging to the local native tree species, forms some adaptive characteristics to local climate in a long-term evolution process, such as earlier occurrence of capping and higher survival rate of terminal buds, thus this cultivar had almost no cold injure to occur. (P. psudosimonii×P. nigra)×P. nigra CL.'A5'cap slightly later than that of P. ussuriensis, its survival rate of the terminal buds in winter was 97%; the capping of Populus simonii×P. nigra and populus alba×P. davidian CL.'1333'occurred later; this led to the difficulty of the formation of dormant buds and a poor adaptability of its photoperiod to local climate. Thus the two cultivars could not avoid chilling injury by timely access dormant.
     (2) Under the average minimum temperature of 5℃, significant changes in relative conductivity and chlorophyll fluorescence parameters were observed in the four cultivars. Under the stress of low temperature above zero, the injured degree of P. ussuriensis was the highest, followed by (P. psudosimonii×P. nigra)×P. nigra CL.'A5', Populus simonii×P. nigra and populus alba XP. davidian CL.'1333'. However, when air temperature dropped to-3℃, relative conductivity of the four poplar cultivars exceeded 50%, of which the injured degree of P. ussuriensis was the lowest, populus alba×P. davidian CL.'1333'the highest. It indicates that timely access dormant may be a better way to resist low temperature for the poplar cultivars.
     (3) Under chilling stress, osmotic regulation substances and phenolic compounds of the poplar leaves were increased, indicating that there is a close correlation between protection substances and cold resistance. In general, osmotic regulation substances and phenolic compounds of in leaves were increased with a decreasing temperature. The strongest response was found in populus alba×P. davidian CL.'1333'leaves, followed by populus simonii×P. nigra and(P. psudosimonii×P. nigra)×P. nigra CL.'A5'. A relatively weak response occurred only at low temperature above zero for P. ussuriensis. A large decrease in osmotic regulation substances and phenolic compounds occurred for all the four cultivars before defoliation. It implies that P. ussuriensis adapts the low temperature stress mainly through the way of stress avoidance, whereas populus alba×P. davidian CL.'1333'resists the chilling stress by improving protective substances.
     (4) P. ussuriensis had an earlier capping period. Before defoliation, osmotic regulation substances were transferred largely between organs, moreover, relative conductivity, Fv/Fm, and Fv/F0 were decreased slowly before freezing temperature arrival. These characteristics are adaptive performance, formed in a long-term evolution. The other two cultivars (populus simonii×P. nigra and(P. psudosimonii×P. nigra)×P. nigra CL.'A5') also showed a similar changing trend.
     (5) Low temperature stress had significant effects on the protein expression. Under the condition of pH 4-7,94 protein spots in gel electrophoresis map of P. ussuriensis were found to have the change in abundance of more than two times, of which 45 spots were identified. GO classification showed that 23 spots (42% of total protein spots) are stress response proteins,12 (23%) spots might be related to energy metabolism, nine spots (17%) related to photosynthesis, five spots (10%) catabolism associated, the rest four spots (8%) unidentified for the function. Among the identified 45 proteins,41 spots were up-regulated expression; only four spots were down-regulated. These changes in protein abundance may be closely related to chilling adaptation mechanisms in P. ussuriensis.
     (6) Compared with the 45 protein spots identified in gel electrophoresis map of P. ussuriensis,28 protein spots were matched in gel electrophoresis map of populus simonii×P. nigra and populus alba X P. davidian CL.'1333'. Among them, the expressions of 15 proteins were up-regulated in three cultivars in the three stages of temperature drop, the other 13 protein spots showed an inregulatory express, of which nine proteins in P. ussuriensis were up-regulated expression and four proteins were down-regulated expression; the change in populus simonii×P. nigra and populus alba×P. davidian CL. '1333'are not significantly. Variation in protein expression in the three cultivars may be closely related with different low-temperature adaptation mechanisms, this assumption needs to be studied further.
     (7)The expression differences of heat shock protein (spot 4,10,67), bisphosphoglycerate-independent phosphoglycerate mutase (spot 21), filamentation temperature-sensitive h 2b (spot 44), ATP synthase delta chain (spot 53) in the three poplar species may be closely related to low temperature stress response mechanisms.
引文
1. 鲍思伟.自然降温过程中云锦杜鹃抗寒适应性研究[J].福建林业科技,2005,32(2):13.
    2. 毕影东.樟子松顶芽休眠与萌发转换的蛋白质组学研究[D].东北林业大学:学位论文,2010.
    3. 陈翠莲,马平福.抗冷性不同的小麦、水稻品种脯氨酸含量的比较试验[J].华中农业大学学报,1989,8(2):176-179.
    4. 陈国符,邬义民.植物纤维化学[M].北京:轻工业出版社,1983,54-126.
    5. 陈季武,朱振勤,杭凯.八种天然黄酮类化合物的抗氧化构效关系[J].华东师范大学学报,2002,(1):90-94.
    6. 陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006,18(1):51-55.
    7. 陈杰忠,徐春香,梁立峰.低温对香蕉叶片中蛋白质及脯氨酸的影响[J].华南农业大学学报,1999,20(3):54-58.
    8. 陈娜,郭尚敬,孟庆伟.膜脂组成与植物抗冷性的关系及其分子生物学研究进展[J].生物技术通报,2005,(2):6-9.
    9. 陈青君,张福埙,王永健,等.临界低温弱光对黄瓜光合特性及其酶变化的影响[J].华北农学报,2003,18(4):31-34.
    10.陈伟,叶明志,周洁.植物酚类物质研究进展[J].福建农业大学学报,1997,26(4):502-508.
    11.陈晓亚,叶和春.植物次生代谢及其调控[M].见:李承森,主编.植物科学进展(第一卷).北京:高等教育出版社,1998,293-394.
    12.陈贻竹,刘鸿先,郭俊彦.用叶绿素荧光估价水稻的耐冷力[c].中国科学院华南植物研究所,中国科学院华南植物研究所集刊(第6集).北京:科学出版社.1990,122-131.
    13.常宁,周凯松,张长恺.细胞膜系统的稳定性与植物抗寒性及酵母抗冻性的关系[J].山东商业职业技术学院学报,2002,2(3):1-4.
    14.常朝阳,张明理.锦鸡儿属植物幼茎及叶的解剖结构及其生态适应性[J].植物研究,1997,17(1):65-71.
    15. 丁国华,秦智伟,周秀艳.植物低温诱导蛋白和诱导基因研究新进展[J].中国农学通报,2003,19(6):33-39.
    16.邓彦斌,姜彦成,刘健.新疆10种黎科植物叶片和同化枝的旱生和盐生结构的研究[J].植物生态学报,1998,22(2):164-170.
    17.董合铸,孙龙华,简令成.不同抗寒性小麦品种的麦苗在冰冻-化冻后叶片细胞亚微结构的变化[J].植物学报,1980,22:339-342.
    18.董丽,路艳红,黄亦工,等.常绿阔叶植物越冬期间叶片水分及淀粉粒的动态变化[J].北京林业大学学报,2002,24(s/6):76-81.
    19.董妍玲,潘学武.植物次生代谢产物简介[J].生物学通报,2002,37(11):17-19.
    20.杜近义,胡国斌,秦际威.植物次生代谢物的生态学意义[J].生物学杂志,1999,16(3):9-10.
    21.杜永吉,于磊,孙吉雄,等.结缕草3个品种抗寒性的综合评价[J].草业学报,2008,17(3):6-16.
    22.樊怀福,蒋卫杰,郭世荣.低温对番茄幼苗植株生长和叶片光合作用的影响[J].江苏农业科学,2005,89-91.
    23.樊治成,贾洪玉,郭洪芸,等.西葫芦耐冷性生理指标研究[J].园艺学报,1999,26(5):309-313.
    24.房建军.美洲黑杨酚甙类次生代谢产物与抗虫性状基因定位[D].中国林业科学研究院:博士论文.2000.
    25.费松林,方精云,樊拥军,等.贵州梵净山亮叶水青冈叶片和木材的解剖学特征及其与生态因子的关系[J].植物学报,1999,41(9):1002-1009.
    26.费永俊.狗牙根在护坡植被砼上的形态和光合生理响应[D].北京林业大学:博士论文.2008.
    27.费云标.抗冻蛋白的基因结构与基因工程[J].生物工程进展,1992,12(3):33-36.
    28.费云标,舒念红,黄涛,赵淑慧.植物寒冻损伤与抗性的细胞化学及生物化学[J].生物工程进展,1994,14:40-44.
    29.费云标,魏令波,高素琴,等.沙冬青抗冻蛋白的分离、纯化及其理化特性分析[J].科学通报,2000,45(20):2185-2198.
    30.高丹丹.杨树叶片酚类物质对秋季温度骤降的响应.东北林业大学:硕士论文.2008.
    31.高志红,章镇,韩振海.果梅种质枝条抗寒性鉴定[J].果树学报,2005,22(6):709-711.
    32.龚束芳.冷季型草坪草耐低温反应及偃麦草抗冻蛋白的研究[D].东北农业大学:博士学位论文.2007.
    33.郭惠红,高述民,李凤兰,等.植物抗冻蛋白和抗寒基因表达的调控[J].植物理学通讯,2003,39(6):555-560.
    34.郭绍霞,张燕,张玉刚,等.赤霉素和青霉素对芍药切花衰老的影响[J].中国农学通报2008,24(2):314-319.
    35.郭延平,张良诚,沈允钢.低温胁迫对温州蜜柑光合作用的影响[J].园艺学报,1998,(25):111-116.
    36.郭玉华,蔡志全,曹坤芳.夜间低温胁迫对两种咖啡光合作用的影响[J].生态学杂志,2005,24(5):478-482.
    37.韩善华,王双.高度抗寒植物冬季线粒体的电镜观察[J].西北植物学报,2000,20(4):539-543.
    38.郝士琴,阮圣冬.苹果幼树越冬生理的研究[J].园艺学报,1985,2(3):159-165.
    39.胡文海,黄黎华,肖宜安,等.夜间低温对2种光强下榕树叶绿素荧光的影响[J].西北植物学报,2006,26(2):247-253.
    40.简令成.生物膜与植物寒害和抗寒性的关系[J].植物学通报,1983(1):17-23.
    41.简令成,孙德兰等.不同柑桔种类叶片组织的细胞结构与抗寒性的关系[J].园艺学报,1986,13(3):163-168.
    42.简令成,孙龙华,孙德兰.脱落酸和矮壮素对提高小麦抗寒力的作用.中国植物学会五十年年会学术报告及论文摘要汇编,1983,789-795.
    43.简令成,孙龙华,卫翔云,等.从细胞膜系统的稳定性与植物抗寒性关系的研究到抗寒剂研制[J].植物学通报,11(特刊):1994,1-22.
    44.简令成,王红.逆境植物细胞生物学[M].北京:科学出版社,2008.
    45.江勇,贾士荣,费云标,谭克辉.抗冻蛋白及其在植物抗冻生理中的作用[J].植物学报,1999,41:677-685.
    46.康国章,王正询,孙谷畴.植物的冷调节蛋白[J].植物学报,2002,19(2):39-46.
    47.康俊梅.低温胁迫下野牛草生理生化响应及蛋白质组学研究[D].中国农业科学院:博士论文.2008.
    48.李斌.单宁—一种植物的次生代谢产物[J].生物学教学,2002,27(12):36-37.
    49.李建设,耿广东,程智慧.低温胁迫对笳子幼苗抗寒性生理生化指标的影响[J].西北农林科技大学学报,2003,31(1):90-92.
    50.李平,王以柔,陈贻竹,等.低温对杂交水稻乳熟期剑叶光合作用和光合产物运输的影响[J].植物学报,1994,36(1):45-52.
    51.李绪尧,王继军,庞振伟,赵晓军,李永存.迎春5号杨生长评价与经营密度[J].东北林业大学学报,1998,26(6):24-26.
    52.李正理,张新英合编.植物解剖学[M].北京:高等教育出版社,1983:261-266.
    53.林善枝,张志毅.杨树抗冻性机理及分子生物学研究[M].北京:中国环境科学出版社,2004.
    54.刘德兵.低温胁迫对香蕉幼苗生理特性的影响及诱导相关基因的分离[D].华南热带农业大学:博士论文.2007.
    55.刘德兵,魏军亚,崔百明,等.脱落酸对香蕉幼苗抗寒性的影响[J].热带作物学报,2007,28(2):1-4.
    56.刘娥峨,宗会,郭振飞,等.干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响[J].热带亚热带植物学报,2000,8(3):235-238.
    57.刘国华,栾以玲,张艳华.自然状态下竹子的抗寒性研究[J].竹子研究汇刊,2006,25(2):11-14.
    58.刘鸿先,王以柔,李晓萍,等.低温诱导植物丛因表达的改变与耐寒性[J].中科院华南植物所集刊,1991,(7):54-61.
    59.刘鸿先,曾韶平,李平.植物抗寒性与酶系统多态性的关系[J].植物生理学通讯,1981,(6):6-11.
    60.刘慧民,王昆,李奇石,等.五叶地锦低温处理条件下与抗寒相关的部分生理生化指标的变化规律[J].东北林业大学学报,2003,31(4):74.
    61.刘慧英,朱祝军,吕国华.低温胁迫对嫁接西瓜耐冷性和活性氧清除系统的影响[J].应用生态学 报,2004,15(4):659-662.
    62.刘建.两种桉树对低温胁迫的响应机制的研究[D].南京林业大学:博士论文.2008.
    63.吕俊.水稻抗寒性诱导性酶谱分析与分子生理学初步研究.西南大学:硕士论文.2002.
    64.马艳青,戴雄泽.低温胁迫对辣椒抗寒性相关性生理指标的影响[J].湖南农业大学学报,2000,26(6):461-462.
    65.孟令波.玉米种子萌发的蛋白质组学研究[D].东北林业大学:博士论文.2008.
    66.潘瑞炽.植物生理学[M].第四版.北京:高等教育出版社,2001:8-9,102-103,284-285,291.
    67.潘晓云,曹琴东,王根轩.膜脂过氧化作为扁桃品种抗寒性鉴定指标研究[J].生态学报,2002,22(11):1902-1911.
    68.彭伟秀,杨建民,张芹,等.不同抗寒性的杏品种叶片组织结构比较[J].河北林果研究,2001,6(2):145-147.
    69.单守明,刘国杰,李绍华,等.秋季叶面喷施IAA、6-BA或GA3对草莓植株的影响[J].果树学报,2007,24(4):545-548.
    70.沈漫.不同温度条件下常春藤叶片磷脂变化的比较分析[J].园艺学报,2003,30(4):431-435.
    71.石碧,狄莹.植物多酚[M].北京:科学出版社,2000.
    72.唐俊梅.低温胁迫下野牛草生理生化响应及蛋白质组学研究[D].中国农业科学院:博士论文.2008.
    73.汤章城.逆境条件下植物脯氨酸的积累及可能的意义[J].植物生理学报,1984,10(1):15-21
    74.陶雅.22个国内外苜蓿品种抗寒性评价[D]..中国农业科学院:硕士论文.2008.
    75.滕中华,周党卫,师生波,等.青藏高原三种高寒植物的质膜透性变化与抗寒性的关系[J].中国草地,2001,23(4):37-47.
    76.王冰,王建光,姜秀煜,等.阔叶红松林的伴生乡土杨树-大青杨[J].林业科技,2003,28(6):12-15.
    77.王国莉,郭振飞.植物耐冷性分子机理的研究进展[J].植物学通报,2003,20(6):671-679.
    78.王吉庆.嫁接对黄瓜幼苗的耐冷性及生长发育影响的研究[D].陕西杨陵:西北农业大学.1995.
    79.王静,魏小红,龙瑞军.植物抗寒机制的研究方法与进展[J].农林科技,2004,33(6):72-73.
    80.土敬文,蒋晶.脱落酸诱导黑荆树悬浮细胞抗冻性[J].林业科学,1994,30(6):385-389.
    81.王可玢,赵福洪,王孝宣,等.用体内叶绿素a荧光动力学鉴定番笳的抗冷性[J].植物学通报,1996,13(2):29-33.
    82.王丽雪,李荣富,马兰青,等.葡萄枝条中淀粉、还原糖及脂类物质变化与抗寒性的关系[J].内蒙古农牧学院学报,1994,15(4):1-7.
    83.王三根,梁颖.6-BA对低温下水稻幼苗细胞膜系统保护作用的研究[J].中国水稻科学,1995,9(4):223-229.
    84.王世绩.杨树研究进展[M].北京:中国林业出版社,1995:1-2.
    85.王淑杰,王家民,李亚东.可溶性蛋白、可溶性糖含量与葡萄抗寒性关系的研究[J].北方园艺,1996,(2):13-14.
    86.王文举,王振平,平吉成,等.乙烯利对赤霞珠葡萄几种抗寒性指标的影响[J].中外葡萄与葡萄酒,2005,4:13-14.
    87.王毅,方秀娟,徐欣,刘立新.黄瓜幼苗低温锻炼对叶片细胞叶绿体结构的影响[J].园艺学报,1995,22(3):299-300.
    88.魏建华,赵华燕,张景昱,刘惠荣,宋艳茹.毛白杨CCoAOMT cDNA片段的克隆与转基因杨木质素含量的调控[J].植物学报,2001,43:1179-1183.
    89.乌凤章.白桦低温胁迫响应与叶绿体RNA结合蛋白的蛋白质组学研究[D].东北林业大学:博士论文.2008.
    90.吴广霞,唐献龙,杨德光,席景会.植物低温胁迫生理研究进展[J].作物杂志,2008,3:16-19.
    91.武维华,张蜀秋等.植物生理学[M].北京:科学出版社,2003:188-189,429-450.
    92.席先蓉,李寿星.蒲黄及不同炮制品中总黄酮和多糖含量分析[J].中国中药杂志,2000,25(1):25-28.
    93.项存悌,邵力平.杨树病害综合防治技术[M].哈尔滨:东北林业大学出版社,1992.
    94.谢棒祥,张敏红.生物类黄酮的生理功能及其应用研究进展[J].动物营养学报,2003,15(2):11-15.
    95.徐纬英.杨树[M].哈尔滨:黑龙江人民出版社,1988,55-57.
    96.严寒静,谈锋.桅子叶片生理特性与抗寒性的关系[J].植物资源与环境学报,2005,14(4):21-24.
    97.严寒静,谈锋.自然降温过程中桅子叶片膜保护系统的变化与低温半致死温度的关系[J].植物生态学报,2000,24(1):91-95.
    98.严寒静,谈锋.栀子对自然降温的适应性研究[J].植物研究,2006,26(2):238-241.
    99.严顺平.水稻响应盐胁迫和低温胁迫的蛋白质组研究[D].中国科学院:博士论文.2006.
    100.阎秀峰.植物次生代谢生态学[J].植物生态学报,2001,25(5):639-640.
    101.扬阿明,沈征言.低温锻炼提高黄瓜幼苗耐寒性效应[J].园艺学报,1992,19(1):61-66.
    102.杨成超,刘荣南.浅谈发展辽宁杨树产业[J].辽宁林业科技,2002,5:30-31.
    103.杨凤仙,董俊梅,杨晓霞.低温胁迫下棉叶叶绿体、液胞超微结构的变化[J].山西农业大学学报,2001,2:116-117.
    104.杨亚军,郑雷英,王新超.低温对茶树叶片膜脂脂肪酸和蛋白质的影响[J].亚热带植物科学,2005,34(1):5.
    105.姚胜蕊,曾骤,简令成.桃花芽越冬过程中的多糖的积累和质壁分离动态与品种抗寒性的关系[J].果树科学,1991,8(1):13-18.
    106.姚砚武,李淑英,周连第,等.常绿阔叶林木在北方地区抗旱适应类型分析[J].北京农业科学,2001(4):24-28.
    107.易建华,孙在军.烟草光合作用对低温的响应[J].作物学报,2004,30(6):582-588.
    108.郁继华,舒英杰,吕军芬,张国斌.低温弱光对茄子幼苗光合特性的影响[J].西北植物学报,2004,24(8):831-836.
    109.于晶.寒地冬小麦东农冬麦1号抗寒机理研究[D].东北农业大学:博士论文.2009.
    110.曾光辉,郭延平,王法格,等.冬、春季节柑桔叶片光合机构运转的研究[J].浙江大学学报(农业与生命科学版),2006,32(4):410-14.
    111.曾韶西,王以柔,李美茹.低温下黄瓜幼苗子叶硫氢基含量变化与膜脂过氧化[J].植物学报,1997,33(1):50-54.
    112.曾韶西,王以柔,李美茹.不同胁迫预处理提高水稻幼苗抗冷性期间膜保护系统的变化比较[J].植物学报,1997,39:308-314.
    113.张红,简令成,李广敏.植物抗寒剂提高黄瓜幼苗抗寒力及细胞膜系统冷稳定性的研究[J].植物学通报,1994,11:154-162.
    114.张红雨.黄酮类抗氧化剂结构-活性关系的理论解释[J].中国科学(B辑),1999,29(1):91-96.
    115.张来.贵州矮杨梅营养器官中总黄酮的提取及含量动态变化研究.贵州师范大学:硕士论文.2005.
    116.张星耀,骆有庆.中国森林重大生物灾害[M].北京:中国林业出版社,2003.
    117.张勇,汤浩茹,罗娅,等.低温锻炼对草莓组培苗抗寒性及抗氧化酶活性的影响.中国农学通报,2008,24(1):325-329.
    118.张有福,陈银萍,张满效,等.两种圆柏属植物不同季节显微和超微结构变化与耐寒性的关系[J].应用生态学报,2006,17(8):1393-1397
    119.赵军,王以柔.低温锻炼对水稻叶片中Rubisc的影响[J].植物生理学报,1997(23):1-6.
    120.钟新榕.外源ABA及GA3对NaCl胁迫下黄瓜幼苗的影响.甘肃农业大学:硕士论文.2005.
    121.周碧燕,陈杰忠,季作梁,等.香蕉越冬期间SOD活性和可溶性蛋白质含量的变化[J].果树科学,1999,16(3):192-196.
    122.周瑞莲,张普金.春季高寒草地牧草根中营养物质含量和保护酶活性的变化及其生态适应性研究[J].生态学报,1996,16(4):402-405.
    123.周以良,董世林,聂绍荃.黑龙江树木志[M].黑龙江:科学技术出版社,1986,118.
    124.周智彬,徐新文,杨兰英.三种固沙植物对高温胁迫的生理响应及其抗热性研究[J].旱区地理,2005,28(6):824-830.
    125.Agrawal AA..Induced responses to herbivory and increased plant performance[J].Science,279:1201-1202.
    126. Allen R D.Dissection of oxidative stress tolerance using transgenic plants[J].Plant Physiol,1995,107:1049-1054.
    127. AL Shelton.Variable Chemical Defences in Plants and Their Effects on Herbivore Behaviour. Evolutionary[J]. Ecology Research,2000,2:231-249.
    128. Anisko T, Lindstrom O M. Reduced Water Supply Induces Fall Acclimation of Evergreen Azaleas [J]. JAmer Soc Hort. Sci,1995,120(3):429-434.
    129. Antikainen, M.and Griffith, M. Antifreeze protein accumulation in freezing-tolerant cereals[J]. Physiol. Plant,1997,99:423-432.
    130. Asquith T, Butler L. Determination of protein in tannin-protein precipitates [J]. Agric. Food Chem,1980,28:944-947
    131. Barry T N,Manley T R, Duncan S J. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep 4 Sites of carbohydrate and protein digestion as influenced by dietary reactive tannin content [J]. Br. J. Nutr,1986,55:123-137.
    132. Bate-Smith, E Haem. Aanalysis of tannins:the concept of relation-astringency [J]. Phytochemsitry, 1973,12:970-972.
    133. Bell A A, El-Zik K M, Thaxton P M.Chemistry biological significance, and genetic control of proanthocyanidinsin cotton (Gossypium spp.)[J]. Plant Polyphenols,1992,571-595.
    134. Bennett S E. Tanninc acid as a repellent and toxicant to alfalfa weevil larvae [J]. Econ. Ent, 1965(58):372-373.
    135. Binh L T, Oono K. Molecular cloning and characteration of genes related to chilling tolerance in rice.Plant Physiol,1992,99:1146-1150.
    136. Bongi G.Freezing avoidance in olive tree (Olea europaea L.):from proxies to targets of action[J]. Advances in horticultural science,2002,16:117-124.
    137. Borman H C,Janshan E V N.Nicotianana tabacum callus studies X.ABA increase resistance to cold damage[J].Physiol Plant,1980,48:491-493.
    138. Butler L G, Price M L, Brotherton J E. Vanillin assay for proanthocyanidins (condensed tannins): modification of the solvent for estimation of the degree of polymerization[J].1982,30:1087-1098.
    139. Brooking I R,Taylor A O. Plant under climatie stress. V. Chilling and light effects on radiocarbon exchange Photosynthetic intermediates of sorghum [J]. Plant Physiology,1973,52:180-189.
    140. Bruggemann W, Inger P. Long-term chilling of young tomato plants under low light and subsequent recovery Chlorophy Ⅱ fluorescence, carbon metabolism and activity of Rubisco [J]. Planta,1992(186):179-187.
    141. Chen, W., et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses[j]. Plant Cell,2002,14:559-574.
    142. Chen X,Dai H Q,Lu C F,et al.The effect of cold acclimation and Ca2+ signal on the synthesis of antifreeze proteins and the freezing tolerance of cells in carrot(Daucus carotz).Sci Tech&Engineering,2002,2(3):23-26.
    143. Christophe et al. Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins[J]. Proteomics,2006,6:6509-6527.
    144. Daie J, Campbell W F.Response of tomato plants to stressful temperatures.Plant Physiol,1981, 67:26-29.
    145.Damerval C,de Vienne D,Zivy M,Thiellement H.Technical improvments in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins[J]. Electrophoresis,1986,7:52-54.
    146. Deveries A L.Antifreeze proteins. Curr Opin Struct Biol,1983,7(6):828-834.
    147. Dixon RA, Ferreira D. Molecules of interest genistein[J]. Phytochemistry,2002,60:205-211.
    148. Edwards W R N. Effect of salicin content on palatability of Populus foliage to opossum(Trichosurus vulpecula)[J].New Zealand Journal of Science,1978,21(1):103-106.
    149. Ferguson LR. Role of plant polyphenols in genomic stability[J]. Mutat Res,2001,475:89-111.
    150. Field JA, Lettinga G..Toxicity of tannic compounds to microorganisms[J].Plant Polyphenols,1992,15(5):673-692.
    151. Fraser LH, Grime JP. Aphid fitness on 13 grass species:a test of plant defence theory[J].Canadian Journal of Botany,1999,77:1783-1789.
    152. Freuderberg K.The construction and biosynthesis of lignin [M]. Neesh AC, Freuderberg K. New York:Spinger-Verlag,1968,11(7):47-122.
    153. Friend D J C. Low temperature to membrance of plants [J]. Plant Physiology,1960,13:776-785.
    154. Gerloff E D. Soluble Protein in Alfalfa Roots as Related to Cold Hardness [J]. Plant Physiolgy,1967,42(7):895-899.
    155. Gershenzon J. Change sin the levels of plant secondary Metabolites under water and nutrient stress[J]. Recent Advance sin Phytochemistry,1984,18:273-320.
    156. Gilmour S J, Artus N N, Thomashow M F.cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana.Plant Mol Biol,1992,18:13-21.
    157.Granier F. Extraction of plant proteins for two-dimensional electrophoresis[J]. Electrophoresis, 1988,9:712-718.
    158. Graham H D. Stabilization of the Prussian blue color in the determination of polyphenols [J]. J Agric Food Chem,1992,40:801-805.
    159. Griffith M,et al. Antifreeze Proteins Produced Endogenously in Winter Rye Leaves [J].Plant Physiol,1992,100(2):593-596.
    160. Griffith, M., et al. Antifreeze proteins in winter rye[J].Physiol. Plant,1997,100:327-332.
    161. Gupta A S.Overexpression of superoxide dismutase protects plants from oxidature strees[J].Plant Physiology,1993,103:1067-1073.
    162. Guy C L. Cold Acclimation and Freezing Tolerance:Role of Protein Metabolism. Ann Rew Plant Physiol [J]. Plant Mol Biol,1990,41:187-223.
    163. Guy C L, Niemi K J, Brambl R.Altered gene expression during cold acclimation of spinach[J]. Prol Natl Acad. Sci. USA,1985,82:3673-3677.
    164. Haard N F.Chilling injury of green banana fruit:kinetic anomolies of IAA oxidase at chilling tempratures. J Food Sci,1973,38:907-908.
    165. Hagerman A E,Riedl K M.Jones G.A,et al. High molecular weight plant polyphenolics(tannins) as biological antioxidants.[J].-J.Agric.Food Chem,1998,46:1887-1892.
    166. Haslam E. Plant polyphenols and chemical defense a reappraisal[J]. Chem Ecol,1988,14 (10):1789-1805.
    167. Hasselt P R V. Effect of chilling on organizations of plants [J]. Acta Botany, Neerl,1972, 21:539-548.
    168. Hausman J F, D. Evers. H. Thiellement and L. Jouve. Compared responses of poplar cuttings and in vitro raised shoots to short-term chilling treatments[J]. Plant Cell Rep,2000,19:954-960.
    169.Heino P,Sandman G,Nordin K,et al. Abscisic acid deficiency prevents development of freezing tolerance in Arabidopsis thaliana(L.) Heynh. Theor Appl, Genet,1990,79:801-806.
    170. Hetherington S E,He J,Smillie R M.Photoinhibition at low temperature in chilling-sensitive and resistant plants [J]. Plant physiol,1989,90:1609-1615.
    171. Hoshino T, Odaira M, Yoshida M, Tsuda S.Physiology and biochemical significance of antifreeze substances in plants[J]. Journal of Plant Research,1999,112:255-261.
    172. Hughes M A, Dunn M A. The Molecular Biology of Plant Acclimation to Low Temperature [J]. J Exp Bot,1996,47:291-305.
    173. Hurry V, Strand A, Furbank R, Stitt M. The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the photo mutants of Arabidopsis thaliana[J]. The Plant Journal,2000,24:383-396.
    174. Imanishi,H.T.,Suzuki,T.,Masuda,K.,and Harada,T.Accumulation of raffinose and stachyose in shoot apices of Lonicera caerulea L.during cold acclimation[J].Sci.Hort,1998,72:255-263.
    175. Irving R M, Lanphear F O. Environmental Control of Cold Hardiness in Woody Plants. Plant Physiol,1967,42(9):1191-1196.
    176. Irving R M, Lanphear F O. Regulation of cold hardiness in Acer negundo. Plant Physiol, 1968,43:9-13.
    177. Jackson MW, Stinchcombe JR, Korves TM, Schmitt J.Costs and benefits of cold tolerance in transgenic Arabidopsis thaliana[J]. Molecular ecology,2004,13:3609-3615.
    178. Jaglo-Ottosen KR, Gilmour SJ,Zarka DG. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance[J]. Science,1998,280:104-106.
    179. Jain A, Srivastava H S. Effect of salicylic acid on nitrate reductase activity in maize seedlings [J]. Physiol Plant,1981,(51):339-340.
    180. Jia Z, Davies P L.Antifreeze proteins:anunusual receptorlig and interaction. Trends Biochem Sci,2002,27(2):101-106.
    181. Johannes P F G, Helsper, Ywan P J, van Loon, Rene P K, wakkel, Arend van Norel, Antonius F B,van der Poel.Growth of Broiler Chicks Fed Diets Containing Tannin-Free and Tannin-Containing Near-lsogenic Lines of Faba Bean (Vicia faba L.) [J]. Agric. Food Chem, 1996,44:1070-1075.
    182. Jones O P, Hatifield S G S. Root initiation in apple shoots cultured invitro with auxins and phenolic compounds [J]. J Hort Sc,1976,51:495-499.
    183.Josep, P.&L.Joan. Effects of carbondioxide,water supply,and seasonally on terpene content and emission by Rosmarinus officinalis.Journal of Chemical[J]. Ecology,1997,23:979-993.
    184. J.Renaut,et al.Responses of Poplar to Chilling Temperatures:Proteomic and Physiological Aspects[J]. Plant Biology,2004,6:81-90.
    185. Kacperska-Palacz A, In P H Li, A. Sakaieds. Plant Cold Hardiness and Freezing Stress. New York:Academic Press,1978,2:139-152.
    186. Kakiuchi N, Hattori M, Nishizawn M. Studies in dental caries privention by tradition medicine. ⅧInhibitory effct of various tannins on glucan synthesis by glucosyltransferase from Streptococous Mutans [J]. Chem.Pharm Bull,1986,34 (2):720-725.
    187. Kalengamaliro NE, Gana JA, Cunningham SM, Volenec JJ. Mechanisms regulating differential freezing tolerance of suspension cell cultures derived from contrasting alfalfa genotypes[J]. Plant Cell, Tissue and Organ Culture,2000,61:143-151.
    188.Kang Guozhang,Xu Yuying,Tao Jun,et al.Effects of H2O2 and CaCl2 on chilling-resistance capabilities in banana seedlings.Subtropical Plant Science,2002,31(1):1-4.
    189. Kim HJ, Hyun Y, Park JY, Park MJ, Park MK, Kim MD, Kim HJ, Lee MH, Moon J, Lee I, Kim J. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. [J]Nature genetics,2004,36:167-171.
    190. Kiyosue T, Yoshiba Y, et al. A Nuclear Gene Encoding Mitoehondril Proline Dehydrogenasse, an Enzyme Involved in Proline Metabolism, is Upregulated bb Proline but Downregulated by Degydration in Arabidopsis [J]. PlantCell,1996,8:1323-1335.
    191. Kobayashi F, Takumi S, Nakata M, Ohno R, Nakamura T, Nakamura C.Comparative study of the expression profiles of the Cor/Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance[J]. Physiologia plantarum,2004,120:585-594.
    192. Kodama H,Hanada T,Horguehi G., et al. Genetic Enhancement of Cold Tolerance by Expression of a Gene for Chloroplast-3 Fatty Acid Desaturases in Transgenic Tobacoo [J].Plant Physiol,1994,105:601-605.
    193. Knight C A, Driggers E, Deveries A L. Adsoption to ice of fish antifreeze glycopeptides-7 and glycopeptides 8. Biophys.J,1993,64(1):252-259.
    194. Knight C A.Structural biology-Adding to the antifreeze agenda [J]. Nature,2000,406(6793): 249-251.
    195. Kratsch H A,Wise R R. The Ultrasturceture of Chilling Stress [J]. Plant Cell Environ, 2000,23:337-350.
    196. Lavee S, Harshem esh H, Avidan N. Phenolic acids-possible involvement in regulating growth and alternate fruiting in olive trees [J]. Acta Hortic,1986,179:317-328.
    197. Lee SC, Kim JY, Kim SH, Kim SJ, Lee K, Han SK, Choi HS, Jeong DH.Trapping and characterization of cold-responsive genes from T-DNA tagging lines in rice[J]. Plant Science,2004, 166:69-79.
    198. Lejeune P, Prinsen E, Onckelen H V, et al.Hormonal control of ear abortion in a stress-sensitive maize inbred. Australian J Plant Physiol,1998,25(4):481-488.
    199. Leng P, Itamura H, Yamamura H, Deng X M.Anthocyanin accumulation in apple and peach shoots during cold acclimation [J]. Scientia Horticulture,2000,83:43-50.
    200. Leshem Y Y, Wurzburger J, Grossman S.Cytokinin interaction with tree radical metabolism and senescence. Physiol Plant,1981,53:9-12.
    201. Levitt J. Responses of plants to environmental stresss [M]. NewYork:Aeedemie Press,1980,1:23-64.
    202. Li PH, Palva ET. Plant cold hardiness[M]. New York:Kluwer Academic/plenum Publishers,2002
    203. Li PH, Sakai A..Plant cold hardiness and freezing stress, Vol Ⅱ[M]. New York:Academic Press,1982.
    204. Lin C, Thomashow M F. DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis, gene cor15 and characterization of the corl5 polypeptide[J]. Plant Physiology, 1992,99:519-525.
    205. Liu Q.Kasuga M, Sakuma Y,Abe H,Miura S,Yamaguchi-Shinczaki K, Shinczaki K.Two transcription factors.DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell,1998,10:1391-1406.
    206. Lootens P,Van waes J,Carlier L. Effect of a shortphotoinhibition stress on photosynthesis, chlorophyll afluorescence, and pigment contents of different maizcultivars. Can a rapid and objective stress indicator be found?[J]. Photosynthetica,2004,42(2):187-192.
    207. Lopez-Matas MA,et al.Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up-regulated by low and high temperatures[J].Plant Physiol,2004,134:1708-1717.
    208. Makkar H P S, Bluemmei M, Borowy N K. Gravimetric determination of tannins and their correlation with chemical and protein precipitation methods[J]. Sci.Food Agric,1993,61:161-165.
    209. Malan C, Greyling M M, Gressel J. Correlation between Cu/Zn Superoxida Dismutase and Glutathione Reduetase, and Environmental and Xenobiotic Stress to Lerance in Maize in Breeds [J]. Plant Seienee,1990,69:157-166.
    210. Massei G, Hartley SE, Bacon PJ. Chemical and morphological variation of Mediterranean woody evergreen species:Do plants respond to ungulate browsing[J]? Journal of Vegetation Science, 2000,11:1-8.
    211. Matsushita N. Matoh T.Characterixation of Na Exclusion Mechanism of Salt-Tolerant Reed Plants in Comparison with Salt-Sensitive Rice Plants[J].Physiol Plant,1991,(83):170-176.
    212. Miernyk JA..The 70 kDa stress-related proteins as molecular chaperones[J].Trends Plant Sci,1997, 2:180-187.
    213.Monroy A F, Dhindsa R S. Low temperature signal transduction during cold acclimation:protein Phosphates 2A as an early target for cold-inactivation [J].Plant J,1998,13(5):653-660.
    214. Morimoto M, Tanimoto K, Sakatani A, Komai K.Antifeedant activity of an anthraquinone aldehyde in Galium aparine L. against Spodoptera Litura F[J]. Phytochemistry,2002,60:163-166.
    215.Nordin K,Vahala T,Palva E T.Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana(L.) Heynh. Plant Mol Biol,1993,21:641-653.
    216. Orvar B L,Sangwan V,Omann F,et al. Early steps in cold sensing by plant cells:the role of actin cytoskeleton and membrane fluidity[J].Plant J,2000,23(6):785-794.
    217. Otake S, Makimura M, Kuroki T. Anyicaries effects of polyphenolic compounds from Japanese green tea[J]. Caries Res,1991(25):438-443.
    218. Patton A J,Cuningham S M,Volenec J J,et al. Differences in freeze tolerance of zoysiagrasses:II.Carbohydrate and praline accumulation[J].Crop Science,2007,47(5):2170-2181.
    219. Padda M S, Picha D H. Effect of low temperature storage on phenolic composition and antioxidant activity of sweetpotatoes [J]. Postharvest Biol Tec,2007,47:176-180.
    220. Pearce,R.S.Molecular analysis of acclimation to cold[J].Plant Growth Regul,1999,29:47-76.
    221. Pennycooke J C,Cox S,Stushnoff C.Relationship of cold acclimation,total phenolic content and antioxidant capacity with chilling tolerance in petunia [J]. Environ Exp Bot,2005,53:225-232.
    222. Pennycooke J C,Cox S,Stushnoff C.Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia [J]. Environ Exp Bot,2005,53:225-232.
    223. Perk S M P.Osbome B A.Mitchell D T.Rapid predietions of cold tolerance in Douglas-fir seedlings using chlorophyll fluorescence after freezing [J]. New Forests,2004,28(1):49-62.
    224. P Josep,L Joan.Effects of Carbon Dioxide, Water Supply,and Seasonally on TerpeneContent and Emission by Rosmarinus officinalis[J]. Journal of Chemical Ecology,1997,23:979-993.
    225. Powles S B.Photoinhibition of photosynthesis induced by visible light [J].Ann.Rev. Physiology,1984,35:14-44.
    226. Porter L J, Hrstich L N, Chan B G. The conversion of procyanidins and prodelphinidins to cuaniding and delphinidin [J]. Phytochemistry,1986(25):223-230.
    227. Prasad,T.K.,Anderson,M.D.,Martin,B.A.,and Stewart.C.R.Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide[J].Plant Cell,1994,6:65-74.
    228. Priyanka K, Mishra SB, Priyanka K. Biochemical markers for cold tolerance in Boro rice[J]. The Indian Journal of Genetics & plant Breeding,2001,61:23-26.
    229. Rabilloud T.Detecting Proteins separated by 2-D gel electrophoresis[J].Anal.Chem,2000, 72:48A-55A..
    230. Ramalho JC, Quartin VL, Leitao E, Campos PS, Carelli ML, Fahl JI, Nunes MA. Cold acclimation Ability and Photosynthesis among Species of the Tropical Coffea Genus[J]. Plant biology,2003,5: 631-641.
    231. Raymond J A, Devries A L.Adsorption inhibition as a mechanism of freezing resistance in polar fishes[J]. Proc Natl Acad Sci USA,1977,74(6):2587-2593.
    232. Reid D M, Pharis R P and Roberts D W A.Effects of Four Temperature Regimens on the Gibberellin Content of Winter Wheat cv. Kharkov, Physiol Plant,1974,30:53-57.
    233. Renaut J, Lutts S, Hoffmann L, Hausman JF. Responses of Poplar to Chilling Temperatures: Proteomic and Physiological Aspects[J]. Plant biology,2004,,6:81-90.
    234. J. Renaut, et al. Proteomics and low-temperature studies:bridging the gap between gene expression and metabolism[J]. Physiologia Plantarum,2005,126:97-109.
    235. Rosa M, Juan M, Pablo C,et al. Resistance to cold and heat stress:accumulation of phenolic compounds in tomato and watermelon plants [J]. Plant Sci,2001,160:315-321.
    236. Rowell-Rahier M.The presence or absence of phenolglycosides in Salix (Salicaceae) leaves and the level of dietary specialisation of some of their herbivorous insects[J]. Oecologia,1984,62:26-30.
    237. Sabehat A,Lurie S,Weiss D.Expression of small heat shock proteins at low temperatures-A possible role in protecting against chilling injuries[J]. Plant Physiol,1998,117:651-658.
    238. Seki, M., et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray[J]. Plant Cell,2001,13:61-72.
    239. Shelton,A.L. Variable chemical defence sin plants and their Effects on herbivore behaviour. Evolutionary[J]. Ecology Research,2000,2:231-249.
    240. Shin KS,Chakrabarty D, Paek KY. Sprouting rate, change of carbohydrate contents and related enzymes during cold treatment of lily bulblets regenerated in vitro[J]. Scientia Horticulturae, 2002,96:195-204.
    241.Solecka D,Boudet A M, Kacperska A. Phenylpropanoid and anthocyanin changes in low temperature treated winter oilseed rape leaves [J]. Plant Physiol Bioch,1999,37 (6):491-496.
    242. Sung DY,Vierling E,Guy CL.Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family[J].Plant Physiol,2001,126:789-800.
    243. Takemura M,Nishida R, Mori N, Kuwahara Y. Acylated flavonol glycosides as probing stimulants of a bean aphid, Megoura crassicauda, from Vicia angustifolia. Phytochemistry,2002,61:135-140.
    244. Taylor NL,Heazlewood JL, Day DA, Millar AH. Differential impact of environmental stresses on the pea mitochondrial proteome[J]. Mol Cell Proteomics,2005,1122-1133.
    245. Teklemariam TA, Blake TJ. Phenylalanine ammonia-lyase-induced freezing tolerance in jack pine (Pinus banksiana) seedlings treated with low, ambient levels of ultraviolet-B radiation[J]. Physiologia plantarum,2004,122:244-253.
    246. Thomashow M F.Role of cold-responsive genes in plant freezing tolerance. Plant Physiol,1998,118:1-7.
    247. Tsvetkova N,et al.Small heat-shock proteins regulate membrane lipid polymorphism[J]. Proc Natl Acad Sci,2002,99:13504-13509.
    248. Van C W.Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts[J].Plant Physiology,1996,112:1703-1714.
    249. Vierling E. The role of heat shock proteins in plants[J].Ann Rev Plant Physiol Plant Mol Biol, 1991,42:579-620.
    250. Wakita Y, Otani M, Hamada T, etal. A tobacco Microsomal ω-3 Fatty Acid desaturase Gene Increases the Linolenic Acid Content in Transgenic Sweet Potato (Ipomoea Batatas) [J]. Plant Cell RePorts,2001,20:244-249.
    251. Waldman M,Rikin A,Dovrat A,et al.Hormonal regulation of morphogenesis and cold-resistance[J]. J Exp Bot,1975,26:853-859.
    252. Walton JD. Host-selective toxins:agents of compatibility[J]. The Plant Cell,1996,8:1723-1733.
    253. Wang,W.,et al. Characterization of SP1, a stress-responsive, boiling soluble, homo-oligomeric protein from aspen[J]. Plant Physiol,2002,130:865-875.
    254. Weiser C J.Cold Resistance and Injury in woody Plants [J].Science,1970,169:1269-1278.
    255. Wightman R.In Scott T K. Plant regulation and word agriculture. Plenum press,1979,327.
    256. Wilkins M R.Williams K L, Hchstrasser D F, et al. Protcome Researeh:New Frontiers in Functional Genomies. NewYork:Springer,1997.
    257. Wink,M.Functions of plant secondary metabolites and their Exploitation in biotechnology[J]. Annual plant reviews.1999. Vol.3.Boca Raton:CRCPress.
    258. Wise R R.Chilling-Enhanced Photo Oxidation:The Produetion, Action and Study of Reactive Oxygen Species during Chilling in the Light [J].Photosynthesis Researeh,1995,45:79-97.
    259. Wisniewski,M.E.,et al.Seasonal patterns of dehydrins and 70-kDa heat-shock proteins in bark tissues of eight species of woody plants[J].Physiol. Plant,1996,96:496-505.
    260. Xiao X, Yang F, Zhang S, Korpelainen H, Li C.Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress[J]. Physiol Plant,2009,136:150-168.
    261. Yang D S, Sax M, Chakrabart T Y A, et al. Crystal structure of an antifreezepolypeptide and its mechanistic implications. Nature,1988,333(6170):232-237.
    262. Yan Zhao et al.Identification of proteins associated with water-deficit tolerance in C4 perennial grass species,Cynodon dactylon×Cynodon transvaalensis and Cynodon dactylon[J].Physiologia Plantarum,2010,141:40-55.
    263. Ying J, Lee E A, Tollenaar M. Response of maize leaf photosynthesis to low temperature during the grain-filling period [J]. Field Crops Res,2000,68(2):87-96.
    264. Yoshida M, Abe J, Moriyama M, et al. Seasonal Changes in the Physical State of Crown Water Associated with Freezing Tolerance in Winter Wheat [J].Physiologia Plantarum, 1997,101:363-370.
    265. Young R. Effect of growth regulators on citrus seedling cold hardiness. J Amer. Soc. Hort. Sci, 1971,96:708-710.
    266. Yuanqing Jiang et al., Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots[J]. Journal of Experimental Botany,2007,58:3591-3607.
    267. Zhang L,Dunn M A.Pearce R S,et al.Analysis of organ specificity of a low-temperature-responsive gene family in rye.Journal of Experimential Botany,1994,44:1787-1793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700