用户名: 密码: 验证码:
不同材料靶板的抗弹性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对靶体在刚性动能弹撞击下的侵彻和贯穿行为进行了较全面的理论和数值模拟研究,靶体材料包括树脂基纤维增强复合材料、金属和混凝土。根据靶板在动能弹撞击下的响应和破坏模式建立了相应的侵彻和贯穿模型,成功地预测了弹体的侵彻深度、残余速度和靶板的弹道极限等物理量,并研究了靶板不同响应和破坏模式之间的转换关系。利用ABAQUS/VUMAT嵌入了修正的Johnson-Cook本构,对金属靶板在弹丸垂直撞击下的贯穿行为进行了数值模拟研究。本文得到的结论可以为弹头形状优化设计,靶板的抗冲击防护和安全评估提供指导。本文主要包括以下几个方面的内容:
     对树脂基纤维增强材料层合板(FRP层合板)在平头弹低速撞击下贯穿的响应模式和能量耗散模型进行了理论研究。FRP层合板在平头弹撞击下的响应可以分为总体响应(global deformation with local rupture)和局部化破坏响应(wave-dominated local failure)两种情况,其中总体响应同时存在着整体变形和局部化破坏。对薄FRP层合板的贯穿,本文认为响应模式为总体响应,能量耗散模型采用近似准静态的方法,先分析准静态穿透耗能,再利用动态增强因子考虑动态贯穿耗能。平头弹贯穿层合板时的能量耗散形式主要有整体变形耗能、拉剪局部破坏耗能和分层耗能等,层合板的整体变形采用剪切失效准则进行预测。对厚FRP层合板的贯穿,本文认为响应模式为局部化破坏,利用Wen的半经验公式分别求解了层合板在平头弹贯穿下的弹道极限。结合Wen半经验公式得到的靶板弹道极限和Von Karman临界撞击速度,近似给出了薄FRP层合板总体响应模式和厚FRP层合板局部化破坏模式的转换临界条件。模型预测得到的弹道极限和模式转换临界条件与实验数据吻合得较好。
     对金属和混凝土厚靶在刚性卵形弹正撞击下的侵彻与贯穿性能进行了理论研究。金属和混凝土厚靶在卵形弹侵彻和贯穿下的破坏模式假设为局部化扩孔破坏。基于该假设,本文改进了Wen半经验公式,引入弹体瞬时侵彻速度和靶体自由表面效应的影响。根据弹头长度和靶厚的相对大小,建立了二阶段的靶体侵彻模型和三阶段的靶体贯穿模型。并对固支金属厚靶的贯穿,根据金属靶板在卵形弹贯穿过程中是否需要考虑整体变形,给出了厚靶贯穿模型的适用范围。金属和混凝土厚靶在卵形弹正撞击下的模型预测侵彻深度和残余速度与实验数据吻合得很好。
     利用ABAQUS/VUMAT嵌入了修正的Johnson-Cook本构。利用嵌入的本构模型对锥头弹和平头弹贯穿Weldox460E钢板进行了数值模拟,数值模拟结果与实验进行了比较,验证了VUMAT开发和有限元建模的可靠性。基于现有的有限元模型,对不同厚度Weldox460E冈板在锥头弹撞击下的穿透形貌和弹道极限进行了数值模拟,计算结果表明:靶板越薄越容易发生花瓣型破坏,越厚越容易发生扩孔型破坏。对6mm厚Weldox460E钢板在不同锥角锥头弹撞击下的穿透形貌和弹体残余速度进行了数值模拟,计算结果表明:当弹头锥角较小时,靶板发生扩孔型破坏,随着弹头锥角的增大,靶板逐渐向花瓣型破坏、盘状破坏(discing)和冲塞型破坏过渡;并且靶板发生盘状破坏时的穿透耗能最大,而发生剪切冲塞破坏时的穿透耗能最小。并对不同厚度Weldox460E冈板在锥头弹撞击下发生冲塞破坏的弹头临界锥角进行了数值模拟研究。
     对金属靶板在锥头弹低速撞击下的破坏模式转换条件和金属薄靶最小穿透耗能进行了理论研究。建立了金属薄靶花瓣型破坏的最小穿透能量耗散分析模型。采用近似准静态的分析方法,分别得到了弹体贯穿靶板过程中的准静态局部变形耗能和整体变形耗能,再引入Cowper-Symonds公式对结构的动态效应进行修正,得到了靶板最小穿透耗能和弹道极限的计算公式。研究了薄靶有整体变形情况下扩孔破坏与花瓣破坏模式的转换临界条件,给出了花瓣型破坏穿透耗能模型的适用范围。给出了金属薄靶有整体变形扩孔破坏的最小穿透耗能分析模型和弹道极限,结合薄靶有整体变形扩孔破坏和厚靶无整体变形扩孔破坏的模式转换临界条件,以及花瓣破坏和扩孔破坏的模式转换临界条件确定了金属薄靶有整体变形扩孔破坏穿透耗能分析模型的适用范围。给出了金属靶板在锥头弹撞击下发生冲塞破坏的临界弹头锥角计算公式和Weldox460E钢板在锥头弹撞击下关于花瓣破坏、扩孔破坏和冲塞破坏的破坏模式相图。理论模型的预测结果与数值模拟和相关实验吻合得很好。
A combined numerical and theoretical study is performed in this thesis on the penetration and perforation of targets struck normally by rigid projectiles. The target materials examined contain Fibre-reinforced plastic laminates (FRP laminates), metal and concrete. Failure modes of targets under normal impact by projectiles are discussed, and corresponding theoretical models for different failure modes are established to predict penetration depths, residual velocities and ballistic limits. Meanwhile, the critical condictions for the transition of different failure modes are proposed. Numerical Simulations using ABAQUS/VUMAT into which a modified Johnson-Cook constitutive relation is incorporated are performed to study the perforation of metal plates struck normally by rigid projectiles. The results obtained in the present investigation are useful for the optimization of projectile nose shapes, safety calculation and safety assessment. This thesis mainly consists of the following parts:
     A theoretical study is conducted on the reponse and perforation of FRP laminates by flat-ended projectiles. Ballistic impact on FRP laminates is a very complex problem and it can be generally classified into two categories, i.e. global deformation with local rupture and wave-dominated local failure. For the perforation of thin FRP laminates, the global deformation failure modes are considered, and a quasi-static approach was used to predict the energy absorption, which includes global deformation energy, local fracture energy due to shear and tensile tearing, and delamination energy for flat-ended projectiles. A shear failure criterion for flat-ended projectiles are employed to predict the the critical transverse deflection at which plate failure occurs. For the perforation of thick FRP laminates, the wave-dominated local failure modes are considered, the ballistic limits of the laminates can be solved by Wen's semi-empirical equation. By combining the wave-dominated local failure model and the concept of Von Karman's critical impact velocity, a condition for the transition of the above mentioned two failure modes is obtained. It is shown that the model predictions are in good agreement with available experimental observations in terms of ballistic limits and critical conditions for the transition of failure modes.
     An analytical investigation is conducted into the the penetration and perforation of thick metal and concrete targets struck normally by rigid ogival-nosed projectiles over a wide range of velocities. Based on the assumption that the deformation is localized and that the mean pressure offered by the target materials to resist the projectiles can be decomposed into two parts:a quasi-static part due to the elastic-plastic deformation of the target materials and a dynamic resistive pressure arising from velocity effects, a new formulation which represents an extension of Wen's semi-empirical model is developed, by assuming that the target resistance is no longer a constant, but a function of penetration velocity, and by adding the free surface effect of target to the new formulation. Equations are derived for predicting the depth of penetration in the targets and the residual velocity in the case of perforation. Furthermore, the range of applicability of the perforation model for fully-clamped thick metal targets under impact by ogival-nosed projectiles is discussed. It transpires that the present model predictions are in good agreement with the test data for thick metal and concrete targets in terms of penetration depth and residual velocity.
     Numerical simulations with ABAQUS/VUMAT into which a modified Johnson-Cook constitutive relation is adopted are performed to study the perforation of Weldox460E steel plates struck normally by rigid conical-nosed and flat-ended projectiles. Comparisons of the numerical results and the experimental data show that the finite element model developed here are reliable. Whereafter, numerical simulations are conducted on the perforation of Weldox460E steel plates with various thickness struck normally by rigid conical-nosed projectiles and6mm thick Weldox460E steel plates struck normally by rigid conical-nosed projectiles with various cone angles. It is found that different failure modes, i.e. ductile hole enlargement, petalling, discing and plugging are observed. It is also shown that projectile cone angle has significant effect on the perforation modes of6mm thick Weldox460E steel plates and that for smaller cone angles plates fail by ductile hole enlargement, for medium cone angles plates fail by petalling and for larger cone angles plates fail by discing or plugging. The energy dissipated by discing is maximum, and one by plugging is minimum. Finally, the critical projectile cone angles with which the plates fail by plugging are obtained by the numerical simulations on the perforation of Weldox460E steel plates under impact by conical-nosed projectiles.
     A theoretical study is carried out on the transition of the failure modes of metal plates and the energy absorption of thin metal plates perforated by conical-nosed projectiles. Analytical models for petalling and ductile hole enlargement with global deformations are derived by an approximate quasi-static theoretical analysis method. The quasi-static energies dissipated by local perforation hole formation and global deformations are solved firstly, and then by using the well-known Cowper-Symonds empirical formula, equations for the perforation energies and the ballistic limits of plates are obtained. The critical condictions for the transition of petalling and ductile hole enlargement are discussed. By combining the transition of petalling and ductile hole enlargement and the transition of ductile hole enlargement with and without global deformations, the range of applicability of models for petalling and ductile hole enlargement is determined. Equations are obtained for the critical projectile cone angles with which the plates fail by plugging, and the failure map is constructed for Weldox460E steel plates under impact by conical-nosed projectiles. The present model predictions are found to be in good agreement with numerical results and available test data in terms of critical conditions for the transition of failure modes and ballistic limits.
引文
[1]Backman ME, Goldsmith W. The mechanics of penetration of projectiles into targets. International Journal of Engineering Science.1978,16(1):1-99.
    [2]Johnson W. Impact Strength of Materials. London:Edward Arnold,1972.
    [3]Corbett GG, Reid SR, Johnson W. Impact loading of plates and shells by free-flying projectiles. International Journal of Impact Engineering.1996,18:144-230.
    [4]Heuze FE. An overview of projectile penetration into geological material, with emphasis on rocks. In:Schwer LE, Salamon NJ, Liu WK, editors. Computational techniques for contact, impact, penetration and perforation of solids. New York:Americal Society of Mechanical Engineers.1989:275-308.
    [5]Bulson PS. Explosive loading of engineering structures. London:Chapman & Hall 1997:141-161.
    [6]Goldsmith W. Non-ideal projectile impact on targets. International Journal of Impact Engineering.1999,22:95-395.
    [7]Ben-Dor G, Dubinsky A, Elperin T. Ballistic impact:recent advances in analytical modeling of plate penetration dynamics-a review. Applied Mechanics Reviews.2005,58:355-371.
    [8]Li QM, Reid SR, Wen HM, Telford AR. Local impact effects of hard missiles on concrete targets. International Journal of Impact Engineering.2006,32(1-4):224-284.
    [9]钱伟长.穿甲力学.北京:国防工业出版社.1984.
    [10]王礼立,余同希,李永池.冲击动力学进展.合肥:中国科学技术大学出版社,1992.
    [11]李晓军,张殿臣,李清献,王振宇.常规武器破坏效应与工程防护技术.总参兵科研三所.2001.
    [12]Robins B. New principles of gunnery (Mathematical Tracts of the late Benjamin Robins), London:Nourse,1761.
    [13]Orphal DL. Explosions and Impacts. International Journal of Impact Engineering,2006,33: 496-545.
    [14]Robertson HP. Terminal ballistics. National Research Council. Washington.1941.
    [15]Poncelet JV. Cours de mecanique industrielle. Paris,1829/1835.
    [16]Bahsforth F. Motion of projectile, Asher, London,1873.
    [17]Helie F. Traite de balistique experimentale, vol.1 (avec la collaboration de M. Hugoniot) (1st ed.1864) Paris:Gauthier-Villars,1884.
    [18]Cantwell WJ, Morton J. Impact perforation of carbon fiber reinforced plastic. Composite Science and Technology,1990,38(2):119-141.
    [19]Liu LC, Bhatnagar A, Chang HW. Ballistic energy absorption of composites. In:Proc 22nd Int SAMPE Tech Conf,1990:1-13.
    [20]Lee BL, Song JW, Ward JE. Failure of spectra polyethlene fibre-reinforced composites under ballistic impact loading. Journal of Composites Materials.1994,28(13):1202-1226.
    [21]Wen HM. Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes. Composite Structures.2000,49(3):321-329.
    [22]Wen HM. Penetration and perforation of thick FRP laminates. Composites Science and technology.2001,61(8):1163-1172.
    [23]He T, Wen HM, Qin Y. Penetration and perforation of FRP laminates struck transversely by conical-nosed projectiles. Composite Structures.2007,81:243-252.
    [24]He T, Wen HM, Qin Y. Finite element analysis to predict penetration and perforation of thick FRP laminates struck by projectile. International Journal of Impact Engineering.2008,35: 27-36.
    [25]何唐甫,陈贵堂,侯素燕.国外常规深钻地武器发展分析.防护工程,2002,24(1):22-26.
    [26]Brown S J. Energy release protection for pressurized systems (II):Review of studies into impact/terminal ballistics. Applied Mechanics Reviews,1986,39(2):177-201.
    [27]Kennedy RP. A review of procedures for the analysis and design of concrete structures to resist missile impact effects. Nuclear Engineering and Design.1976,37(2):183-203.
    [28]Sliter GE. Assessment of empirical concrete impact formulas. ASCE J. Structural Division. 1980,106:1023-1045.
    [29]ACE. Fundamentals of protective design. Office of the Chief of Engineers, Army Corps of Engineers, Report AT 1207821,1946.
    [30]NDRC. Effects of impact and explosion. Washington D C, National Deffence Research Committee, Vol.1, Summarry Technical Report of Division 2,1946.
    [31]Hughes G. Hard missile impact on reinforced concrete. Nuclear Engineering and Design. 1984,77:23-35.
    [32]钱七虎.防护结构计算原理.工程兵工程学院.1981.
    [33]文鹤鸣.混凝土靶板冲击响应的经验公式.爆炸与冲击,2002;23(3):267-274.
    [34]Kar AK. Local effects of Tornado Generated Missiles. ASCE J. Structural Division,104(ST5). 1978:809-816.
    [35]Gwaltney RC. Missile generation and projection in light-water-cooled power reaction plants. USA, Tennessee, Oak Ridge National Laboratory, Report ORNL-USTC-22,1968.
    [36]Berriaud C, Sokolovsky A, Gueraud R, Dulac J, Labrot R. Local behaviour of reinforced concrete walls under missile impact. Nuclear Engineering and Design.1978,45:457-469.
    [37]Barr P. Guidelines for the design and assessment of concrete structures subjected to impact. Report, UK Atomic Energy Authority, Safety and Reliability Directorate, HMSO, London, 1990.
    [38]Young CW. Depth prediction for earth-penetrating projectiles. ASCE J Soil Mech Found Engng SM31969:803-817.
    [39]Forrestal MJ, Altman BS, Cargile JD, Hanchak SJ. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets. Proceedings of the Sixth International Symposium on Interaction of Nonnuclear Munitions with Structures, Panama City Beach, May 3-7,1993:9-32.
    [40]Forrestal MJ, Altman BS, Cargile JD, Hanchak SJ. An empirical equation for penetration of ogive-nose projectiles into concrete target. International Journal of Impact Engineering.1994, 15:395-405.
    [41]Forrestal MJ, Frew DJ, Hanchak SJ, Brar NS. Penetration of grout and concrete targets with ogive-nose steel projectiles. International Journal of Impact Engineering.1996,18(5): 465-476.
    [42]Frew DJ, Hanchak SJ, Green ML, Forrestal MJ. Penetration of concrete targets with ogive-nose steel rods. International Journal of Impact Engineering.1998,21(6):489-497.
    [43]Li QM, Chen XW. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile. International Journal of Impact Engineering.2003,28(1): 93-116.
    [44]Reid SR, Wen HM. Predicting penetration, cone cracking, scabbing and perofration of reinforced concrete targets struck by flat-faced projectiles. UMIST Report ME/AM/02.01/TE/G/018507/Z,2001.
    [45]Wen HM. Predicting the penetration and perforation of targets struck by projectiles at normal incidence. Mechanics of Structures and Machines,2002,30(4):543-577.
    [46]Neilson AJ. Empirical equations for the perforation of mild steel plates. International Journal of Impact Engineering.1985,3:137-142.
    [47]Jowett J. The effects of missile impact on thin metal structures. UKAEA Safety and Reliability Directorate Report 1986, No.S.R.D378.
    [48]Wen HM, Jones N. In:Bulson PS, editor. Semi-empirical equations for the perforation of plates struck by a mass, Structure Under Shock and Impact (SUSI) Ⅱ,Computational Mechanics Publications,1992:369-380.
    [49]Gupta N K. Normal impact of ogive nosed projectiles on thin plates. International Journal of Impact Engineering.2001,25:641-660.
    [50]蒋志刚,曾守义,周建平.刚性尖头弹侵彻贯穿金属薄靶耗能分析.兵工学报.2004,25(6):777-781.
    [51]文鹤鸣.厚金属靶在弹丸打击下的侵彻与穿透.高压物理学报.2002,16(2):94-104.
    [52]Sun WH, Wen HM. Perforation of fully-clamped thick metallic plates struck normally by conical-nosed projectiles. Chinese Journal of High Pressure Physics,2010,24(2):93-101.
    [53]Taylor JW, Vinson JR. Modelling ballistic impact into flexible materials. AIAA Journal.1990, 28(12):2098-2103.
    [54]Morye SS, Hine PJ, Duckett RA, et al. Modelling of the energy absorption by polymer composites upon ballistic impact. Composite Science and Technology.2000,60:2631-2642.
    [55]Zhu G, Smith WG. Penetration of laminated kevlar by projectiles-Ⅱ. International Journal of Solids Structures.1992,29(4):421-436.
    [56]Zhu G, Goldsmith W, Dharan CKH. Penetration of laminated kevlar by projectiles-Ⅰ. International Journal of Solds and Structures.1992,29(4); 399-420.
    [57]Goldsmith W, Dharan CKH, Chang H. Quasi-static and ballistic perforation of carbon fiber laminates. International Journal of Solids and Structures.1995,32(1):89-103.
    [58]Lee SWR, Sun CT. A quasi-static penetration model for composite laminates. Journal of Composite Materials.1993,27:251-271.
    [59]Lee SWR, Sun CT. Dynamic penetration of graphite/epoxy laminates impacted by a blunt-ended projectile. Composites Science and Technology.1993,49:369-380.
    [60]Jenq ST, Jing HS, Chung C. Predicting the ballistic limit for plain woven glass/epoxy composite laminate. Internal Journal of Impact Engineering.1994,15:451-464.
    [61]Babu MG, Velmurugan R, Gupta NK. Energy absorption and ballistic limit of targets struck by heavy projectile. Latin American Journal of Solids and Structures.2006,3:21-39.
    [62]Babu MG, Velmurugan R, Gupta NK. Heavy mass projectile impact on thin and moderately thick unidirectional fiber/epoxy laminates. Latin American Journal of Solids and Structures. 2007,4:247-265.
    [63]Hoo Fatt MS, Lin CF, Hopkins DA. Ballistic impact of glare fiber metal laminates. Composite Structures.2003,61:73-88.
    [64]Hoo Fatt MS, Lin CF. Penetration of clamped, woven E-glass/polyester panels. Composites Part B.2004,35(5):359-378.
    [65]Mines RAW, Roach AM, Jones N. High velocity perforation behavior of polymer composite laminates. International Journal of Impact Engineering.1999,22(6):561-588.
    [66]Wen HM, Reddy TY, Reid SR, Soden PD. Indention, penetration and perforation of composite laminates and sandwich panels under qusi-static and projectile loading. Key Engineering Materials.1998,141-143:501-552.
    [67]Reddy TY, Wen HM, Reid SR, Soden PD. Penetration and perforation of composite sandwich panels by hemispherical and conical projectiles. Trans ASME Journal of Pressure Vessel Technology.1998,120(2):186-194.
    [68]Reid SR, Wen HM, Soden PD, Retty TY. Response of single skin laminates and sandwich panels to projectile impact. In:Wang SS, Williams JJ, Lo KH, editors. Composite materials for offshore operation-2. Amer. Bur. Shipp.1999:593-617.
    [69]Bernard RS, Creighton D. Projectile penetration in soil and rock:analysis for non-normal impact, US Army Waterwaysxperiment Station, Vicksburg, Technical Report SL-79-15 AD-A 081044,1979.
    [70]Ben-Dor G, Dubinsky A, Elperin T. Optimal 3D Impactors penetrating into layered targets. Theoretical and Applied Fracture Mechanics.1997,27(3):161-166.
    [71]Ben-Dor G, Dubinsky A, Elperin T. Amodel of high speed penetration into ductile targets. Theoretical and Applied Fracture Mechanics.1998,28(3):237-239.
    [72]Ben-Dor G, Dubinsky A, Elperin T. On the ballistic resistance of multi-layered targets with air gaps. Internal Journal of Solids Structures.1998,35(23):3097-3103.
    [73]Ben-Dor G, Dubinsky A, Elperin T. Shape optimization of penetrators nose. Theoretical and Applied Fracture Mechanics.2001,35(3):261-270.
    [74]Ben-Dor G, Dubinsky A, Elperin T.A class of models implying the Lambert-Jonas Relation. International Journal of Solids structures.2001,38(40-41):7113-7119.
    [75]Ben-Dor G, Dubinsky A, Elperin T. Optimal nose geometry of the impactor against FRP laminates. Composite Structures.2002,55(1):73-80.
    [76]Ben-Dor G, Dubinsky A, Elperin T. Optimization of the nose shape of an impctor against a semi-infinite FRP laminate. Composites Science and Technology.2002,62(5):663-667.
    [77]Ben-Dor G, Dubinsky A, Elperin T. A model for predicting penetration and perforation of FRP laminates by 3-D impactors. Composite Structures.2002,56(3):243-248.
    [78]Ben-Dor G, Dubinsky A, Elperin T. On the Lambert-Jonas approximation for ballistic impact. Mechanics Research Communications.2002,29(2-3):137-139.
    [79]Rubin MB, Yarin AL. On the relationship between phenomenological models for elastic-viscoplastic metals and polymeric liquids. Journal of Non-Newtonian Fluid Mechanics.1993,50:79-88.
    [80]Yarin AL, Rubin MB, Roisman IV. Penetration of a rigid projectile into an elastic-plastic target of finite thickness. International Journal of Impact Engineering.1995,16:801-831.
    [81]Roisman IV, Yarin AL, MB. Oblique penetration of a rigid projectile into an elastic-plastic target. International Journal of Impact Engineering.1997,19:9-10.
    [82]Yossifon G, Rubin MB, Yarin AL. Penetration of a rigid projectile into a finite thickness elastic-plastic target-comparison between theory and numerical computations. International Journal of Impact Engineering.2001,25:265-290.
    [83]Yossifon G, Yarin AL, Rubin MB. Penetration of a rigid projectile into a multi-layered target: theory and numerical computations. International Journal of Engineering Science.2002,40: 1381-1401.
    [84]Galanov BA, Kartuzov VV, Ivanov SM. Numerical-analytical model of penetration of long elastically deformable projectiles into semi-infinite targets. International Journal of Impact Engineering.2008,35:1009-1021.
    [85]王政,倪玉山,曹菊珍,王元书,张文.卵形头部刚性弹侵彻厚靶的半解析模型.爆炸与冲击.2004,24(3):212-218.
    [86]王政,倪玉山,曹菊珍,张文,金吾根.基于速度势侵彻模型的应用研究.高压物理学报.2005,19(1):10-16.
    [87]Bishop RF, Hill R, Mott NF. The theory of indentation and hardness test. Proceedings of Physical Society.1945,57:147-155.
    [88]Rohani B. Analysis of projectile penetration into concrete and rock targets. US Army Waterways Experiment Station, Vicksburg, Misc. Paper S-75-25 AD-A 016909,1975.
    [89]Bernard RS. A projectile penetration theory for layered targets. US Army Waterways Experiment Station, AD-A 025976,1976.
    [90]Forrestal MJ, Longcope DB, Norwood FR. Amodel to estimate forces on conical penetrators into dry porous rock. ASME Journal of Applied Mechanics.1981,48:25-29.
    [91]Longcope DB, Forrestal MJ. Closed-form approximations for forces on conical penetrators into dry porous rock, Sandia National Laboratories, ASME Journal of Applied Mechanics. 1981,48(4):971-972.
    [92]Forrestal MJ, Norwood FR, Longcope DB. Penetration into targets described by locked hydrostats and shear strength. International Journal of Solids and Structures.1981,17: 915-924.
    [93]Longcope DB, Forestall MJ. Penetration of target described by a Mohr-Coulomb failure criterion with a tension cut-off. ASME Journal of Applied Mechanics.1983,50:327-333.
    [94]Forrestal MJ. Penetration into dry porous rock. International Journal of Solids and Structures. 1986,22:1485-1500.
    [95]Luk, VK, Forrestal, MJ Penetration into semi-infinite reinforced concrete targets with spherical and ogival nose projectiles. International Journal of Impact Engineering.1987,6(4): 291-301.
    [96]Forrestal MJ, Longcope DB. Target strength of ceramic materials for high-velocity penetration. Journal of Applied Physics.1990,67:3669-3672.
    [97]Forrestal, M.J., Luk, V.K. Penetration into soil targets. International Journal of Impact Engineering.1992,12(3):427-444.
    [98]Forrestal MJ, Tzou DY. A spherical cavity-expansion penetration model for concrete targets. International Journal of Solids and Structures.1997,34(31-32):4127-4146.
    [99]He T, Wen HM, Guo XJ. A spherical cavity expansion model for penetration of ogival-nosed projectiles into concrete targets with shear-dilatancy. Acta Mechanics Sinica.2011,27(6): 1001-1012.
    [100]何涛.动能弹在不同材料靶体中的侵彻行为研究[博士论文].合肥:中国科学技术大学,2007.
    [101]李志康,黄风雷.考虑混凝土空隙压实效应的球形空腔膨胀理论.岩土力学.2010,5(31):1481-1485.
    [102]Xu H, Wen HM. A spherical cavity expansion penetration model for concrete based on Hoek-Brown strength criterion. International Journal of Nonlinear Sciences and Numerical Simulation.2012,13(2):145-152.
    [103]Macek RW., Duffey, TA. Finite cavity expansion method for near-surface effects and layering during earth penetration. International Journal of Impact Engineering.2000,24:239-258.
    [104]Warren TL, Hanchak SJ, Poormon KL. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles:experiments and simulations. International Journal of Impact Engineering.2004,30:1307-1331.
    [105]Taylor GI. The formation and enlargement of a circular hole in a thin plastic sheet. The Quarterly Journal of Mechanics & Applied Mathematics.1948,1:103-124.
    [106]Woodward RL. The penetration of metal targets by conical projectiles. International Journal of Mechanical Sciences.1978,20:349-359.
    [107]Thomson WT. An approximate theory of armor penetration. Journal of Applied Physics.1955, 26:80-82.
    [108]Forrestal MJ, Luk VK. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid. Journal of Applied Physics.1988,55:275-279.
    [109]Forrestal MJ, Okajima K, Luk VK. Penetration of 6061-T651 alumnium targets with rigid long rods. ASME Journal of Applied Mechanics.1988,55(4):755-760.
    [110]Luk VK, Forrestal MJ, Amos DE. Dynamic spherical cavity expansion of strain-hardening materials. ASME Journal of Applied Mechanics.1991,58:1-6.
    [111]Forrestal MJ, Brar NS, Luk VK. Penetration of strain-hardening targets with rigid spherical-nose rods. Journal of Applied Mechanics.1991,58:7-10.
    [112]Forrestal MJ, Luk VK, Rosenberg Z, Brar NS. Penetration of 7075-T651 aluminum targets with ogival-nose rods. International Journal of Solids and Structures.1992,29:1729-1736.
    [113]Forrestal MJ, Tzou DY, Askari E, Longcope DB. Penetration into ductile metal targets with rigid spherical-nose rods. International Journal of Impact Engineering.1995,16:699-710.
    [114]Warren TL, Forrestal MJ. Effects of strain hardening and strain-rate sensitivity on the penetration of aluminum targets with spherical-nosed rods. International Journal of Solids and Structures.1998,35:3737-3753.
    [115]Forrestal MJ, Rosenberg Z, Luk VK, Bless SJ. Perforation of aluminium plates with conical-nosed rods. Journal of Applied Mechanics.1987,54:230-232.
    [116]Forrestal MJ, Luk VK, Brar NS. Penetration of aluminum armor plates with conical-nose projectiles. Mechanics of Materials.1990,10:97-105.
    [117]Warren TL, Kevin LP. Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles:experiments and simulations. International Journal of Impact Engineering.2001,25:993-1022.
    [118]Zhou H, Wen HM. Penetration of bilinear strain-hardening targets subjected to impact by ogival-nosed projectiles. Proceeding of 2003 International Autum Seminar on International Autumn Seminar on Propellants, Explosives and Pyrotecnics, In:Theory And Practicing Of Energetic Materials (Vol.5), Science Press, Beijing/New York,2003:933-942.
    [119]周辉.弹塑性材料中的空穴膨胀理论及其在侵彻力学中的应用[硕士论文].合肥:中国科学技术大学.2004.
    [120]周辉,文鹤鸣.动态柱形空穴膨胀模型及其在侵彻问题中的应用.高压物理学报.2006,1:67-78.
    [121]蒋志刚,曾首义,周建平.分析金属靶板弹道极限的延性扩孔模型.弹道学报.2004,16(1):54-59.
    [122]蒋志刚,曾首义,周建平.刚性尖头弹垂直撞击金属厚靶极限速度分析.固体力学学报.2004,25(3):360-364.
    [123]蒋志刚,曾首义,周建平.中等厚度金属靶板的三阶段贯穿模型.兵工学报.2007,28(9):1046-1052.
    [124]王晓强,朱锡,王禹华.尖头弹侵彻延性金属靶板弹道极限的解析模型.振动与冲击.2010,29(5):96-140.
    [125]李小笠,陈小伟.尖头刚性弹贯穿金属厚靶的终点弹道性能研究.弹箭与制导学报.2011,31(4):79-84.
    [126]Landkof B, Goldsmith W. Petalling of thin, metallic plates during penetration by cylindro-conical projectiles. Interntional Journal of Solids and Structures.1985,21:245-266.
    [127]Werizbicki T. Petallling of plates under explosive and impact loading. International Journal of Impact Engineering.1999,22:935-954.
    [128]Pol MH, Bidi A, Hoseini AV, Liaghat GH. Analysis of normal penetration of ogive-nosed projectiles into thin metallic plates. World Academy of Science, Engineering and Technology. 2009,50:235-238.
    [129]Atkins AG, Khan MA, Liu JH. Necking and radial cracking around perforations in thin sheets at normal incidence. International Journal of Impact Engineering.1998,21(7):521-539.
    [130]Hirt CW, Amsden AA, Cook JL. An arbitrary Lagrangian-Eulerian computing method for flow speeds. Journal of Computational Physics.1974,14:227-253.
    [131]B(?)rvik T, Langseth M, Hopperstad OS, Malo K.A. Ballistic penetration of steel plates. International Journal of Impact Engineering.1999,22:855-886.
    [132]B(?)rvik T, Hopperstad OS, Berstad T, Langseth M. A computational model of viscoplasticity and ductile damage for impact and penetration. Eur J Mech-A/Solids.2001,20:685-712.
    [133]B(?)rvik T, Hopperstad OS, Berstad T, Langseth M. Numerical simulation of plugging failure in ballistic penetration. International Journal of Solids and structures.2001,38:6241-6264.
    [134]B(?)rvik T, Hopperstad OS, Langseth M, Malo KA. Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates. International Journal of Impact Engineering.2003,28:413-464.
    [135]Dey S, B(?)rvik T, Hopperstad OS, Langseth M. On the influlence of constitutive relation in projectile impact of steel plates. International Journal of Impact Engineering.2007,34: 464-486.
    [136]B(?)rvik T, Hopperstad OS, Berstad T, Langseth M. Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses, Part II:numerical simulations. International Journal of Impact Engineering.2002,27(1):37-64.
    [137]Dey S, B(?)rvik T, Hopperstad OS, Leinum JR, Langseth M. The effect of target strength on the perforation of steel plates using three different projectile nose shapes. International Journal of Impact Engineering.2004,30(8-9):1005-1038.
    [138]B(?)rvik T, Forrestal MJ, Hopperstad OS, Warren TL, Langseth M. Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles-Calculations. International Journal of Impact Engineering.2009,36:426-437.
    [139]Rosenberg Z, Dekel E. Revisiting the perforation of ductile plates by sharp-nosed rigid projectiles. International Journal of Solids and Structures.2010,47:3022-3033.
    [140]Iqbal MA, Chakrabarti A, Beniwai S, Gupta NK.3D numerical simulations of sharp nosed projectile impact on ductile targets. International Journal of Impact Engineering.2010,37: 185-195.
    [141]Iqbal MA, Gupta G, Gupta NK.3D numerical simulations of ductile targets subjected to oblique impact by sharp nosed projectiles. International Journal of Solids and Structures. 2010,47:224-237.
    [142]Deans J, Dunleavy CS, Brown PM, Clyne TW. Energy absorption during projectile perforation of thin steel plates and the kinetic energy of ejected fragments. International Journal of impact engineering.2009,36:1250-1258.
    [143]Gupta NK, Iqbal MA, Sekhon GS. Effect of projectile nose shape, impact velocity and target thickness on deformation behavior of aluminum plates. International Journal of Solids and Structures.2007,44:3411-3439.
    [144]何涛,文鹤鸣.卵形钢弹对铝合金靶板侵彻问题的数值模拟.高压物理学报.2006,20(4)i408-414.
    [145]何涛,文鹤鸣.球形弹对金属靶板侵彻问题的数值模拟.爆炸与冲击.2006,26(5):456-461.
    [146]何涛,文鹤鸣.可变形弹丸贯穿铝合金靶的数值模拟.高压物理学报.2008,22(2):153-159.
    [147]孙炜海.锥头弹丸正撞击下金属靶板破坏模式的理论和数值模拟研究[博士论文].合肥:中国科学技术大学,2009.
    [148]Abrate S. Impact on composite structures. Cambridge University Press, Cambridge, UK,1998.
    [149]Sun CT, Potti SV. A simple model to predict residual velocities of thick composite laminates subjected to high velocity impact. International Journal of Impact Engineering.1996,18(3): 339-353.
    [150]Greaves LJ. Progress in modeling the perforation of GFRP by ballistic projectiles. Unpublished UK DRA report,1994.
    [151]Zhu G, Goldsmith W, Dharan CKH. Penetration of laminated Kevlar by projectiles-Ⅱ. analytical model. International Journal of Solids and Structures.1992,29(4):421-436.
    [152]Xiao JR, Gama BA, Gillespie JW. Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading. Composite Structures.2007, 78(2):182-196.
    [153]Gama BA, Gillespie Jr JW. Finite element modeling of impact, damage evolution and penetration of thick-section composites. International Journal of Impact Engineering.2011, 38(4):181-197.
    [154]He T, Wen HM, Qin Y. Ballistic penetration and perforation of thick FRP laminates by ogival-nosed projectiles. Journal of Composite Materials.2007,41(23):2829-2842.
    [155]Shivakumar KN, Elber W, Illg W. Prediction of impact force and duration due to low velocity impact on circular composite laminates. Journal of Applied Mechanics.1985,52(3):674-680.
    [156]Fabrikant VI, Selvadurai APS, Xistris GD. Asymmetric problem of loading under a smooth punch. Journal of Applied Mechanics.1985,52(3):681-685.
    [157]Timonshenko SP, Woinowsky-Krieger S. Theory of Plates and Shells.2nd Edn., Mcgraw Hill, New York,1961.
    [158]覃悦.弹丸正撞击下纤维增强树脂基层合板破坏模式的理论和数值研究平[硕士学位论文].合肥:中国科学技术大学,2009.
    [159]Frost SR. The impact behavior and damage tolerance of filament wound glass fiber/epoxy matrix pipes. In:6th International Conference on Fibre Reinforced Composites (FRC'94). Newcastle-upon-Tyne, United Kingdom,29-31 Mar 1994:3.1-3.10.
    [160]Zee RH, Hsieh CY. Energy loss partitioning during ballistic impact of polymer composites. Polymer Composites.1993,14(3):265-271.
    [161]Davies GAO, Zhang X. Impact damage prediction in carbon composite structures. International Journal of Impact Engineering.1995,16(1):149-170.
    [162]Ulven C, Vaidya UK, Hosur MV. Effect of projectile shape during ballistic perforation of VARTM carbon/epoxy composite panels. Composite Structures.2003,61(1-2):143-150.
    [163]Gellert EP, Cimpoeru SJ, Woodward RL. A study of the effect of target thickness on the ballistic perforation of glass-fibre-reinforced plastic composites. International Journal of Impact Engineering.2000,24(5):445-456.
    [164]Soden PD, Hinton MJ, Kaddour AS. Lamina properties, lay-up configurations and loading conditions for a range of fiber-reinforced composite laminate. Composites Science and Technology.1998,58(7):1011-1022.
    [165]Zukas JA. Penetration and perforation of solids. In Impact Dynamics; Zukas JA, et al.,Eds.: John Wiley:New York,1982:155-214.
    [166]Anderson CE, Bodner SR. Ballistic impact:the status of analytical and numerical modeling. International Journal of Impact Engineering.1988,7:9-35.
    [167]Hill R. The Mathematical Theory of Plasticity. New York, USA:Oxford University Press, 1950.
    [168]Dikshit SN, Sundararajan G. The penetration of thick steel plates by ogive shaped projectiles-Experiment and Analysis. International Journal of Impact Engineering.1992, 12(3):373-408.
    [169]Piekutowski AJ, Forrestal MJ, Poormon KL, et al. Penetration of 6061-T6511 aluminum targets by ogive-nose steel projectiles with striking velocities between 0.5 and 3.0 km/s. International Journal of Impact Engineering.1999,23(1):723-734.
    [170]Wen HM, Jones N. Low-velocity perforation of punch impact loaded metal plates. Journal of Pressure Vessel Technology.1996,118(2):1-7.
    [171]Piekutowski AJ, Forrestal MJ, Poormon KL, et al. Perforation of aluminum plates with ogive-nose steel rods at normal and oblique impacts. International Journal of Impact Engineering.1996,18(7-8):877-887.
    [172]Borvik T, Forrestal MJ, Warren TL. Perforation of 5083-H116 aluminum armor plates with ogive-nose rods and 7.62 APM2 projectiles. Experimental Mechanics.2010,50(7):969-978.
    [173]Demir F. Prediction of elastic modulus of normal and high strength concrete by artificial neural networks. Construction and building Materials,2008.22(7):1428-1435.
    [174]杨阳.混凝土侵彻与贯穿的若干问题研究[博士学位论文].合肥:中国科学技术大学,2012.
    [175]Canfield JA, Clator IG. Development of a scaling and techniques to investigate penetration in concrete. NWL Report No.2057. U.S. Naval Weapons Laboratory, Dahlgren, VA (1996).
    [176]Hanchak SJ, Forrestal MJ, Young ER, Ehrgott JQ. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths. International Journal of Impact Engineering.1992,12(1):1-7.
    [177]Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures. Proceedings of the seventh international symposium on ballistics, Hague,1983, p.541.
    [178]Camacho GT, Ortiz M. Adaptive Lagrangian modelling of ballistic penetration of metallic targets. Computer Methods in Applied Mechanics and Engineering.1997,142:269-301.
    [179]Dey S, Borvik T, Hopperstad OS, Leinum JR, Langseth M. The effect of target strength on the perforation of steel plates using three different projectile nose shapes. International Journal of Impact Engineering.2004,30:1005-1038.
    [180]Borvik T, Langseth M, Hopperstad OS, Malo KA. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical nosed part I:experimental study. International Journal of Impact Engineering.2002,27(1):19-35.
    [181]孙炜海,文鹤鸣.锥头弹丸低速撞击下薄金属靶板的穿透.固体力学学报.2009,30(4):361-367.
    [182]Corran RSJ, Shadbolt PJ, Ruiz C. Impact loading of plates-an experimental investigation. International Journal of Impact Engineering.1983,1(1):3-22.
    [183]Johnson W, Ghosh SK, Reid S. Piercing and hole-flanging of sheet metals:a survey. Aluminium.1980,56:142-6.
    [184]Calder CA, Goldsmith W. plastic deformation and perforation of thin plates resulting from projectile impact. International Journal of Solids and Structures.1971,7(7):863-881.
    [185]Woodward RL. The interrelation of failure modes observed in the penetration of metallic targets. International Journal of Impact Engineering.1984,2(2):121-129.
    [186]Woodward RL, Cimpoeru SJ. A study of the perforation of aluminium laminate targets. International Journal of Impact Engineering.1998,21(3):117-131.
    [187]Dikshit SN, Kutumbarao VV, Sundararajan G. The influence of plate hardness on the ballistic penetration of thick steel plates. International Journal of Impact Engineering.1995,16(2): 293-320.
    [188]Wu QG, Wen HM, Qin Y, Xin SH. Perforation of FRP laminates under impact by flat-nosed projectiles. Composites Part B:Engineering.2012,43(2):221-227.
    [189]Hopkins HG, Prager W. The load carrying capacities of circular plates. Journal of the Mechanics and Physics of Solids.1953,2(1):1-13.
    [190]Jones N. Structural Impact. London:Cambridge University Press.1989.
    [191]Goldsmith W, Finnegan SA. Normal and oblique impact of cylindro-conical and cylindrical projectiles on metallic plates. International Journal of Impact Engineering.1986,4(2): 83-105.
    [192]Radin J, Goldsmith W. Normal projectile penetration and perforation of layered tardets. International Journal of Impact Engineering.1988,7(2):229-259.
    [193]Virostek SP, Goldsmith W. Direct force measurement in normal and oblique impact of plates by projectiles. International Journal of Impact Engineering.1987,6(4):247-269.
    [194]Dey S, Borvik T, Hopperstad OS, Langseth M. On the influence of fracture criterion in projectile impact of steel plates. Computational Materials Science.2006,38(1):176-191.
    [195]Woodward RL, Morton ME. Penetration of targets by flat-ended projectiles. International Journal of Mechanical Sciences.1976,18(3):119-127.
    [196]Osborn CJ, Woodward RL. The effect of penetrator geometry on the deformation of ductile metal targets. Strength of Metals and Alloys 1982; 1:467-472.
    [197]穆建春.金属薄板在圆锥头弹体正冲击下的破裂模式.爆炸与冲击.2005,25(1):74-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700