用户名: 密码: 验证码:
汽车钢板冲压成形表面损伤规律与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为适应现代汽车轻量化、安全性和耐腐蚀性等发展趋势,高强度钢板和镀锌钢板在汽车上的应用越来越多。但高强度钢板和镀锌钢板在冲压过程中也遇到了诸多挑战,如高强度钢板冲压成形时由于需要更大的压边力和拉深力,在成形过程中更容易引起板料表面损伤,镀锌钢板在冲压加工中也出现了镀层粉化、脱落和龟裂等表面损伤缺陷。板料表面损伤不仅影响了汽车的使用性能,而且加速了模具磨损,破坏了冲压工艺稳定性,提高了汽车制造成本。因此研究高强度钢板和镀锌钢板在冲压成形中的表面损伤行为,揭示各影响因素对板料表面损伤的影响规律,抑制或减轻高强度钢板和镀锌钢板表面损伤,对推广高强度钢板和镀锌钢板的工程应用、降低汽车制造成本有着重要的理论意义和实际价值。
     本文在借鉴和吸收国内外先进研究成果的基础上,针对高强度钢板和镀锌钢板在冲压成形中的表面损伤现象进行了系统研究。首先根据板料冲压加工中的变形、摩擦等特点以及板料表面损伤的特征建立板料表面损伤物理模拟实验及评价系统;在此基础上研究模具和工艺等因素对高强度钢板表面损伤的影响规律,建立高强度钢板表面损伤演化模型;接着研究不同模具硬度条件下钢板强度对板料表面损伤的影响规律,建立可抑制表面损伤缺陷的钢板与模具硬度匹配窗口;最后研究镀锌钢板表面损伤规律以及镀锌工艺对镀锌板表面损伤类型的影响,揭示镀锌钢板表面损伤特点以及产生机理。本文的主要研究内容如下:
     (1)针对钢板冲压加工特点的板料表面损伤物理模拟实验研究
     由于车身覆盖件冲压成形中钢板的塑性变形行为以及变形模式的复杂性,使用传统摩擦实验装置不能模拟钢板与模具间的接触摩擦。首先分析车身覆盖件冲压成形中钢板与模具间的接触摩擦特点以及板料表面损伤特征,设计一具有多种板料变形模式的复杂零件来研究钢板冲压加工中的板料表面损伤。为进一步研究模具、工艺及板料因素对板料表面损伤的影响规律,设计带拉延筋的U形件来模拟钢板在拉伸-弯曲变形模式下的表面损伤现象。最后基于车身覆盖件生产现场工况,制定钢板表面损伤影响因素变化范围,设计板料表面损伤模拟实验方案,并研究板料表面损伤定量评价参数及其测量方法。
     (2)高强度钢板表面损伤规律及其演化模型建立
     以高强度钢板B170P1为研究对象,首先研究模具材料Cr12MoV、Mo-Cr合金铸铁、球墨铸铁和灰铸铁对钢板表面损伤的影响,结果表明,Mo-Cr合金铸铁是适合高强度钢板冲压成形的最优模具材料。接着使用不同硬度、粗糙度水平的Mo-Cr合金铸铁模具,研究模具和工艺条件等因素对钢板表面损伤的影响规律,得出可以通过提高模具硬度、模具表面粗糙度等级以及适当减小压边力等措施来减轻板料表面损伤缺陷。最后在物理模拟实验数据的基础上,建立高强度钢板表面损伤演化模型,并验证了模型的正确性。利用本部分的研究内容,可以综合考虑模具及工艺等因素来制定技术措施,进而抑制或减轻板料表面损伤缺陷。
     (3)面向高强钢板表面损伤的板材与模具硬度匹配窗口建立
     随着钢板强度水平的提高,钢板冲压成形需要更高的压边力,冲压加工中更容易引起板料表面损伤,而且由于钢板硬度的提高,模具磨损也更严重。因此,对于不同强度等级的高强度钢板冲压成形,模具应进行不同的表面处理以得到不同级别的表面硬度。以高强度钢板B170P1、DP590和DP780为对象,研究高强度钢板冲压成形时钢板强度与模具硬度的匹配问题。首先以钢板表面损伤Ry值为设计目标,以钢板硬度(即钢板强度)、模具硬度、零件冲压次数为变量因子,进行Box-Behnken实验设计。在实验研究的基础上,建立二阶响应面模型,最后通过模型重构建立钢板与模具硬度匹配窗口。利用此匹配窗口,可有效指导模具选材、以及模具寿命预测,抑制高强度钢板表面损伤发生,降低产品废品率。
     (4)镀锌钢板表面损伤分析
     热镀锌、热镀锌合金化和电镀锌是典型的镀锌工艺,不同性质的锌镀层与模具表面形成不同的摩擦副,在钢板冲压加工中产生不同类型和不同程度的表面损伤,因此对于不同类型镀锌钢板的冲压加工,应使用不同表面状态的模具以减轻板料表面损伤缺陷。首先研究模具硬度、模具粗糙度对不同种类镀锌钢板的影响规律,在此基础上分析三种镀锌工艺对钢板表面损伤类型的影响,提出抑制镀锌钢板表面损伤的技术措施。最后通过对镀锌钢板镀层硬度、表面形貌、化学成分等的测量和分析,揭示不同镀锌钢板表面损伤产生的机理。根据本章研究内容可以确定模具表面状态,进而减轻三种镀锌钢板冲压加工中的表面损伤缺陷。
     通过以上研究工作,本文对高强度钢板和镀锌钢板在冲压加工中的表面损伤现象进行了全面和系统的分析。从钢板冲压成形中板料表面损伤特征、物理模拟方法、评价等方面都进行了较为深入的探讨,对模具因素、工艺条件、钢板种类对板料表面损伤的影响都进行了比较全面的研究,为高强度钢板和镀锌钢板在汽车制造中的进一步推广,奠定了坚实的基础。
The demands for lightweight security and corrosion-resistance in automotiveindustry have focused the attention of automotive manufacturers on the use of highstrength steels and galvanized steels. At the same time, the application of highstrength steels and galvanized steels presents many challenges in sheet metal forming.For high strength steels problems with surface damages are of major interest, sinceforming pressures are high, as well as blank holder forces. For galvanized steels,powdering, abscission and crack of coatings are popular in the forming processes.Surface damage is one of the major problems in the forming of high strength steelsand galvanized steels, which not only decreases the corrosion resistance and surfacequalities of products but also decrease the stability of the forming process. It canextend the use field and proportion of the high strength steels and galvanized steelsand shorten the time of new product design if the surface damages of high strengthsteels and galvanized steels are decreased.
     Based on the comparison and evaluation of the surface damages of the highstrength steels and galvanized steels, sheet surface damage in sheet metal forming areinvestigated systemically. The experimental and evaluating methods on the surfacedamage in sheet metal forming are established through the analysis of thecharacteristics of sheet deformation, the friction between the blank and the tool. Andthen the effects of the forming tool and process parameters on sheet surface damageare investigated and the model of sheet surface damage in the forming of highstrength steels is established. Aimed at the forming process of different high strengthsteels, the hardness matching window of sheet material and forming tool is defined.At last the effects of tool hardness and surface roughness on surface damages of thegalvanized steels and the influence of galvanized process on surface damage areinvestigated. And the characteristics and mechanisms of surface damages in theforming of hot-dip galvanized, galvannealed and electro-galvanized steels are studied.To fulfill the above research objectives, the following four aspects of efforts areperformed:
     (1) Experimental and evaluating system of sheet surface damages for the sheetmetal stamping
     The frictional characteristics between the die and the sheet blank in sheet metalforming are different with the traditional contact friction between two solid due to theplastic deformation of sheet material and complexity of sheet deformation. Therefore,the contact characteristics between the die and the sheet blank in sheet metal formingare analysed firstly in this chapter and a complicated part that have typical sheetdeformations in stamping is designed to study the sheet surface damages in sheetmetal forming. To study the effects of the forming tools and sheet materials on sheetsurface damages, U-channel forming experiment with draw-bead is selected tosimulate sheet surface damage in the forming of sheet steels under tension-bending.Finally, based on the producing conditions in automobile industry, the experimentalproject is established and the parameter to evaluate sheet surface damage and themethod to measure the parameter are studied. This chapter is the foundation of theexperiments described in the followed chapters.
     (2) The rules and numerical model of sheet surface damage for the forming ofhigh strength steel under tension-bending
     The effects of tool materials Cr12MoV, Mo-Cr alloy cast iron, nodular iron andgray cast iron on sheet surface damages are studied using the high strength steelB170P1. It is demonstrated that Mo-Cr alloy cast iron is the best tool material amongthe investigated materials for sheet metal forming. Through the U-channel formingtests, the effects of tool hardness, tool surface roughness, blank holder force andlubrication on blank surface damage are investigated. It is indicated that sheet surfacedamages can be decreased through increasing tool hardness, surface roughness anddecreasing blank holder force. Based on the experimental data, the model for thesurface damage in the forming of high strength steels is established through non-linearcurve fitting. The reliability of the equation was validated. Using the results of thischapter, the technical measures can be established considering the effects of formingtools and process parameters on sheet surface damages and the sheet surface damageswill be decreased obviously.
     (3) Hardness matching window of the blank and die aimed at surface damages ofhigh strength steels
     Tool hardness is one of the important factors that influence sheet surface damage insheet metal forming and it also affects tool wear, tool life and the cost of tool manufacture. With increasing of sheet strength, heavy sheet surface damages and toolabrasion are happied. Thus, for the forming of the high strength steels with differentstrength, the forming tools should be heat treated with different mothods to getdifferent tool hardness. In this chapter, using the high strength steels B170P1, DP590and DP780the matching of sheet strength and tool hardness is researched. The effectsof tool hardness on different high strength steels are investigated based on theBox-Behnken test design and then the hardness matching window of sheet materialand forming tool is established. The selection of tool materials and prediction of toollife can be done through the matching window, and then the sheet surface damagesand part rejection rate can be decreased.
     (4) Effects and mechanism of galvanized coatings on surface damage
     Hot-dip galvanized, galvannealed and electro-galvanized process are the typicalgalvanized processes and the surface damages of the three types of galvanized steelsare different with each other. Firstly, the effects of tool hardness and tool surfaceroughness on surface damages of galvanized steels are investigated. And then theeffects of galvanized processes on the types of sheet surface damages in the formingof galvanized steels are studied and the methods of decreasing surface damages ofgalvanized steels are proposed. Finally, the mechanisms of sheet surface damages ofdifferent galvanized steels are investigated through the analyses of coating hardness,surface topography and chemical composition.
     Through this research, the sheet surface damages in the forming of high strengthsteels and galvanized steels are studied comprehensively. The characteristics,simulating methods and evaluation of sheet surface damage in sheet metal forming areanalysised. The effects of the forming tool, process parameters and sheet materials onsheet surface damages are studied. The research will extend the usages of highstrength steels and galvanized steels in automobile industry.
引文
[1]张理扬,左良,李俊.冷轧和镀锌汽车板的发展.特殊钢.2004(6):1-6.
    [2] BIAN Jun, ZHU Yun, LIU Xiang-hua, WANG Guo-dong. Development of Hot DipGalvanized Steel Strip and Its Application in Automobile Industry. JOURNAL OF IRONAND STEEL.2006,13(3):47-50.
    [3] Yuxuan Li, Zhongqin Lin, Aiqin Jiang, Guanlong Chen. Use of high strength steel sheetfor lightweight and crashworthy car body. Materials and Design.2003,24(3):177-182.
    [4] Yan Zhang, Xinmin Lai, Ping Zhu, Wurong Wang. Lightweight design of automobilecomponent using high strength steel based on dent resistance. Materials and Design.2006,27(1):64-68.
    [5] D. Santos, H. Raminhos, M.R. Costa, T. Diamantino, F. Goodwin. Performance of finishcoated galvanized steel sheets for automotive bodies. Progress in Organic Coatings.2008,62(3):265-273.
    [6] Peng Chen, Muammer Koc. Simulation of springback variation in forming of advancedhigh strength steels. Journal of Materials Processing Technology.2007,190(1-3):189-198.
    [7] V. Tarigopula, O.S. Hopperstad, M. Langseth, A.H. Clausen. Elastic-plastic behaviour ofdual-phase, high-strength steel under strain-path changes. European Journal of MechanicsA/Solids.2008,27(5):764-782.
    [8] M. Lebrini, G. Fontaine, L. Gengembre, M. Traisnel, O. Lerasle, N. Genet. Corrosionbehaviour of galvanized steel and electroplating steel in aqueous solution: AC impedancestudy and XPS. Applied Surface Science.2008,254(21):6943-6947.
    [9] H. Asgari, M.R. Toroghinejad, M.A. Golozar. On texture, corrosion resistance andmorphology of hot-dip galvanized zinc coatings. Applied Surface Science.2007,253(16):6769–6777.
    [10] L.G. Garza, C.J. Van Tyne. Friction and formability of galvannealed interstitial free sheetsteel. Journal of Materials Processing Technology.2007,187-188:164-168.
    [11] Kenneth G. Budinski, Michael K. Budinski. A galling-resistant substitute for silicon nickel.Wear.2003,255(1-6):489-497.
    [12] A. Akhbarizadeh, M.A. Golozar, A. Shafeie, M. Kholghy. Effects of cryogenictreatment on wear behavior of D6tool steel. Materials and Design.2008, DOI:10.1016/j.matdes.2008.11.016.
    [13] SSAB Company.Industrialization and tooling solutions for advanced high strength steels,2006Report.
    [14] Zhang Ruijun, Wang Hong, Li Yanjie. High temperature friction and wear performancesof Ti/Cu-doped carbonaceous mesophases. Tribology International.2009,42(5):657-661.
    [15] Junko Umeda, Katsuyoshi Kondoh, Hisashi Imai. Friction and wear behavior of sinteredmagnesium composite reinforced with CNT-Mg2Si/MgO. Materials Science andEngineering: A.2009,504(1-2):157-162.
    [16] G.M. Dalton, J.A. Schey. Effect of beadfinish orientation on friction and galling in thedrawbead test. SAE Transactions.1992,101(5):123-130.
    [17] D.M. Fabijanic, M. Barnett, P.D. Hodgson. Improving the galling resistance of automotivestamping tools. Metal Forming.2000,76(9):641-646.
    [18]古林忠.板料冲压中的表面损伤情形.塑性と加工.1978(1):25-29.
    [19]黄群飞,何燕霖,李麟.高性能双相钢的研究进展.热处理技术与装备.2007(3):11-14.
    [20] Teisuke Sato, Tatsuo Besshi. Anti-galling evaluation in aluminum sheet forming. Journalof Materials Processing Technology.1998,83(1-3):185-191.
    [21] Magnus Hanson, Nils Stavlid, Ernesto Coronel, Sture Hogmark. On adhesion and metaltransfer in sliding contact between TiN and austenitic stainless steel. Wear.2008,264(9-10):781-787.
    [22] H. Kim, S. Han, Q. Yan, T. Altan. Evaluation of tool materials, coatings and lubricants informing galvanized advanced high strength steels (AHSS). CIRP Annals-ManufacturingTechnology.2008,57(1):299-304.
    [23] J. Hardell, B. Prakash. High-temperature friction and wear behaviour of different toolsteels during sliding against Al–Si-coated high-strength steel. Tribology International.2008,41(7):663-671.
    [24] Michael P. Pereira, Wenyi Yan, Bernard F. Rolfe. Contact pressure evolution and itsrelation to wear in sheet metal forming. Wear.2008,265(11-12):1687-1699.
    [25]邓守军,孙乐民,张永振.磨损机理的变迁与现状.机械研究与应用.2004,17(6):10-15.
    [26] B. Podgornik, S. Hogmark, J. Pezdirnik. Comparison between different test methods forevaluation of galling properties of surface engineered tool surfaces. Wear.2004,257(7-8):843-851.
    [27] S.R. Hummel, B. Partlow. Comparison of threshold galling results from two testingmethods. Tribology International.2004,37(4):291-295.
    [28] K. Gurumoorthy, M. Kamaraj, K.P. Rao, S. Venugopal. Development and use of combinedwear testing equipment for evaluating galling and high stress sliding wear behaviour.Materials&Design.2007,28(3):987-992.
    [29] S.R. Hummel. Development of a galling resistance test method with a uniform stressdistribution. Tribology International.2008,41(3):175-180.
    [30] H.Y. Kim. An experimental study on forming characteristics of pre-coated sheet metals.Journal of Materials Processing Technology.2002,120(1-3):290-295.
    [31] H.D. Nine. Draw bead force in sheet metal forming, Proceedings of a Symposium onMechanics of Sheet Metal Forming: Behavior and Deformation Analysis,1998,Warren,Michigan, Planum Press,179-211.
    [32] L.R. Sanchez. Characterisation of a measurement system for reproducible friction testingon sheet metal under planestrain. Tribology International.1999,32(7):575-596.
    [33] Teisuke Sato, Tatsuo Besshi. Anti-galling evaluation in aluminum sheet forming. Journalof Materials Processing Technology.1998,83(1-3):185–191.
    [34] Teisuke Sato. Anti-galling property of a diamond-like carbon coated tool in aluminumsheet forming. Journal of Materials Processing Technology.2000,104(1-2):21-24.
    [35] J.L. Andreasen, N. Bay, L.D. Chiffre. Quantification of galling in sheet metal forming bysurface topography characterization. International Journal of Machine Tools andManufacture.1998,38(5-6):503-510.
    [36] V.F.Sajewski. A study of the galling of two steels using two methods. Wear.1998,122(2):207-223.
    [37] Masato Hirasaka, Hisashi Nishimura. Effects of the surface micro-geometry of steel sheetson galling behavior. Journal of Materials Processing Technology.1994,47(1-2):153-166.
    [38] S.R. Hummel, Benjamin Partlow. Threshold galling load and frictional behavior ofstainless steel couples in line contact. Wear.2003,255(1-6):504-508.
    [39] Y.C. Tasan, M.B. de rooij, D.J. Schipper. Measurement of wear on asperity level usingimage-processing techniques. Wear.2005,258(1-4):83-91.
    [40] Barrau, C. Boher, R. Gras, F. Rezai-Aria. Analysis of the friction and wear behavior of hotwork tool steel for forging. Wear.2003,255(7-12):1444-1454.
    [41] B. Podgornik. Comparison between different test methods for evaluation of gallingproperties of surface engineered tool surfaces. Wear.2004,257(7-8):843-851.
    [42] Mahrenholtz, N. Bontcheva, R. Iankov, M. Datcheva. Investigation of the influence ofsurface roughness on metal forming processes. Mechanics Research Communications.2000,27(4):393-402.
    [43] Mahrenholtz, N. Bontcheva, R. Iankov. Infleence of surface roughness on friction duringmetal forming processes. Journal of Materials Processing Technology.2005,159(8):9-16.
    [44] Hilsen, R.R., Bernick L.M.. Relationship between surface characteristics and galling indexof sheet steel. ASTM STP.1978,647:220-237.
    [45] K.Y. Lee, G.G. Kim, J.H. Kim, S.H. Lee, S.J. Kim. Sliding wear behavior of hardfacingalloys in a pressurized water environment. Wear.2007,262(7-8):845-849.
    [46] Hyunok Kim, Jihyun Sung, Frank E, Goodwin, Taylan Altan. Investigation of galling informing galvanized advanced high strength steels (AHSSs) using the twist compressiontest (TCT). Journal of Materials Processing Technology.2008,205(1-3):459-468.
    [47] Andrzej Matuszak. Factors influencing friction in sheet metal forming. Journal ofMaterials Processing Technology.2000,106(6):250-253.
    [48]平板直人.粘模的影响因素和预防措施.模具技术.1989(1):12-17.
    [49] M.J. Alinger, C.J. Van Tyne. Evolution of the tribological characteristics of severalforming die materials. Journal of Materials Processing Technology.2001,111(1-3):20-24.
    [50] Schumacher, William J., Tanczyn. Galling and wear resistant steel alloy. United StatesPatent,4494988, January22,1985.
    [51] Schumacher, William J., Tanczyn. Galling resistant austenitic stainless steel. United StatesPatent,4146412, March27,1979.
    [52] Schumacher, William J., Tanczyn. Galling resistant austenitic stainless steel. United StatesPatent,4099967, July11,1978.
    [53] Gregory M. Dalton, John A. Schey. Effect of bead finish orientation on friction and gallingin the drawbead test. SAE transactions.1992,101(5):509-519.
    [54] B. Podgornik, S. Hogmark. Surface modification to improve friction and gallingproperties of forming tools. J. Mat. Proc. Tech.2006,174(1-3):334-341.
    [55] B. Podgornik. Influence of surface roughness and coating type on the galling properties ofcoated forming tool steel. Surface and Coatings Technology.2004,184(5):338-348.
    [56] J. Takadoum, H.H. Bennani. Influence of substrate roughness and coating thickness onadhesion, friction and wear of TiN films. Surface and Coatings Technology.1997,96(2-3):272–282.
    [57] Guoxian Hu. Influence of Surface Roughness on Friction Coefficient in DrawingProcesses Under Mixed-film Lubrication. Journal of Hefei Technology University.1994,17(2):167-173.
    [58] E. Lizuka. Effect of surface roughness on galling behavior. Sheet Metal Forming Beyond2000: Proceedings of the20th biennial congress, Belgium,1998,06,17-19.
    [59]张正修.冲压过程中的摩察、磨损及润滑.电子工艺与技术.1997(9):201-206.
    [60]张正修.预防冲模提前失效的对策.工艺与工艺装备.2002(7):35-37.
    [61] T. Nishimura. The evaluation of anti-galling characteristic by observation of adhesionmorphologies using injection upsetting. Journal Materials Processing Technology.1996,62(1-3):235-241.
    [62]杨世春.表面质量与光整形技术.北京:机械工业出版社.1999.
    [63] Van der Heide. Wear of soft tool materials in sliding contact with zinc-coated steel sheet.Journal of Materials Processing Technology.2003,141(2):197-201.
    [64] G.B. Stachowiak, G.W. Stachowiak. The effects of particle characteristics on three-bodyabrasive wear. Wear.2001,249(3-4):201–207.
    [65] J.S. Sheasby. The effect of steel hardness on the performance of anti-wear additives. Wear.1996,201(5):209-216.
    [66] E. Schedin, B. Lethtinen. Galling mechanisms in lubricated systems: a study of sheetmetal forming. Wear.1993,170(1):119-130.
    [67] Van der Heide. The effect of lubricant selection on galling in a model wear test. Wear.2001,251(1-12):973-979.
    [68] Yoichiro Mori, Makoto Yamazaki, Hidetoshi Shindo. Film designed for lubricative coatedsteel sheet. Progress in Organic Coating.2000,40(1-4):119-120.
    [69] T.L. Krantz, A. Kahraman. An experimental investigation of the influence of the lubricantviscosity and additives on gear wear. Trib. Trans.2004,47(4):138-148.
    [70]刘天聪.厚板压延件的常见缺陷及修正方法.模具技术.1999(1):66-69.
    [71] J.L. Andreasen. Quantification of Galling in Sheet Metal Forming by Surface TopographyCharacterisation. Tools and Manufacture.1998,38(5-6):503-510.
    [72]田柱平.拉深模粘结瘤的形成及有效预防.模具技术.1999(2):69-72.
    [73] K.P. Rao. Performance of a new dry lubricant in the forming of aluminum alloy sheets.Wear,2001,249:86-93
    [74]王海斗.不同钢种离子渗硫层的抗擦伤性能研究.材料工程.2003(2):7-10.
    [75] U. Wiklund, I.M. Hutchings, Investigation of surface treatments for galling protection oftitanium alloys. Wear.2001,251(1-12):1034-104.
    [76] Teisuke Sato. Anti-galling property of a diamond-like carbon coated tool in aluminumsheet forming. Journal of Materials Processing Technology.2000,104(1-2):21-24.
    [77]郭玉琴,姜虹,王小椿.板料冲压加工数值模拟中接触摩擦问题的研究.机械工程学报.2004(11):174-177.
    [78]孙建林.材料成形摩擦与润滑.北京:国防工业出版社.2007.
    [79] T. Skare, F. Krantz. Wear and frictional behaviour of high strength steel in stampingonitored by acoustic emission technique. Wear.2003,255(7-12):1471-1479.
    [80] Van der Heide E, Schipper D J. Galling initiation due to frictional heating. Wear.2003,254(11):1127-1133.
    [81] Wiklund U, Hutchings I M. Investigation of surface treatments for galling protection oftitanium alloys. Wear.2001,251(1-12):1034-1041.
    [82] P. A. Swanson, L. K. Ives, E. P. Whitenton, M. B. Peterson. A study of the galling of twosteels using two test methods. Wear.1998,122(2):207-223.
    [83] K. P. Rao, J. J. Wei. Performance of a new dry lubricant in the forming of aluminum alloysheets. Wear.2001,249(1-2):85-92.
    [84] Jakob Lange, Alexandre Luisier, Erik Schedin. Development of scratch tests forpre-painted metal sheet and the influence of paint properties on the scratch resistance.Journal of Materials Processing Technology.1999,86(1-3):300-305.
    [85] H. Hoffmann, G. Nurnberg, K. E. Nurnberg, G. Herrmann. A new approach to determinethe wear coefficient for wear prediction of sheet metal forming tools. Prod. Eng. Res.Devel.2007,76(1):357-363.
    [86] P. Pesch, S. Ulrich, H. Holleck. Performance of hard coated steel tools for steel sheetdrawing. Surface and coatings Technology.2003,163-164:739-746.
    [87] K. Hokkirigawa, K. Kato. An experimental and theoretical investigation of ploughing,cutting and wedge formation during abrasive wear. Tribology international.1998,21(1):51-57.
    [88] Francis Clarysse, Walter Lauwerens, Michel Vermeulen. Tribological properties of PVDtool coatings in forming operations of steel sheet. Wear.2008,264(5-6):400-404.
    [89] K. G. Budinski. Incipient galling of metals. Wear.1992,74(1):93-105.
    [90] Staffan Jacobson, Sture Hogmark. Surface modifications in tribological contacts. Wear.2008,266(3-4):370-378.
    [91] B. Podgornik, S. Hogmark, O. Sandberg. Influence of surface roughness and coating typeon the galling properties of coated forming tool steel. Surface and Coating Technology.2004,184(2-3):338-348.
    [92] D. Markov. Laboratory tests for seizure of rail and wheel steels. Wear.1997,208(1-2):91-104.
    [93] T.Nishimura, T. Sato, Y. Tada. The evaluation of anti-galling characteristics by observationof adhesion morphologies using injection upsetting. Journal Materials ProcessingTechnology.1996,62(1-3):235-241.
    [94]温景林.金属材料成形摩擦学.沈阳:东北大学出版社.2004.
    [95] B.P. Gearing, H.S. Moon, L. Anand. A plasticity model for interface friction: applicationto sheet metal forming. International Journal of Plasticity.2001,17(2):237-271.
    [96] Masabumi Masuko, Akihito Suzuki, Yu Sagae, Maiko Tokoro, Kenji Yamamoto. Frictioncharacteristics of inorganic or organic thin coatings on solid surfaces under waterlubrication. Tribology International.2006,39(12):1601-1608.
    [97] Y.T. Pei, D. Galvan, J.Th.M. De Hosson, A. Cavaleiro. Nanostructured TiC/a-C coatingsfor low friction and wear resistant applications. Surface&Coatings Technology.2005,198(1-3):44-50.
    [98] Akira Azushima, Yasuo Tanno, Hiroyuki Iwata, Kohshiro Aoki. Coefficients of friction ofTiN coatings with preferred grain orientations under dry condition. Wear.2008,265(7-8):1017-1022.
    [99] L. Wang, X. Nie, J. Housden. Material transfer phenomena and failure mechanisms of ananostructured Cr–Al–N coating in laboratory wear tests and an industrial punch toolapplication. Surface&Coatings Technology.2008,203(5-7):816-821.
    [100] B. Painter, R. Shivpuri, T. Altan. Prediction of die wear during hot-extrusion of enginevalves. Journal of Materials Processing Technology.1996,59(1-2):132-143.
    [101] G.A. Lee, Y.T. Im. Finite-element investigation of the wear and elastic deformation of diesin metal forming. Journal of Materials Processing Technology.1999,89-90:123-127.
    [102] R.S. Lee, J.L. Jou. Application of numerical simulation for wear analysis of warm forgingdie. Journal of Materials Processing Technology.2003,140(1-3):43-48.
    [103] M. Eriksen. The influence of die geometry on tool wear in deep drawing. Wear.1997,207(1-2):10-15.
    [104]沈邦兴.实验设计及工程应用.北京:中国计量出版社.2005.
    [105]孙成智.基于变压边力的薄板冲压成形理论与实验研究.上海交通大学博士学位论文.2004.
    [106]郑可锽.实用冲压模具设计手册.北京:宇航出版社.1990.
    [107]胡星,李淑慧.高强度钢板压边力设计及敏感性分析.锻压技术.2007(6):68-72.
    [108]梁炳文.冷冲压工艺手册.北京:北京航空航天大学出版社.2004.
    [109]王孝培.冲压手册.北京:机械工业出版社.1990.
    [110]傅作宝.冷轧薄钢板生产.北京:冶金工业出版社.2005.
    [111] Chun Xu, Z.Q. Lin, S.H. Li, W.G. Zhang. Research on shear strength of galvannealedcoatings. Materials&Design.2007,28(5):1668-1671.
    [112] Chakraborty, R.K. Ray. Effect of substrate texture on the formation of f phase in theoverlying galvannealed coatings in industrially produced interstitial free steels. ScriptaMaterialia.2007,56(8):653–656.
    [113] Chakraborty, D. Bhattacharjee, R. Pais, R.K. Ray. Effect of galvannealing power on thetexture and powdering resistance of industrially produced galvannealed coating oninterstitial free steel. Scripta Materialia.2007,57(8):715–718.
    [114]钱健清.镀锌层对钢板r值的影响.钢铁研究学报.2003(4):58-65.
    [115] Merriman D. Mass Spectrometry for Oxygen Steelmaking Control. Steel Times.1997,225(11):439-440.
    [116] T. Skare, F. Krantz. Wear and frictional behaviour of high strength steel in stampingmonitored by acoustic emission technique. Wear.2003,255(7-12):1471–1479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700