用户名: 密码: 验证码:
水稻抗旱相关重要农艺生理特性及其与耐盐性遗传重叠
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在亚洲许多地区,干旱和盐胁迫是限制水稻生产的最主要非生物因素。培育高产和抗逆的水稻品种或许是解决这一问题的最好方法。由于水稻抗旱和耐盐性是受多基因或多位点控制的数量性状,培育高产抗旱又耐盐的水稻品种十分困难。近10年来,我们在国际水稻研究所,通过分子标记辅助选育了大量的抗旱和耐盐的导入系和聚合系。为了解高产,抗旱以及耐盐之间的关系及其它们内在机理,本研究利用抗旱QTL聚合系从表型和生理的角度阐述了抗旱机理,并利用导入系阐述了抗旱和耐盐的遗传机制。
     第一套试验材料包括48个聚合系。在严重大田干旱胁迫和灌溉条件下,以轮回亲本IR64为对照,连续三年分别在营养期和生殖期,对48个IR64背景的二轮抗旱QTL聚合系得抗旱性以及产量潜力,进行了鉴定评估。研究表明,相对于轮回亲本IR64,在生殖期旱胁迫条件下所有48个聚合系,在营养期胁迫条件下36个株系的抗旱性均显著提高(p<0.05)。另外,在正常灌溉条件下23个株系产量显著高于IR64(p<0.05),其余25株系产量与IR64相近。通过对产量以及次级性状的比较分析发现,3种重要的抗旱机理相互协调提高聚合系的抗旱能力和产量潜力,最主要的是避旱性(drought avoidance),具体表现为在生殖期胁迫条件下,通过减少分蘖数和茎叶干物质量,提高水分利用效率,增加了有效穗数和育性,从而大大提高了收获指数和产量,这表明在干旱胁迫条件下,这些聚合系能够更有效利用土壤水分,确保重要功能的正常进行。而在正常灌溉条件下这些聚合系比IR64没有减少甚至更多的分蘖数和穗数。第二种机理是一种特殊的抗早性(drought tolerance),表现为在生殖期干旱胁迫下加速了“源”的有效转运和利用,显著提高收获指数,表现为所有的聚合系在三种条件下(正常,营养期胁迫,以及生殖期胁迫),均比IR64表现出了显著高的千粒重或者显著高的育性(P<0.05)。逃旱性(drought escape)是第三种机理,在生殖期,通过加速生长避免花期遭遇更严重干旱伤害;在营养期,加速生长为复水后后期库的积累提供了更多“源的供应”。同时我们发现,在具有相似抗旱性和产量潜力的株系间,次级性状表现差异较大,这为通过分子标记聚合这些有利性状提供了信息,从而可以进一步提高植株抗旱能力和产量潜力。因此胁迫条件下通过选择产量和优良次级性状相结合可以大大提高培育高产抗旱品种的效率。
     为进一步了解这些聚合系的抗旱机理,尤其是在干旱胁迫条件下动态反应,选择12个或生殖期或营养期或兼而有之表现较好的株系,以IR64为对照,在温室条件下进行盆栽实验。研究发现,在营养期胁迫条件下,比较对照,拥有发达根系的株系29和较低单位面积蒸腾量(较厚叶片)的株系30,在土壤水分含量较低的情况下,均能保持较高蒸腾速率和光合作用,这样有效积累了地上地下部生物量,从而提高了水分利用效率。ABA的积累是其主要的信号调节机理。同时发现非ABA代谢途径也同样调节植株对水分匮缺的反应。在生殖期间歇性水分胁迫下,土壤水分的过快汲取导致了株系间表现相似,但复水后差异明显(p<0.01),株系30复水前水分利用率高,生物量积累多,恢复能力最强,而具有发达根系的line29并没有表现出强的恢复能力。根系解剖结构表明,株系29具有厚的木质部层和更多导管,这有利于土壤水分的吸收,但是在严重土壤水分胁迫下易造成导管“气穴”现象,这将极大降低根系对土壤水分的汲取能力。同时在田间旱胁迫下,我们尝试观察了植株的动态变化,结果再次证明,适时的开花期,高效水分利用或者发达根系,以及碳水化合物的有效转运等,协同调节是聚合系抗旱的机理所在。
     在第二套实验中,利用两个以高产稻黄花占为背景BC1F3群体(HHZ/OM1723和HHZ/Teqing)3000个单株,在中国广东和国际水稻研究所进行了抗旱,耐盐和高产选择,选择到24个高产,36个极端抗旱和30个极端耐盐的导入系进行了卡方和多位点关联概率测验,以检测供体导入片段中与可能与高产、抗旱以及耐盐相关联的功能遗传单位(FGU)。根据连锁不平衡分析和最新数量遗传理论,共检测到53个FGU构成了抗旱和耐盐的遗传网络。在群体HHZ/OM1723中检测到28个FGU,其中9个在三种选择群体中检测到,14个在两种选择群体中,5个只在单个选择群体中检测到,而且有三个具有高导入的位点总是处于抗旱耐盐遗传网络的最上游,其中3个在三种遗传网络的最上游具有重叠。同样地,在群体HHZ/Teqing中,检测到25个FGU,其中19个在三种选择群体中检测到,4个只在两种选择群体中检测到,2个只在单个选择群体中检测到。同样地,总有两个位点处于高产、抗旱和耐盐遗传网络的最上游。而且同一个途径的位点间表现出高度正相关,不同途径间表现出独立或者负相关关系。但是比较发现,很少FGU在两个群体发生重叠,这表明大多数检测到的FGU来自于不同的供体。这与当前对抗旱和耐盐的研究结论一致,但这些遗传信息为我们通过聚合高度正相关或者独立的不同的功能遗传位点,进一步提高水稻的高产、抗旱以及耐盐水平,提供了有益的帮助,也为通过分子标记高通量检测抗旱耐盐QTL位点提供了重要的参考。
Abiotic stresses such as drought and salinity are very important factor limiting rice productivity in the rainfed and costal areas of Asia. Development and adoption of high-yielding and stress tolerant rice varieties are the best solution for solving the problems. However, it is well known that rice tolerances to both drought and salinity are controlled by large numbers of genes or quantitative trait loci (QTLs), making it difficult to breed superior rice varieties with good tolerances to both stresses. In past 10 years, many sets of introgression lines (ILs) and pyramiding lines (PLs) with significantly improved drought tolerance (DT) and/or salt tolerance (ST) have been developed using backcross breeding and molecular pyramiding at IRRI. The objectives of this study were:(1) to characterize the phenotypic and physiological traits associated with DT PLs and (2) to understand the genetic basis of DT and ST using ILs and molecular markers.
     Two series experiments were performed in this study. In the first set of experiments,48 PLs, their parental ILs and recurrent parent, IR64 (check) were evaluated for their yield performances and related traits under severe drought stress at the reproductive stage (RS) and vegetative stage (VS) and irrigated control in three years to understand the relationship between drought tolerance (DT) and yield potential (YP) in rice and their underlying mechanisms. When compared to IR64, all PLs had significantly improved DT to RS and 36 PLs also had significantly improved DT to VS (p<0.05). In addition,23 PLs had higher YP than IR64 (p<0.05) and the remaining 25 PLs had similar YP as IR64 under the irrigated control. Detailed characterization of the PLs revealed 3 mechanisms that functioned together to contribute to their improved DT and/or YP. The most important mechanism was drought avoidance (DA) characterized with significantly higher biomass and harvest index (HI) of the PLs than IR64 under stress, suggesting the PLs' better abilities to maintain higher water status and function under stress. Because most PLs did not show any reduction in biomass under control, this type of DA resulted most likely from improved dehydration resistance. The second mechanism was efficient partitioning characterized by improved HI in all PLs as compared to IR64, resulting primarily from higher GW and/or SF under control and was the major constituent of the improved YP in the 17 PLs. Drought escape (DE) by accelerated heading under drought was the third mechanism that contributed to DT of the PLs to RS. The considerable variation in the measured traits among the PLs with similar levels of DT and YP implies the complex genetic control of the mechanisms for DT/YP and offers opportunities to further improve DT and/or YP by fine-tuning of QTLs/genes among the PLs using MAS. Finally, our results indicate that selection for yield plus some secondary traits under appropriate type(s) of stress and non-stress conditions similar to target environments are critically important for improving both DT and YP in rice.
     A selected set of promising PLs was further analyzed for the dynamic responses of plant growth and water use to progressive water deficit at different growth stages in lysimeters under controlled phytotron conditions and rainfed lowland condition. In vegetative stage dry-down experiment, the PLs that performed best under drought were those that had the lowest threshold of transpiration response to soil moisture decrease (P<0.01), i.e. lines that kept stomata open longer or had large root system during the soil drying, and hence extracted more soil water, which resulted in higher shoot and root biomass, and an overall improvement of transpiration efficiency. ABA-dependant and ABA-independent signal pathway co-regulated the different response to the FTSW among the genotypes. In intermittent water stress, the sharp dry-down stress resulted in the similar performance between lines in the threshold of FTSW. The lines with higher water use efficiency (WUE) and large biomass at the end of stress showed good drought recovery ability, and thus produced higher spikelet fertility and grain yield. However, those lines produced large root biomass did not show superior drought recovery, probably due to the specific root anonomy structure. Under the lowland progressive water stress, the PLs produced high yield potential as the result of large biomass production (more tillers and panicles), while under drought, they improved WUE by balancing the transpiration and tiller and leaf area production, and performed higher yield, harvest index and spikelet fertility, but lower above ground shoot production. As well, the lines with large root system also conferred to drought tolerance in lowland condition, to some extent.
     In the second set of experiments, two BC1F2 populations (1500plants) in the genetic background of a high-yielding indica variety, Huang-Hua-Zan, were screened under drought and salinity conditions at IRRI and China, resulting in development of 36 DT ILs and 30 salt tolerant (ST) ILs. These ILs were analyzed using X2 and multilocus probability tests to identify functional genetic units (FGUs) located in the donor segments associated with DT and ST. Together, a total of 53 FGUs associated with HY, DT and/or ST were identified in the ILs, forming 3 genetic networks underlying HY, DT and ST in rice. The first one detected in the HHZ/OM1723 population contained 28 FGUs, including 9 FGUs contributing to HY, DT, and ST,14 FGUs affecting 2 traits, and 5 FGUs that contributed to one trait only. Of these,3 loci (RM24, RM6 and RM130) appeared to be important as they had high frequencies of introgression and were placed in the upstream of the network based on the new molecular-quantitative genetics theory. Similarly, the genetic network identified in the HHZ/Teqing population had 25 FGUs, including 19 FGUs contributing to HY, DT, and ST,4 FGUs affecting 2 traits, and 2 FGUs that contributed to one trait only. Again, these FGUs included 2 important ones in the upstream of the genetic network. In contrast to the high genetic overlap among the three traits, especially between DT and ST, however, there were few shared loci identified in the HHZ/OM1723 and those in the HHZ/Teqing population, indicating the 2 donors contributed different sets of loci to the DT and/or ST in the selected ILs. Our results were in consistent with our current knowledge that DT and ST in rice are under complex genetic control, and provided useful information and materials for further improvement of DT and ST in rice by pathway pyramiding, and for detailed molecular dissection of DT and ST in rice using high throughput genomic tools.
引文
1.何宝坤,李德全.植物渗调蛋白的研究进展.(2002).生物技术通报2,6-10.
    2.李妮亚,高俊凤,汪沛洪.小麦幼芽水分胁迫诱导蛋白的特征.(1998).植物生理学报,24,65-71.
    3.梁新华,史大刚.(2006).干旱胁迫对光果甘草幼苗根系MDA含量及保护酶POD、CAT活性的影响.干旱地区农业研究24,108-110.
    4.罗利军,张启发.(2001).栽培稻抗旱性研究的现状与策略.中国水稻科学,15,209-214
    5.任安芝,高玉葆,陈悦.干旱胁迫下内生真菌感染对黑麦草叶内几种同工酶的影响.(2004).生态学报,24,323-1329.
    6.石峰,谢惠民,张晓科.(2005).冬小麦不同抗旱品种抽穗期干旱诱导蛋白差异与抗旱性的研究.麦类作物学报,25,22-36.
    7.孙勇.水稻耐盐QTL表达的遗传背景与环境效应研究(硕士学位论文).中国农业科学院,2007
    8.王金玲,董心久,田成军,魏凌基.(2006).水分胁迫对小黑麦生理生化特性和可溶性蛋白质的影响.麦类作物学报,26,137-139.
    9.穆平,李自超,李春平等.水、旱稻根系性状与抗旱性相关分析及其QTL定位.科学通报,2003,48,2162-2169
    10.王静英,李永春,尹钧,刘昊英,司志飞.(2008).干旱胁迫下植物的信号转导及基因表达研究进展.中国农学通报,24:271-275.
    11.魏炜,赵欣平,吕辉.(2003).三种抗氧化酶在小麦抗干旱逆境中的作用初探.四川大学学报,40,1172-1175.
    12.吴秀兰,孔详礼,唐文武,包劲松.(2004).单核苷酸多态性在水稻遗传育种中的应用.分子植物育种,2,541-547.
    13.徐恒平,汪沛洪.土壤干旱对小麦根系蛋白组分变化的影响.(1992).西北农业报,1,33-36.
    14.徐民俊,刘桂茹,杨学举,王丽军.冬小麦品种干旱诱导蛋白的研究.(2002).河北农业大学学报,25,11-15.
    15.薛吉全,马国胜,路海东,任建宏.(2001).作物抗旱性与作物生产.西安联合大学学报,4,22-26.
    16.于同泉,柴丽娜,刘宗萍.(1995).水分胁迫下小麦幼苗可溶性蛋白质的表现与小麦抗旱蛋白之初探..北京农业学报,10,26-31.
    17.俞嘉宁,张林生,高俊凤.(2002)水分胁迫对小麦幼苗及悬浮培养细胞中诱导蛋白表达的影响.西北植物学报,22,865-870.
    18.袁隆平.(2010).首届中国(博鳌)农业科技创新论坛主题报告.
    19.张峰,杨颖丽,何文亮.孙峰,张立新.(2004).水分胁迫及复水过程中小麦抗氧化酶的变化.西北植物学报,24,205-209. 20.郑天清,徐建龙,傅彬英.(2007).遗传搭车与方差分析在水稻定向选择群体的抗旱性位点分析中的初步应用.作物学报,5,799-80421.周桂,李杨瑞.(2007).植物干旱诱导蛋白研究进展.广西农业科,38,379-385.22. Agarwal, P. K., Agarwal, P., Reddy, M. K.,& Sopory, S. K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants, Plant Cell Rep.25,1263-1274. 23. Aharon, R., Shahak, Y., Wininger, S., Bendov, R., Kapulnik, Y.,& Galili, G (2003) Overexpression of a plasma membrane aquaporins in transgenic tobacco improves plant vigour under favourable growth conditions but not under drought or salt stress, Plant Cell,15,439-447. 24. Ali, I., Condon, A.G., Peter, L., Tester, M.,& Schnurbusch, T. (2008). Different mechanisms of adaptation to cyclic water stress in two South Australian bred wheat cultivars. Journal of Experimental Botany,59,3327-3346. 25. Ali, M. L., Pathan, M. S., Zhang, J., Bai, G., Sarkarung, S.,& Nguyen, H. T. (2000). Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theoretical and Applied Genetics,101,756-766. 26. Ali.A. J., Xu, J. L., Ismail, A. M., Fu, B. Y. Vijakumar, C. H. M., Gao, Y. M. et al. (2005).Hidden diversity for abiotic stress tolerances in the primary gene of rice revealed by a large backcross breeding program, Field Crops Res,97,66-76. 27. Anyia, A. O.& Herzog, H. (2004). Genotypic Variability in Drought Performance and Recovery in Cowpea under Controlled Environment. Journal of Agronomy and Crop Science,190,151-159. 28. Araujo, A. P., Antunes, I. F.,& Teixeira, M. G. (2005). Inheritance of root traits and phosphorus uptake in common bean (Phaseolus vulgaris L.) under limited soil phosphorus supply, Euphytica, 145,33-40. 29. Araus, J. L., Slafer, G. A., Reynolds, M. P.,& Royo, C. (2002). Plant breeding and drought in C3 cereals:what should we breed for? Ann. Bot,89,925-940. 30. Arora, A., Sairam, R. K.,& Srivastava, G C. (2002). Oxidative stress and anti-oxidative system in plants. Current Science,82,1227-1238. 31. Atlin, G (2003). Improving drought tolerance by selecting for yield In Breeding Rice for Drought-Prone Environments. Eds. Fischer KS, Lafitte R, Fukai S, Atlin G, Hardy B, eds. Breeding rice for drought-prone environments,14. 32. Atlin, G. N., Lafitte, R., Venuprasad, R., Kumar, A.,& Jongdee, B. (2004). Heritability of rice yield under stress, correlations across stress levels, and effects of selection:implications for drought tolerance breeding. In:Poland D, Sawkins M, Ribaut JM, Hoisington D, eds. Resilient Crops for Water-limited Environments:Proceedings of a Workshop at Cuernavaca, Mexico May 24-28,2004, CIMMYT, Mexico, D.F,85-87. 33. Atlin, G.,& Lafitte, H. R. (2002). Marker-assisted breeding versus direct selection for drought tolerance in rice. In:Saxena NP, O'Toole JC, eds. Field Screening for Drought Tolerance in Crop Plants with Emphasis on Rice:Proceedings of an International Workshop on Field Screening for Drought Tolerance in Rice, ICRISAT/The Rockefeller Foundation, Patancheru, India/New York, USA,71-81.
    34. Austin, R. B, Bingham, J., Blackwell, R. D., Evans, L. T, Ford, M. A., Morgan, C. L., et al. (1980). Genetic improvement in winter wheat yields since 1900 and associated physiological changes. Journal of Agricultural Science,112,295-301.
    35. Babu, R. C., Nguyen, B. D., Chamarerk, V. P., Shanmugasundaram, P., Chezhian, P., Jeyaprakash, S. K., et al. (2003). Genetic analysis of drought resistance in rice by molecular markers, Crop Sci,43, 1457-1469.
    36. Babu, R. C., Shashidhar, H. E., Lilley, J. M., Thanh, N. D., Ray, J. D., Sadasivam, S., et al. (2001). Variation in root penetration ability, osmotic adjustment and dehydration tolerance among accessions of rice adapted to rainfed lowland and upland ecosystems. Plant Breeding,120,233-238.
    37. Babu, R.C., Zhang, J., Blum, A., Ho, T. H. D., Wu, R.,& Nguyen, H. T. (2004b). HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Science,166,855-862.
    38. Bahrun, A., Jensen, C. R., Asch, F.,& Mogensen, V. O. (2002). Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L). Journal of Experimental Botany,53,251-263.
    39. Barker, R., Dawe, D.,& Tuong, T.P. (2000). The outlook for water resources in the year 2020: challenges for research on water management in rice production. International Rice Commission Newsletter.49.
    40. Bartels, D.,& Sunkar, R. (2005). Drought and salt tolerance in plant. Crit Rev Plant Sci,24,23-58.
    41. Basnayake, J., Fukai, S.,& Ouk, M. (2006). Contribution of potential yield, drought tolerance and escape to adaptation of 15 rice varieties in rainfed lowlands in Cambodia. Proceedings of the Australian Agronomy Conference, Australian Society of Agronomy, Birsbane, Australia.
    42. Becker, D., Hoth, S., Ache, P., Wenkel, S., Roelfsema, M. R. G, Meyerhoff, O., et al. (2003). Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Letters 554,119-126.
    43. Bengston, C., Larsson S.& Liljenberg, C. (1978). Effect of water stress on cuticular transpiration rate and amount and composition of epicuticular wax in seedlings of six oat varieties, Physiol Plant, 44,319-324.
    44. Bernier, J., Kumar, A., Venuprasad, R., Dean, S.,& Atlin, G. (2007).A Large-Effect QTL for Grain Yield under Reproductive-Stage Drought Stress in Upland Rice. Crop Sci,47,507-518.
    45. Bhatnagar-Mathur, P., Reddy, D. S., Lavanya, M., Yamaguchi-Shinozaki, K., Sharma, K. K. (2007).
    Stress-inducible expression of Arabidopsis thaliana DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep,26, 71-82.
    46. Blum, A. (2004). Sorghum physiology. In 'Physiology and biotechnology integration for plant breeding'. (Eds HT Nguyen, A Blum),141-223. (Marcel Dekker:New York).
    47. Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research,56,1159-1168.
    48. Bonnett, G. D.,& Incoll, L. D. (1992). The potential pre-anthesis and post-anthesis contributions of stem internodes to grain yield in crops of winter barley. Ann. Bot.69,219-225.
    49. Borsani, O., Valpuesta, V.,& Botella, M. A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physio,126, 1024-1030.
    50. Bouchereau, A., Aziz, A., Larher, F., Tanguy, M. (1999). Polyamines and environmental challenges. Rec. Develop, Plant Sci,140,103-125.
    51. Bray, E. A. (1997). Plant responses to water deficit. Trends Plant Sci.,2,48-54.
    52. Buckley, T.N.2005. The control of stomata by water balance. New Phytol.,168,275-292. 53. Cattivelli, L., Rizza, F., Badeck, F. W., Mazzucotelli, E., Mastrangelo, A. M., Francia E., et al. (2008). Drought tolerance improvement in crop plants:An integrative view from breeding to genomics, Field Crop. Res,105,1-14. 54. Ceccarelli, S. (1987). YP and drought tolerance of segregating populations of barley in contrasting environments. Euphytica,36,265-273. 55. Chaerle L., Leinonen, I., Jones, H. G.,& Straeten, V. D. (2007). Monitoring and screening plant poupualtions with combined thermal and chlorophyll imaging. J. Exp. Bot,58,773-784. 56. Champoux, M. C., Wang, G., Sarkarung, S., Mackill, D. J., O'Toole, J. C., Huang, N., et al. (1995). Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theoretical and applied genetics,90,969-981 57. Chartzoulakis, K. S., Gerasopoulas, D., Olympios, G.,& Passam, H. (1995). Salinity effects on fruit quality of cucumber and egg plant. Acta. Horticulture,379,187-192. 58. Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M.J.& Jung, R. (2001). Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol,125,1206-1215. 59. Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P. P., Osorio, M. L., et al. (2002). How plants cope with water stress in the field. Photosynthesis and growth. Annals of Botany, 89,907-916. 60. Chen, M., Wang, Q. Y., Cheng, X. G., Xu, Z. S., Li, L. C., Ye, X. G, et al. (2007). GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem. Bioph. Res. Co,353,299-305.
    61. Chen, X.,& Wang, S. (1992). Quantitative analysis of ABA, IAA and NAA in plant tissues by HPLC. Plant Physiol. Commu,28,368-371.
    62. Clifford, S. C, Arndt, S. K, Corlett, J. E, Joshi, S., Sankhla, N., Popp, M., et al. (1998). The role of solute accumulation, osmotic adjustment and changes in cell wall elasticity in drought tolerance in Ziziphus mauritiana (Lamk.). JExp Bot,49,967-977
    63. Close, T. J. (1997). Dehydrins:a commonality in the response of plants to dehydration and low temperature, Physiol. Plant,100,291-296.
    64. Cooper, M.,& Somrith, B. (1997). Implications of genotype-by-environment interactions for yield adaptation of rainfed lowland rice:influence of flowering date on yield variation. In:Fukai, S., Cooper, M. and Salisbury, J. (eds), Breeding Strategies for Rainfed Lowland Rice in Drought-prone Environments, ACIAR Proceedings,77,104-114.
    65. Cooper, M., Rajatasereekul, S., Immark, S. Fukai, S.& Basnayake, J. (1999). Rainfed lowland rice breeding strategies for northeast Thailand. I. Genotypic variation and genotype×environment interactions for grain yield, Field Crops Res,64,131-151.
    66. Cruz, R. T.& O'Toole, J. C. (1984). Dry land rice to an irrigation gradient at flowering stage. Agron. J,76,178-183.
    67. Davidson, D. J.,& Chevalier, P. M. (1987). Influence of polyethylene glycol-induced water deficits on tiller production in spring wheat. Crop Science,27,1185-1187.
    68. Davies, W.J., Wilkinson, S.,& Loveys, B. (2002). Stomatal control by chemical signaling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytologist,153, 449-460.
    69. Dubouzet, J. G., Sakuma, Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., et al. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression, Plant J,33,751-763.
    70. Eagles, H., Bariana, H., Ogbonnaya, F., Rebetzke, G., Hollamby, G., Henry, R., et al. (2001). Implementation of markers in Australian wheat breeding. Aust J Agric Res,52,1349-1356.
    71. Edmeades, G. O., Bolanos, J., Chapman, S. C., Lafitte, H. R.,& Banziger, M. (1999). Selection improves drought tolerance in tropical maize populations. I. Gains in biomass, grain yield and harvest index. Crop Science,39,1306-1315.
    72. Ehdaie, B.,& Waines, J. G., (1996). Genetic variation for contribution of preanthesis assimilation to grain yield in spring wheat. J. Genet. Breeding,50,47-55.
    73. Ehdaie, B., Alloush, G. A., Madore, M. A.,& Waines, J. G. (2006). Genotypic variation for stem reserves and mobilization in wheat:Ⅱ. Postanthesis changes in internode water-soluble carbohydrates. Crop Sci,46,2093-2103.
    74. Ekanayake, I. J., Steponkus, P. L., Datta, S. K. (1989). Spikelet sterility and flowering response of rice to water stress at anthesis. Ann. Bot,63,257-264.
    75. Ekanayake, I. J., Steponkus, P. L., Datta, S. K. (1990). Sensitivity of pollination to water deficits at anthesis in upland rice. Crop Science,30,310-315.
    76. Ella, G.(1970). Unilateral electroconvulsive therapy. Acta Psychiat, Scand.46,1-98.
    77. Enstone, D. E., Peterson, C. A.& Ma, F.2002. Root endodermis and exodermis:Structure, function and responses to the environment. J. Plant Growth Regul.,21,335-351.
    78. Farooq, M., Aziz, T., Basra, S. M. A., Cheema, M. A.,& Rehamn, H. (2008). Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. J. Agron. Crop Sci,194,161-168.
    79. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D.& Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev.,29,185-212.
    80. Finn, G. A.,& Brun, W. A. (1980). Water stress effects on CO2 assimilation, photosynthetic partitioning, stomatal resistance and nodule activity and soybean. Crop Sci,20,431-434.
    81. Fischer, K. S.,& Fukai, S. (2003). How rice responds to drought. In:Fischer K.S., Lafitte, R., Fukai, S., Atlin G,& Hardy, B, eds. Breeding Rice for Drought-Prone Environments,32.
    82. Flowers, T. J., Koyama, M. L. Flowers, S. A. Chinta, s., Singh, K. P.& Yeo, A. R. (2000). QTL: their place in engineering tolerance of rice to salinity. Journal of Experimental Botany,51,99-106.
    83. Franck, K. I., Schaffner, A. R., Bouchez, D.,& Maurel, C. (2003). Role of a single aquaporin isoform in root water uptake, Plant Cell,15,509-522.
    84. Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., Tran, L. S. P., et al. (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. The Plant Journal,39,863-876.
    85. Fukai S. (1998). The use of seedling leaf death score for evaluation of drought resistance of rice. Field Crops Research,55,129-139. 86. Fukai, S.,& Inthapan, P. (2000). Growth and yield of rice cultivars under sprinkler irrigation in south-eastern Queensland.3. Water extraction and plant water relations-comparison with maize and sorghum. Australian Journal of Experimental Agricultur,28,249-252. 87. Fukai, S., Atlin, G. & Hardy, B. (2003). International Rice Research Institute, Los Banos, Philippines, 49-54. 88. Fukai, S., Basnayake, J., Cooper, M. (2001). Modelling water availability, crop growth, and yield of rainfed lowland rice genotypes in northeast Thailand. In:Tuong, T. P., Kam, S. P., Wade, L., Pandey, S., Bouman, B. A. M.,& Hardey, B. (Eds.), Proceedings of the International Workshop on Characterizing and Understanding Rainfed Environments, Bali, Indonesia, December 5-9,1999. International Rice Research Institute, Los Banos, Philippines,111-130. 89. Galmes, J., Flexas, J., Save, R.,& Medrano, H. (2007). Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits:responses to water stress and recovery. Plant and Soil,290,139-155.
    90. Garay-Arroyo, A., Colmenero-Flores, J. M. Garciarrubio, A.& Covarrubias, A. A. (2000). Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J. Biol. Chem,275,5668-5674.
    91. Garris, A. J., Tai, T. H., Coburn, J., Kresovich, S.,& McCouch S.2005. Genetic structure and diversity in Oryza sativa L., Genetics,169,1631-1638.
    92. Garrity, D. P.,& O'Toole, J. C. (1994). Screening rice for drought resistance at the reproductive phase. Field Crops Res,39,99-110.
    93. Gent, M. P. N. (1994). Photosynthate reserves during grain filling in winter wheat. Agron. J.86, 159-167.
    94. Gent, M. P. N.,& R.K. Kiyomoto. (1985). Comparison of canopy and flag leaf net carbon dioxide exchange of 1920 and 1977 New York winter wheats. Crop Sci.25,81-86.
    95. Giraudat, J., Hauge, B. M., Valon, C., Smalle, J., Parcy, F.,& Goodman, H. M. (1992). Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell,4,1251-1261.
    96. Gomez-Cadenas, A., Verhey, S. D., Holappa, L. D., Shen, Q., Ho, T. H. D,& Walker-Simmons, M. K. (1999). An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Plant Biology 96,1767-1772.
    97. Gorantla, M., Babu, P. R., Lachagari, V. B. R., Reddy, A. M. M., Wusirika,& R., Bennetzen, J. L., et al. (1990). Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted:sequence and expression of three inducible genes. Plant Mol. Biol,15,11-26.
    98. Green, D.& Read, D. (1983). Water use efficiency of corn, sunflower, and wheat with limiting soil moisture. Can. J. Plant Sci.63,47-749.
    99. Greenway, H.,& Munns, R. (1980). Mechanism of salt tolerance innon-halopphytes. Annual Review of Plant Physiology,31,149-190.
    100. Gregorio, G. B.,& Senadhira, D. (1993). Genetic analysis of salinity tolearance in rice. Theor. AppJ. Ge,86,333-338.
    101. Grimes, D. W.,& EL-Zik, K. M. (1990). Cotton,30,741-773.
    102. Hall, N. M., Griffiths, H., Corlett, J. A., Jones, H. G., Lynn, J.,& King, G. J. (2005). Relationships between water-use traits and photosynthesis in Brassica oleracea resolved by quantitative genetic analysis. Plant Breeding,124,557-564.
    103. Hansen, H.,& Grossmann, K. (2000). Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiology,124,1437-1448.
    104. Hazen, S. P., Schultz, T. F., Pruneda-Paz, J. L., Borevitz, J. O., Ecker, J. R., Kay, S. A. (2005). LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci,
    102,10387-10392.
    105. He, Y. Q., Li, X., Zhang, J. F., Jiang, G. H., Liu, S. P., Chen, S., et al. (2004). Gene pyramiding to improve hybrid rice by molecular marker techniques. The 4th crop science congress, 106. He, Y. X., Zheng, T. Q., Hao, X. B., Wang, L. F., Gao, Y. M., Hua, Z. T., et al. (2009). Yield performances of japonica introgression lines selected for drought tolerance in a BC breeding program. Plant Breeding,129,167-175. 107. Henry, R. (1997). Molecular markers in plant improvement. In:Practical Applications of Plant Molecular Biology, Chapman and Hall, London,99-132. 108. Heuer, B.,& Nadler, A. (2000). Physiological Parameters, Harvest Index and Yield of Deficient Irrigated Cotton. Journal of Crop Production,2,229-239. 109. Hsiao, T. C. (1982). The soil plant atmosphere continuum in relation to drought and crop production. In:Drought Resistance in Crops with Emphasis on Rice, IRRI, Los Banos, Philippines,39-52. 110. Hsiao, T.C., O'Toole, J. C, Yambao, E. B.,& Turner, N. C,1984. Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza sativa L.). Plant Physiology,75,338-41. 111. Hu, Z.H., Wang, Z.G., Gao, H.X.& Wang, L. J. (2001). Research on water changes and water use efficiency in Loess gully region in Western Shanxi Province, J. Shanxi Agric. Univ.21,248-251. 112. Hufstetler, E. V., Boerma, H. R. Carter, T. E.,& Earl, H. J. (2007). Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Sci.47,25-35. 113. Ibrahim, A.M.H.,& Quick, J.2001. Genetic control of high temperature in wheat as measured by membrane thermal stability. Crop Sci,41,1405-1407. 114. Ikeda A, Ueguchi-Tanaka, M., Sonoda, Y., Kitano, H., Koshioka, M., Futsuhara, Y, et al. (2001). A constitutive gibberellin response mutant is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell,13,999-1010. 115. Ilahi, I.& Dorffling, K. (1982). Changes in abscisic acid and praline levels in maize varieties of different drought resistance. Physiol. Plant,55,129-135. 116. Islam, M. A., Du, H., Ning, J., Ye, H. Y.,& Xiong, L. Z. (2009). Characterization of Glossy 1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant MolBiol,70,443-456. 117. Itoh, R. and Kumara, A.1987. Acclimation of soybean plants to water deficit. V. Contribution of potassium and sugar to osmotic concentration in leaves. Japanese Journal of Crop Science,56, 678-684. 118. Jackson, M.B.& Colmer, T.D.2005. Response and adaptation by plants to flooding stress Preface. Ann. Bot.,96,501-505. 119. Jang, C. S., Lee, H. J., Chang, S. J.& Seo, Y. W. (2004). Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat (Triticum aestivum L.). Plant Science,167,
    995-1001.
    120. Javot, H.,& Maurel, C. (2002). The role of aquaporins in root water uptake, Ann. Bot.90,301-313.
    121. Jearakongman, S. (2005). Validation and discovery of quantitative trait loci for drought tolerance in backcross introgression lines in Rice (Oryza sativa L.) Cultivar IR64. PhD Thesis. Kasetsart University,95.
    122. Jiang, G H., Xu, C. G.., Tu, J. M., Li, X.,& Zhang, Q. F. (2008). Pyramiding of insect-and disease-resistance genes into an elite indica, cytoplasm male sterile restorer line of rice,'Minghui 63'.Plant Breeding,123,112-116.
    123. Joel, D. L. C., Siopongco, Kazumi, S., Akira, Y, James, E., Abdelbagi, M., et al. (2009). Stomatal Responses in Rainfed Lowland Rice toPartial Soil Drying; Comparison of Two Lines. Plant Prod. Sci,12,17-28.
    124. Johansen, C., Krishnamurthy, L., Saxena, N. P., Sethi, S. C. (1994). Genetic variation in moisture stress of chickpea grown under line-source sprinklers in a semi-arid tropical environment. Field Crop Res,37,103-112.
    125. Johansen, C., Singh, D. N., Krishnamurthy, L., Saxena, N. P., Chauhan, Y. S., Kumar-Rao, J. V. D. K. (1997). Options for alleviating moisture stress in pulse crops. In:Asthana, A.N.,Masood Ali, (Eds.), Recent Advances in Pulses Research. Indian Society of Pulses Research and Development, IIPR, Kanpur, India,425-442.
    126. Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjovall, S., Fraysse, L., Weig, A. R.& Kjellbom, P. (2001). The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol, 126,1358-1369.
    127. Johnson, R. C., Witters, R. E.& Ciha, A. J. (1981). Daily patterns of apparent photosynthesis and evapotranspiration in a developing winter wheat crop. Agron. J.73,414-418.
    128. Jones, H. G. (1992). Plants and Microclimate:A Quantitative Approach to Environmental Plant Physiology.2nd ed. Cambridge University press, New York.
    129. Jones, N., H. Ougham & H. Thomas,1997. Markers and mapping:We are all geneticists now. New Phytol,137,165-177.
    130. Jongdee, B., Fukai, S.,& Cooper, M. (2002). Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crop Res,76,153-163.
    131. Jongdee, B., Pantuwan, G., Fukai, S.,& Fischer, K. (2006). Improving drought tolerance in rainfed lowland rice:An example from Thailand. Agricultural Water Management,80,225-240.
    132. Jordan, W. R., Dugas W. A.,& Shouse P. J. (1983). Strategies for crop improvement for drought-prone regions.Agricultural Water Management,7,281-299
    133. Joshi, S., Ranjekar, P.,& Gupta, V.1999. Molecular markers in plant genome analysis. Curr Sci,77,
    230-240. 134. Jung, K. H., Han, M. J., Lee,& D.Y. (2006). Wax deficient antherl is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell,18,3015-3032. 135. Kamoshita, A., Babu, R. C., Boopathi, N. M.,& Fukai, S. (2008). Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Research,109,1-23. 136. Kamoshita, A., Rodriguez, R., Yamauchi, A.,& Wade, L. J. (2004). Genotypic variation in response of rainfed lowland rice to prolonged drought and rewatering. Plant Production Science,7,406-420. 137. Kashiwagi, J., Krishnamurthy, L., Crouch, J. H., Serraj, R. (2006). Variability of root length density and its contributions toseed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Research,95,171-181. 138. Kasukabe, Y., He, L., Nada, K., Misawa, S., Ihara, I.,& Tachibana, S. (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol, 45,712-722. 139. Kathiresan, A., Lafitte, H. R., Chen, J., Mansueto, L., Bruskiewich, R.,& Bennet, J. (2006). Gene expression microarrays and their application in drought research. Field Crops Research,97, 101-110. 140. Kato, Y, Kamoshita, A.,& Yamagishi, J. (2007). Evaluating the resistance of six rice cultivars to drought:root restriction and the use of raised beds. Plant and Soil,300,149-161. 141.Kavar, T., Maras, M., Kidric, M., Sustar-Vozlic, J., Meglic, V. (2007). Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress, Mol. Breed,21,159-172. 142. Kazuo, S.,& Kamaguchi-Shinozaki. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany,2,221-227. 143.Kebede, H., Subudhi, P. K., Rosenow, D. T.,& Nguyen, H. T. (2001). Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theoretical and Applied Genetics,103,266-276. 144. Kenneth, J. T.,& Anthony E. Hall. (1980). Drought Adaptation of Cowpea. II. Influence of Drought on Plant Water Status and Relations with Seed Yield. Agron J,72,421-427. 145. Kerstiens, G. (2006) Water transport in plant cuticles:an update. J Exp Bot,57,2493-2499. 146. Kholova, J., Hash, C. T., Kakkera, A., Kocova, M.,& Vadez, V. (2010). Constitutive water conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. Journal of Experimental Botany,61,369-377. 147. Khush, G S. (2005). What it will take to feed 5.0 billion rice consumers by 2030. Plant Molecular Biology,59,1-6. 148. Kikawada, T. Nakahara, Y. Kanamori, Y. Iwata, K. I., Watanabe, M. Mcgee, B. A., et al. (2006). Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid, Biochemical and Biophysical Research Communications,348,56-61. 149. Kobata, T., Tanaka, S., Utumi, M., Hara, S.,& Imaki, T. (1994). Sterility in rice (Oryza sativa L.) subject to drought during the booting stage occurs not because of lack of assimilate or of water deficit in the shoot but because of dehydration of the root zone. Japanese Journal of Crop Science, 63,510-517.
    150. Kondo, M., Aguilar, A., Abe, J.,& Morita, S. (2000). Anotomy of nodal roots in tropical upland and lowland rice varieties. Plant Prod. Sci.,3,437-445.
    151. Kumar, A., Bernier, J., Verulkar, S., Lafitte, H. R.,& Atlin, G. N. (2008). Breeding for drought tolerance:Direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Research,107,221-231.
    152. Kumar, B., Pandey, D. M., Goswami, C. L., Jain, S. (2001). Effect of growth regulators on photosynthesis. Transpiration and related parameters in water stressed cotton, Biol. Plant,44, 475-478.
    153. Kumar, R., Malaiya, S.,& Srivastava, M.N. (2004). Evaluation of morphophysiolo-gical traits associated with drought tolerance in rice. Indian Journal of Plant Physiology,9,305-307.
    154. Kumar, R., Sarawgi, A. K. Ramos, C., Amarante, S. T., Ismail, A. M.,& Wade, L. J. (2006). Partitioning of dry matter during drought stress in rainfed lowland rice. Field Crops Re.98,1-11.
    155. Lafitte, H. R, Guan, Y. S, Shi, Y, Li, Z. K. (2007). Whole plant responses, key processes, and adaptation to drought stress:the case of rice. Journal of Experimental Botany,58,169-175.
    156. Lafitte, H. R, Li, Z. K,& Vijayakumar, C. (2006). Improvement of rice drought tolerance through backcross breeding:evaluation of donors and selection in drought nurseries. Field Crops Research, 97,77-96.
    157. Lafitte, H. R.,& Courtois, B., (2000). Genetic variation in performance under reproductive stage water deficit in a doubled-haploid rice population in upland fields. In:Ribaut, J.-M., Poland, D. (Eds.), Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-limited Environments. A Strategic Planning Workshop held at CIMMYT, El Batan, Mexico, June,21-25,1999. CIMMYT, Mexico, D.F.,987-102.
    158. Lafitte, H. R., Courtois, B.,& Atlin, G.,2002a. The International Rice Research Institute's experience in field screening for drought tolerance and implications for breeding. In:Saxena, N.P., O'Toole, J.C. (Eds.), Field Screening for Drought Tolerance in Crop Plants with Special Emphasis on Rice:Proceedings of an International Workshop on Field Screening for Drought Tolerance in Rice, December 11-14,2000, International Crop Research Institute for Semi-arid Tropics, Patancheru, India; International Crop Research Institute for Semi-arid Tropics and Rockefeller
    Foundation, New York, USA,25-40.
    159. Lafitte, H. R., Price, A. H.,& Courtois, B. (2004b). Yield response to water deficit in an upland rice mapping population:associations among traits and genetic markers. Theoretical Applied Genetics, 109,1237-1246.
    160. Lafitte, R., Blum, A.,& Atlin, G. (2003). Using secondary traits to help identify drought-tolerant genotypes. In:Fischer KS, Lafitte R, Fukai S, Atlin G, Hardy B, eds. Breeding Rice for Drought-Prone Environments,37-48.
    161. Lanceras, J. C., Pantuwan, G., Jongdee, B.,&Toojinda, T. (2004). Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiology 135,344-399.
    162. Larque-Saavedra, A.& Wain, R. L. (1974). Abscisic acid levels in relation to drought tolerance in varieties of Zea mays L. Nature,251,716-717.
    163. Lecoeur J.& Sinclair T.R. (1996) Field pea transpiration and leaf growth in response to soil water deficits. Crop Science,36,331-335.
    164. Leung, J., Merlot, S.,& Giraudat, J. (1997). The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell,9,759-771.
    165. Levitt, J. (1972). Responses of plants to environmental stresses. Science.177,786. Lilley, J. M.,& Fukai, S. (1994a). Effect of timing and severity of water deficit on four diverse rice cultivars I. Rooting pattern and soil water extraction. Field Crops Research,37,205-213.
    166. Li, Z. K.,& Xu, J. L. (2007). Breeding for drought and salt tolerant rice (Oryza Sativa L.):progress and perspectives. In:Jenks MA, Hasegawa PM, Jain SM, eds. Advances in Molecular Breeding toward Drought and Salt Tolerant Crops,531-564.
    167. Li, Z. K., Dwivedi, D., Gao, Y. M., Xu, J. L., Serraj, R., Cairns, J., et al. (2008). Breeding Drought Tolerant and/or Water Use Efficient Rice Cultivars by Designed QTL Pyramiding (DQP):Current Status and Prospects Drought Frontier Project
    168. Li, Z., Shen, L.S., Courtois, B.& Lafitte, R. (2000). Development of near isogenic introgression line (NIIL) sets for QTLs associated with drought tolerance in rice. In:Workshop on Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited,21-25 June 1999. CIMMYT, El Batan, Mexico 169. Lilley, J. M.,& Fukai, S. (1994). Effect of timing and severity of water deficit on four diverse rice cultivars. I. Rooting pattern and soil water extraction. Field Crops Research,37,205-213. 170. Lilley, J. M., Ludlow, M. M., McCouch, S. R.,& O'Toole, J. C. (1996). Locating QTL for osmotic adjustment and dehydration tolerance in rice. Journal of experimental botany,47,1427-1436 171. Lin, H. X., Yanagihara, S., Zhuang, J. Y, Senboku, T., Zheng, K. L., Yashima, S. (1998). Identification of QTL for salt tolerance in rice via molecular markers. Chin J Rice Sci,12,72-78
    172. Lin, H. X., Zhu, M. Z., Yano, M., Gao, J. P., Liang, Z. W., Su, W. A., et al. (2004). QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theoretical and applied genetics,108,253-260.
    173. Lincoln, S., Daly. M.,& Lander, E. (1993b). Mapping genes controlling quantitative traits using MAPMAKER/QTL. Version 1.1. Whitehead Institute for Biomedical Research Technical Report, 2nd Edn. Nelson, J.C.,1997. Qgene-software for marker-based genomic analysis and breeding. Mol Breed,3,239-245.
    174. Liu Qiang. (1998). Two transduction factors:DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature responsive gene expression, respectively, in Arabilopsis. Plant Cell,10,1391-1406.
    175. Liu, B. (1998). Statistical Genomics:Linkage, Mapping and QTL Analysis. Genetics,121,185-199.
    176. Liu, F.,& Stutzel, H. (2004). Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulture,102, 15-27.
    177. Liu, F., Andersen, M. N.,& Jensen, C. R. (2003). Loss of pod set caused by drought stress is associated with water status and ABA content of reproductive structures in soybean. Functional Plant Biology,30,271-280.
    178. Liu, J. X., Liao, D.Q., Oane, R., Estenor, L., Yang, X. E., Li, Z. C., et al. (2006). Genetic variation in the sensitivity of anther dehiscence to drought stress in rice. Field Crops Research,97,87-100.
    179. Ludwig-Muller J. (2007). Indole-3-butyric acid synthesis in ecotypes and mutants of Arabidopsis thaliana under different growth conditions, J. Plant Physio,.164,47-59.
    180. Mackill, D. J., Coffman, W. R.& Garrity, D. P. (1996). Rainfed lowland rice improvement, International Rice Research Institute, Los Banos, Laguna, Philippines,242.
    181. Mahmoud, T., Shashidhar, H. E., Shailaja, H.& Gireesha, T. M. (2002). Rice root morphology under contrasting moisture regimes and contribution of molecular marker heterozygosity. Euphytica,126, 251-257.
    182. Maitra, N., Cushman, J. C. (1994). Isolation and characterization of a drought-induced soybean cDNA encoding a D95 family lateembryogenesis-abundant protein. Plant Physiol,106,805-806.
    183. Mambani, B.,& Lal, R. (1983b). Response of upland rice varieties to drought stress. II. Screening rice varieties by means of variable moisture regimes along a toposequence. Plant and Soil,73, 73-94.
    184. Manschadi, A. M, Christopher, J., deVoil, P.& Hammer, G. L. (2006). The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology,33,832-837.
    185. Martin, B., Tauer, C. G.,& Lin, R. K. (1999). Carbon isotope discrimination as a tool to improve water-use efficiency in tomato. Crop Scienc,39,1775-1783. 186. Masinde P.W., Stutzel H., Agong S.G.& Frickle A. (2005). Plant growth, water relations and transpiration of spider plant (Gynandropsis gynandra (L.) Briq) under water limited conditions. J. Amer. Soc. Hort. Sc,130,469-477. 187. Maurel, C. (1997) Aquaporins and water permeability of plant membranes. Annu. Rev. Plant Physiol. Plant Mol. Biol,48,399-429. 188. Maurel, C.,& Chrispeels, M. J. (2001). Aquaporins:a molecular entry into plant water relations, Plant Physiol.,125,135-138. 189. Maurel, C., Javot, H., Lauvergeat, V., Gerbeau, P., Tournaire, C., Javot, H., et al. (1998). Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell,10,451-459. 190. Maurya, D. M.& O'Toole, J. C. (1986). Screening upland rice for drought tolerance. In:Progress in Upland Rice Research; Proceedings of the 1985 Jakarta Conference, IRRI, Los Banos, Philippines. 191. Mitchell, J. H., Siamhah, D., Wamala, M. H., Risimei, J. B., Chinyamakobvu, E., Henderson, S.A., et al. (1985). Effect of drought on metabolism and partitioning of carbon in two wheat varieties differing in drought-tolerance. Ann. Bot,55,727-747. 192. Mitchell, J. H., Siamhan, D., Wamala, M. H., Risimeri, J. B., Chinyamakobvu, E., Henderson, S.A., et al. (1998). The use of seedling leaf death score for evaluation of drought resistance of rice. Field Crops Research,55,129-139. 193. Miyamoto, N., Goto, Y., Matsui, M., Ukai, Y., Morita, M., Nemoto, K. (2004). Quantitative trait loci for phyllochron and tillering in rice. TheorAppl Genet,109,700-706. 194. Mohan, M., Nair, S., Bhagwat, A., Krishna, T.G, Yano, M., Bhatia, C. R.& Sasaki, T. (1997). Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed,3, 87-103. 195. Morgan, P. W. (1990). Effects of abiotic stresses on plant hormone systems, in:Stress Responses in plants:adaptation and acclimation mechanisms, Wiley-Liss, Inc.,113-146. 196. Mostajeran, A.,& Rahimi-Eichi, V. (2009). Effects of Drought Stress on Growth and Yield of Rice (Oryza sativa L.) Cultivars and Accumulation of Proline and Soluble Sugars in Sheath and Blades of Their Different Ages Leaves. American-Eurasian Journal Agriculture and Environment Science,5, 264-272. 197. Munoz, P., Voltas, J., Araus, J. L., Igartua, E.,& Romagosa, I. (1998). Changes over time in the adaptation of barley releases in North-eastern Spain. Plant Breeding,117,531-535 198. Nageswara-Rao, R.C.,& Wright, G. C. (1994). Stability of the relationship between specific leaf area and carbon isotope discrimination across environments in peanut. Crop Sci,34,98-103. 199. Nakashima, K. (1997). A nuclear gene, erdl, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant J.,12,851-861.
    200. Neeraja, C., Maghirang-Rodriguez, R., Pamplona, A., Heuer, S., Collard, B., Septiningsih, E., et al. (2007). A marker-assisted backcross approach for developing submergence tolerant rice cultivars. Theor Appl Genet,115,767-776.
    201. Ntanos, D.A., Koutroubas, S. D. (2002). Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res.,74,93-101.
    202. O'Regan, B. P., Gress W. A.& Van Staden, J. (1993). Root growth, water relations, abscisic acid and proline levels of drought-resistant and drought-sensitive maize cultivars in response to water stress. S.Afr. J.Bot,59,98-104.
    203. O'Toole, J. C, Namuco, O. S. (1983). Role of panicle exsertion in water stress-induced sterility. Crop Sci,23,1093-1097.
    204. O'Toole, J. C. (1982). Adaptation of rice to drought prone environments. In:Drought Resistance in Crops with Emphasis on Rice, IRRI, Los Banos, Philippines,195-213.
    205. O'Toole, J. C. (2004). Rice and water:the final frontier. In:Vanavichit A. (Ed.), Proceedings of the 1st International Conference on Rice for the Future, Kasetsert University, Bangkok. Bangkok, Thailand, Kasetsart University; National Center for Genetic Engineering and Biotechnology, and Rice Research Institute,Ministry of Agriculture and Cooperatives,12-29.
    206. Ober, E. S.& Luterbacher, M. C. (2002). Genotypic Variation for Drought Tolerance in Beta vulgaris. Annals of Botany,89,917-924.
    207. Omanya, G. O., Haussmann, B. I.G., Hess, D. E., Reddy, B. V. S., Kayentao, M., Welz, H. G.,& Geiger, H. H. (2004).Utility of indirect and direct selection traits for improving striga resistance in two sorghum recombinant inbred populations. Field Crops Res.,89,237-252.
    208. Ono, K., Ishimaru, K., Aoki, N.,& Ohsugi, R. (1999). Transgenic rice with low sucrose-phosphate synthase activities retain more soluble protein and chlorophyll during flag leaf senescence. Plant Physiology and Biochemistry,37,949-953.
    209. Ouk, M., Basnayake, J., Tsubo, M., Fukai, S., Fischer, K. S., Cooper, M., et al. (2006). Use of drought response index for identification of drought tolerant genotypes in rainfed lowland rice. Field Crops Research,99,48-58.
    210. Ouk, M., Basnayake, J., Tsubo, M., Fukai, S., Fischer, K.S., Kang, S., Men, S., Thun, V.,& Cooper, M. (2007). Genotype-by-environment interactions for grain yield associated with water availability at flowering in rainfed lowland rice. Field Crops Research,101,145-154.
    211. Palta, J. A., Kobata, T., Turner, N. C.,& Fillery, I. R. (1994). Remobilization of carbon and nitrogen in wheat as influenced by post-anthesis water deficits. Crop Sci,34,118-124.
    212. Pandey, S., Behura, D., Villano, R.,& Naik, D. (2000). Economic costs of drought and farmers' coping mechanisms:a study of rainfed rice systems in eastern India. IRRI discussion paper series number 39. IRRI, Los Banos, Philippines.
    213. Pantuwan, G., Fukai, S., Cooper, M., O'Toole, J.C.,& Sarkarung, S. (1997). Root traits to increase drought resistance in rainfed lowland rice. In:Fukai, S., Cooper, M. Salisbury, J. (Eds.), Proceedings of an International Workshop, Ubon Ratchathani, Thailand,1996. Australian Centre for International Agricultural Research, Canberra, ACT,170-179.
    214. Pantuwan, G, Fukai, S., Cooper, M., Rajatasereekul, S.,& O'Toole, J.C. (2002c). Yield response of rice (Oryza sativa L.) genotypes to different types of drought under rainfed lowlands.3. Plant factors contributing to drought resistance. Field Crops Research,73,181-200.
    215. Pathan, M. S, Subudhi, P. K, Courtois, B,& Nguyen, H. T. (2004). Molecular dissection of abiotic stress tolerance in sorghum and rice. In:Nguyen HT, Blum A, eds. Physiology and Biotechnology Integration for Plant Breeding. Marcel Dekker, Inc. New York, NY.
    216. Pearson, G. A., Ayers, A. D., Eberhard, D. L. (1966). Relative salt tolerance of rice during germination and early seedling development. Soil Sci.102,151-156.
    217. Pierik, R., Sasidharan, R.,& Voesenek, L. A. C. J. (2007) Growth control by ethylene:adjusting phenotypes to the environment, J. Plant Growth Regul,26,188-200.
    218. Poehlman, J. M.,& Sleper, D. A. (1995). Breeding Field Crops. Iowa State Press, Ames, Iowa, USA, 278-299.
    219. Post-Beittenmiller, D, (1996), Biochemistry and molecular biology of wax production in plants. Annu Rev Plant Physiol Plant Mol Biol,47,405-430.
    220. Pou, A., Flexas, J., Alsina, M. M. (2008). Adjustments of water-use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandierixV. rupestris). Physio Plant,134,313-323.
    221. Premachandra, G. S., Hahn, D. T., Axtell, J. D.,& Joly, R. J. (1994). Epicuticularwax load andwater use efficiency in bloomless and sparse bloom mutants of Sorghum bicolor L. Environmental and Experimental Botany,34,293-301.
    222. Premachandra, G. S., Saneoka, H.,& Ogta, S. (1989). Nutrio physiological evaluation of the polyethylene glycol test of cell membrane stability in maize. Crop Sci.,29,1292-1297.
    223. Premachandra, G. S., Saneoka, H., Kanaya, M.,& Ogata, S. (1991) Cell membrane stability and leaf surface wax content as affected by increasing water deficits in maize, J. Exp. Bot,42,167-171.
    224. Price, A. H., Cairns, J. E., Horton, P., Jones, H. G.,& Griffiths, H. (2002). Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach:progress and new opportunities to integrate stomatal and mesophyll responses. Journal of Experimental Botany,53,989-1004.
    225. Price, A. H., Steele, K. A., Gorham, J., Bridges, J. M., Moore, B. J., Evans, J. L., et al. (2002a). Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes. I. Root distribution, water use and plant water status. Field Crops Research,76,11-24.
    226. Price, A. H., Steele, K. A., Moore, B. J.& JONES, R. G. W. (2002). Upland rice grown in soil-filled chambers and exposed to contrasting water deficit regimes. II. Mapping quantitative trait loci for root morphology and distribution. Field Crops Res,76,25-43.
    227. Pushpavesa, S.,& Jackson, B. K. (1979). Photoperiod sensitivity in rainfed rice. Rainfed Lowland Rice:Selected Papers from the 1978 International Rice Research Conference. IRRI, Los Banos, Philippines,139-147.
    228. Rafalski, A.,& Morgante, M.2004. Corn and humans:recombination and linkage disequilibrium in two genomes of similar size. Trends Genetics,20,103-111.
    229. Rawson, H. M.,& Evans, L. T. (1971). The contribution of stemreserves to grain development in a range of wheat cultivars of different height. Aust. J. Agric. Res,22,851-863.
    230. Rawson, H. M., Hindmarsh, J. H., Fischer, R. A.,& Stockman, Y. M. (1983). Changes in leaf photosynthesis with plant ontogeny and relationships with yield per ear in wheat cultivars and 120 progeny. Aust. J. Plant Physiol,10,503-514.
    231. Ray, J. D.,& Sinclair, T. R. (1997). Stomatal closure of maize hybrids in response to soil drying. Crop Science,37,803-807.
    232. Reddy, A. R. (2006). Identification of stressresponsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings,J.Exp. Bot,58,253-265.
    233. Reddy, A. R., Chaitanya, K. V.,& Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants, J. Plant Physiol,161,1189-1202.
    234. Reddy, A. R., Ramakrishna, W., Chandra, S.A.C., Ithal, N., Ravindra, Babu, P., et al. (2002). Novel genes are enriched in normalized cDNA libraries 29 from drought-stressed seedlings of rice (Oryza sativa L. subsp. indica cv. Nagina 22).Genome,45,204-211.
    235. Ren, H., Gao, Z., Chen, L., Wei, K., Liu, J., Fan, Y., et al. (2007). Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. Journal of Experimental Botany,58,211-219.
    236. Ribaut, J. M.,& Hoisington, D. (1998). Marker-assisted selection:New tools and strategies. Trends Plant Sci,3,236-239.
    237. Roberston, J. M., Hubick, K. T., Yeung, E. C.,& Reid, D. M. (1990). Developmental responses to drought and abscisic acid in sunflower roots:1 Root growth, apical anatomy, and osmotic adjustment. J. Exp. Bot,41,325-337.
    238. Robin, S., Pathan, M. S., Courtois, B., Lafitte, R., Carandang, S., Lanceras, S., et al. Mapping osmotic adjustment in an advanced back-cross inbred population of rice. (2003). Theoretical and applied genetics,107,1288-1296.
    239. Rodriguez, P. L., Benning, G., Grill, E. (1998). ABI2, a second protein phosphatase 2C involved in
    abscisic acid signal transduction in Arabidopsis. FEBS Letters,421,185-190. 240. Romyen, P., Hanviriyapant, P., Rajatasereekul, S., Khunthasuvon, S., Fukai, S. Basnayake, J., et al. (1998). Lowland rice improvement in northern and northeast Thailand.2. Cultivar differences. Field Crops Re,59,109-119. 241.Rosielle, A. A.,& Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non-stress environments. Crop Science,21,943-945. 242. Russell, W. A. (1991). Genetic improvement of maize yields. Advances in Agronomy,46,245-298. 243. Sadiqov, S. T., Akbulut, M.,& Ehmedov, V. (2002). Role of Ca2+ in drought stress signaling in wheat seedlings. Biochemistry-Moscow,67,491-497. 244. Sadras, V.O.,& Milroy, S. P. (1996). Soil water thresholds for the response of leaf expansion and gas exchange:a review. Field Crops Research,47,253-266. 245. Sah, S. K.,& Zamora, O. B. (2005). Effect of water deficit at vegetative and reproductive stages of hybrid, open pollinated variety and local maize (Zea mays L.) J.Inst.Agric.Anim.Sc,.26,37-42. 246. Saini, H. S.& Westgate, M. E. (2000). Reproductive development in grain crops during drought. Advances in Agronomy,68,59-95. 247. Saito, K., Linquist, B., Atlin, G. N., Phanthaboon, K., Shiraiwa, T.,& Horie, T. (2006). Response of traditional and improved upland rice cultivars to N and P fertilizer in northern Laos. Field Crops Research,96,216-223. 248. Saliendra, N. Z., Sperry, J. S.& Comstock, J. P. (1995). Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis. Planta, 196,357-366. 249. Salvi, S.,& Tuberosa, R. (2005). To clone or not to clone plant QTLs:present and future challenges. Trends in Plant Science,10,297-304. 250. Samson, B. K., Hasan, M.,& Wade, L. J. (2002). Penetration of hardpans by rice lines in the rainfed lowlands. Field Crops Research,76,175-188. 251. Santoni, V.,& Heyes, J. (2002). Molecular physiology of aquaporins in plants, Int. Rev. Cytol,215, 105-148. 252. Sarkar, R. K., Reddy, J. N., Sharmas, G., Ismail, A. M. (2006). Physiological basis of submergence tolerance in rice and implications for crop improvement, Current Science,91,899-906. 253. Sarker, A., Erskine, W.& Singh, M. (2005).Variation in shoot and root characteristics and their association with drought tolerance in lentil landraces. Genetic Resources and Crop Evolution,52, 89-97. 254. Saxena & Narendra P. (2003). Management of drought in chickpea:a holistic approach. In: Management of Agricultural drought-Agronomic and Genetic Options. New Delhi, Oxford and IBH Publishers, Chapter 7,103-122.
    255. Sen-Gupta, A., Berkowitz, G. A.& Pier, P. A. (1989). Maintenance of photosynthesis at low leaf water potential in wheat. Plant Physiology,89,1358-1365.
    256. Serraj, R.,& Sinclair, T.R. (2002). Osmolyte accumulation:can it really help increase crop yield under drought conditions? Plant, Cell and Environment,25,333-341.
    257. Shao, H. B., Chu, L.Y., Zhao, C. X., Gu, Q. J., Liu, X. A.,& Ribaut, J. M. (2006). Plant Gene Regulatory Network System under Abiotic Stress. Acta Biologica Szegediensis,50,1-9.
    258. Sharkey, T. D.,& Seemann, J. R. (1989). Mild water stress effects on carbon-reduction-cycle intermediates, ribulose biphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves. Plant Physiology,89,1060-1065.
    259. Sharp, R. E., Hslao, T. C.,& Silk, W. K. (1990). Growth of the maize primary root at low water potentials. Ⅱ. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiol.93,1337-1348.
    260. Sharp, R. E., Poroyko, V., Hejlek, L. G., Spollen, W. G., Springer, G. K., Bohnert, H. J., et al. (2004). Root growth maintenance during water deficits:physiology to functional genomics. Journal of Experimental Botany,55,2343-2351.
    261. Sharp, R. E., Wu, Y., Voetberg, G. S., Soab, I. N.,& LeNoble, M. E. (1994). Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials, J. Exp.Bot,45,1743-1751.
    262. Shen Y.G., Zhang W.K., He S.J., Zhang J.S., Liu Q., Chen S.Y. (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress, Theor. Appl. Gene,.106,923-930.
    263. Shen, L., Courtois, B., McNally, K. L., Robin, S.,& Li, Z. (2001). Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection, Theor. Appl. Genet., 103,75-83.
    264. Shinozaki, K. (1997). Gene expression and signal transduction in water-stress response. Plant Physiol,115,327-334.
    265. Shinozaki, K., Yamaguchi-Shinozaki, K., Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol,6,410-417.
    266. Shobbar, Z. S., Oane, R., Gamuyao, R., De-Palma, J., Malboobi, M. A., Karimzadeh, G., et al. (2008). Abscisic acid regulates gene expression in cortical fiber cells and silica cells of rice shoots. New Phytologist,178,68-79.
    267. Sibounheuang, V., Basnayake J.& Fukai S. (2006). Genotypic consistency in the expression of leaf water potential in rice(Oryza sativa L.). Field Crops Research,97,142-154.
    268. Sibounheuang, V., Basnayake, J., Fukai, S.,& Cooper, M. (2001). Leaf-water potential as a drought resistance character in rice. In:Fukai, S., Basnayake, J. (Eds.), Increased Lowland Rice Production
    in the Mekong Region, vol.101. ACIAR Proceedings. ACIAR, Canberra,86-95.
    269. Sinclair T.R. (1986) Water and nitrogen limitations in soybean grain production. I. Model development. Field Crops Research,15,125-141. 270. Sobrado, M. A.& Turner, N. C. (1986). Photosynthesis, dry matter accumulation and distribution in the wild sunflower Helianthus petiolaris and the cultivated sunflower Helianthus annuus as influenced by water deficits. Oecologia,69,181-187. 271. Spollen, W. G., LeNoble, M. E., Samuels, T. D., Bernstein, N.,& Sharp, R. E. (2000). Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiology,122,967-976. 272. Suga, S., Imagawa, S.,& Maeshima, M. (2001) Specificity of the accumulation of mRNAs and proteins of the plasma and tonoplast aquaporins in radish organs. Planta,212,294-304. 273. Sullivan, C.Y., Ross, W.M. (1979). Selection for drought and heat tolerance in grain sorghum. In: Mussel, H., Staples, R.C. (Eds), Stress Physiology in Crop Plants. John Wiley & Sons, New York, 263-281. 274. Sullivan, Y. C. (1972). Mechanisms of heat and drought tolerance in grain sorghum and methods of measurements. In:Rao, N.G.P., House, L.R. (Eds), Sorghum in Seventies. Oxford and IBH, New Delhi,247-264. 275. Taiz, L.,& Zeiger, E. (2006). Plant Physiology,4th Ed., Sinauer Associates Inc. Publishers, Massachusetts. Nilsen E.T., Orcutte D.M. (1996) Phytohormones and plant responses to stress, in: Nilsen E.T., Orcutte D.M. (Eds.), Physiology of Plant under Stress:Abiotic Factors, John Wiley and Sons, New York, pp.183-198. 276. Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., et al. (2002). Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J,29,417-426. 277. Tanksley, S. D., Grandillo, S., Fulton, T., Zamir, D., Eshed, Y, Petiard, V., et al. (1996). Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. TheorAppl Genet,92,213-224. 278. Taylor, I. B. (1991). Genetics of ABA synthesis, in:Davies W.J., H.G, Jones (Eds.), Abscisic acid: Physiology and Biochemistry, Bios Scientific Publishers Ltd. UK,23-38. 279. Teulat, B., Monneveuxp, Wery, J., Borries, C., Souyris, I., Charrier, A. (1997). The Relationships between relative water content and growth parameters under water stress in barley:a QTL study. New phytologist,137,99-107. 280. Thumma, B. R., Naidu, B. P., Chandra, A., Cameron, D.F., Bahnisch, L.M.& Liu, C. (2001). Identification of causal relationship among traits related to drought resistance in Stylosanthes scabra using QTL analysis. J. Exp. Bot.,52,203-214.
    281. Toorchi, M., Shashidhar, H. E.& Sridhara, H. (2006). Influence of the Root System on Grain Yield and Related Characters in Rainfed Lowland Rice (Oryza sativa L.) Pakistan Journal of Biological Sciences,9,2267-2272
    282. Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., Luu, D. T., et al. (2003). Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature,425, 393-397.
    283. Tripathy, J. N., Zhang, J., Robin, S., Nguyen, T. T., Nguyen, H. T. (2000). QTLs for cellmembrane stability mapped in rice (Oryza sativa L.) under drought stress. Theoretical Applied Genetics,100, 1197-1202.
    284. Tsubo, M., Basnayake, J., Fukai, S., Sihathep, V., Siyavong, P., Chanphengsay, M. (2006). Toposequential effects on water balance and productivity in rainfed lowland rice ecosystem in Southern Laos. Field Crops Res,97,209-220.
    285. Tuberosa, R., Salvi, S., Sanguineti, M. C., Landi, P., Maccaferri, M.& Conti, S. (2002). Mapping QTLs regulating morpho-physiological traits and yield:case studies, shortcomings and perspectives in drought-stressed maize. Annals of Botany,89,941-963.
    286. Turner, N. C., Wright, G. C., Siddique, K. H. M. (2001). Adaptation of grain legumes (pulses) to water-limited environments, Adv. Agron.71,123-231.
    287. Tyerman, S. D., Niemietz, C. M.& Bramley, H. (2002). Plant aquaporins:multi-functional water and solute channels with expanding roles. Plant Cell Environ,25,173-194.
    288. Uno, Y., Urao, T., Yamaguchi-Shinozaki, K., Kanechi, M., Inagaki, N., Maekawa, S.& Shinozaki, K. (1998) Early salt-stress effects on expression of genes for aquaporin homologues in the halophyte sea aster (Aster tripolium L.). J. Plant Res,111,411-419.
    289. Valliyodan, B.,& Nguyen, H. T. (2006). Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology,9,1-7.
    290. Vartanian, N., Marcotte, L.,& Ciraudat, J. (1994). Drought Rhizogenesis in Arabidopsis thaliana: differential responses of hormonal mutants, Plant Physiol,104,761-767.
    291. Venuprasad, R., Cruz, M. T. S., Amante, M., Magbanua, R., Kumar, A.,& Atlin, G. (2008). Response to two cycles of divergent selection for grain yield under drought stress in four rice breeding populations. Field Crops Research,107,232-244.
    292. Venuprasad, R., Lafitte, H. R., Atlin, G N. (2007). Response to direct selection for grain yield under drought stress in rice. Crop Science,47,285-293.
    293. Venuprasad, R., Shashidhar, H. E., Hittalmani, S.,&Hemamalini, G S. (2002). Tagging quantitative trait loci associated with grain yield and root morphological traits in rice (Oryza sativa L.) under contrasting moisture regimes. Euphytica,128,293-300.
    294. Wade, L.J., Kamoshita, A., Yamauchi, A.,& Azhiri-Sigari, T, (2000). Genotypic variation in
    response of rainfed lowland rice to drought and rewatering. Ⅰ. Growth and water use. Plant Production Science,3,173-179. 295. Wahid, A.,& Close, T. J. (2007). Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol. Plantarum,51,104-109. 296. Walton, T. J. (1990). Waxes, cutin and suberin. In:Harwood JL, Bowyer JR (Eds) Methods in plant biochemistry lipids, membranes and aspects of photobiology. Academic, San Diego,105-158. 297. Wang, D. L., Zhu, J., Li, Z. K.,& Paterson, A. H. (1999). Mapping QTLs with epistatic effects and QTL X environment interactions. Theor. Appl. Genet.,99,1255-1264. 298. Wen, X. P., Pang, X. M, Matsuda, N., Kita, M., Inoue, H.,& Hao, Y.J. et al. (2007). Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res,17,251-263. 299. Weng, J. H., Takeda, T., Agata, W.& Hakoyama, S. (1982). Studies on dry matter and grain production of rice plants.1. Influence of the reserved carbohydrate until heading stage and the assimilation production during the ripening period on grain production. Japanese Journal of Crop Science,51,500-509. 300. White, E. M.,& Wilson, F. E. A. (2006). Responses of grain yield, biomass and harvest index and their rates of genetic progress to nitrogen availability in ten winter wheat varieties. Irish Journal of Agriculture and Food Research,45,85-101. 301. Winkel, T., Payne, W.,& Renno, J. F. (2001). Ontogeny modifies the effects of water stress on stomatal control, leaf area duration and biomass partitioning of Pennisetum glaucum. New Phytologist,179,71-82. 302. Wright, P. R., Morgan, J. M.,& Jessop, R. S. (1997). Turgor maintenance by osmoregulation in Brassica napus and B. juncea under field conditions. Annals of Botany,80,313-319. 303. Xiong, L.,& Zhu. J. K. (2003). Regulation of abscisic acid biosynthesis. Plant Physiol.133,29-36. 304. Xu, J. L., Lafitte, H. R., Gao, Y. M., Fu, B. Y., Torres, R.,& Li, Z. K. (2005). QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theoretical and Applied Genetics,111,1642-1650. 305. Yang, J., Zhang, J., Wang, Z., Zhu, Q.,& Wang, W. (2001). Remobilization of carbon reserves in response to water deficit during grain filling of rice. Field crops research,71,47-55. 306. Yang, L., Guo, W. D., Yu, C. L., Li, X. B., Lu, M.,& Wang, C. C. (2005). Identification of candidate genes for rice root growth under drought conditions. Philipp. Agric. Sci,88,391-399. 307. Yazaki, J., Shimatani, Z., Hashimoto, A., Nagata, Y., Fujii, F., Kojima, K., et al. (2004). Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice:phenotyping and comparative analysis between rice and Arabidopsis. Physiological Genomics,17,87-100. 308. Yazaki, J., Shimatani, Z., Hashimoto, A., Nagata, Y., Fujii, F., Kojima, K., Suzuki K, Taya T, et al. (2004).Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and Arabidopsis. Physiological Genomics,17, 87-100.
    309. Yin, X. P., Stam, K. M. J., Schapendonk,& H. C. M. (2003). Crop modeling, QTL mapping, and their complementary role in plant breeding. Agronomy Journal,95,90-98.
    310. Young, T. E., Meeley, R. B.,& Gallie, D. R. (2004). ACC synthase expression regulates leaf performance and drought tolerance in maize, Plant J,40,813-825.
    311. Yu, D., Ranathunge, K.,& Huang, H. (2008). Wax crystal-sparse leafl encodes a b-ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf. Planta,228,675-685.
    312. Yue, B., Xue, W., Xiong, L., Yu, X., Luo, L.,& Cui, K. (2006). Genetic basis of drought resistance at reproductive stage in rice:Separation of drought tolerance from drought avoidance. Genetics,172, 1213-1228.
    313. Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics,136,1457-1468.
    314. Zgallai, H., Steppe, K.,& Lemeur, R. (2006). Effects of different levels of water stress on leaf water potential, stomatal resistance, protein and chlorophyll content and certain anti-oxidative enzymes in tomato plants. Journal of Integrative Plant Biology,48,679-685.
    315. Zhang, J. H., Jia, W. S., Yang, J. C.,& Ismail, A. M. (2006). Role of ABA in intergration plant response to drought and salt stress, Field Crop Research,97,111-119
    316. Zhang, J., Nguyen, H.,& Blum, A. (1999). Genetic analysis of osmotic adjustment in crop plants. J Exp Bot,50,291-302.
    317. Zhang, J., Zheng, H. G., Aarti, A., Pantuwan, G., Nguyen, T. T., Tripathy, J. N., et al. (2001). Locating genomic regions associated with components of drought resistance in rice:comparative mapping within and across species. Theoretical and applied genetics,103,19-29.
    318. Zhou, L., Wang, J. K., Yi, Q., Wang, Y. Z., Zhu,Y. G.& Zhang, Z. Z. (2007). Quantitative trait loci for seedling vigor in rice under field conditions. Field Crops Research,100,294-301
    319. Zhu, C., Gore, M., Buckler, E.S.,& Yu, J.2008. Status and prospects of association mapping in plants. Plant Genome,1,5-20.
    320. Zhu, J.,& Weir, B. S. (1998). Mixed model approaches for genetic analysis of quantitative traits. In Advanced Topics in Biomathematics:Procceedings of International Conference on Mathematical Biology,321-330.by mixed linear model approaches, Theor. Appl. Genet.,99,1255-1264.
    321. Zlatev, Z. S. (2005). Effects of water stress on leaf water relations of young bean plants. Journal of Central European Agriculture,6,5-14.
    322. United Nations, World Population Prospects:The 2004 Revision Population Database. http://esa.un.org/unpp [February 27 2007].
    323. SAS Institute.1999. SAS/Stat User's Guide, Version 8.2. SAS Inst., Cary, NC, USA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700