用户名: 密码: 验证码:
转菠菜BADH小麦抗性生理与不同抗旱性小麦品种中BADH的表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在干旱、低温等胁迫环境中,植物细胞内通常会积累一些相容性物质(也叫渗调物质),从而减轻环境胁迫对植物造成的伤害,甜菜碱是主要的相容性物质之一。编码甜菜碱醛脱氢酶(BADH,催化甜菜碱醛合成甜菜碱)的基因在甜菜碱的生物合成过程中处于关键地位。本研究首先对抗旱性强的小麦品系旱丰9703与抗旱性弱的品种山农215953干旱胁迫下的渗透调节能力和光合作用进行了比较,分析了不同生育期叶片中BADH基因表达特性、BADH活性与甜菜碱含量,从生理与分子机制两方面对甜菜碱的生理功能进行了初步探讨。其次,研究测定了转菠菜BADH基因小麦低温及干旱胁迫下,不同生育期BADH活性、甜菜碱含量与光合作用等生理参数的变化,进一步研究了小麦胁迫耐性与甜菜碱含量、BADH活性之间的关系。考虑到菠菜与小麦BADH基因的保守性,我们从抗旱小麦新品系旱丰9703叶片中克隆了BADH cDNA序列,并构建了表达载体,对模式植物烟草进行了转化,旨在进一步研究小麦BADH基因在抗逆性中的作用,为其今后在小麦育种中的应用打下基础。主要结论如下:
    1. 长期大田干旱胁迫下,旱丰9703表现出了较强抗性;三个生育期中旱丰9703的叶片相对含水量与渗透调节能力均高于山农215953,灌浆期的渗透调节能力最强,比乳熟期高0.284MPa;干旱胁迫下旱丰9703仍具有较高的净光合速率(Pn)、最大光化学效率(Fv/Fm)和实际光化学效率(φPSII),耐光抑制能力较强。Northern印迹杂交结果表明:灌浆期中度水分胁迫时BADH的表达水平显著增加,旱丰9703略高于山农215953;乳熟期较严重的土壤水分胁迫下抗旱性强的品种叶片中BADH表达量明显高于抗旱性弱的品种;三个生育期中,BADH活性和甜菜碱含量的变化与BADH基因的表达呈现相同的趋势,均是先增加后降低,旱丰9703的BADH活性与甜菜碱含量均高于山农215953,以灌浆期最为明显。
    干旱胁迫下旱丰9703叶片中较高的BADH表达使其甜菜碱含量与渗透调节能力一直高于山农215953,其叶片的保水能力较强,维持了较高的净光合速率和PSII光化学活性;叶片中甜菜碱的积累量与小麦抗旱性成正相关,叶片中BADH活性与甜菜碱含量水平可以作为小麦抗性强弱的主要参考指标。
    2. 研究发现,转菠菜BADH基因小麦植株在耐低温、干旱胁迫和抗光氧化方面的能力
    
    较强,叶片中较高的甜菜碱含量可能对它们胁迫耐性的提高起着重要作用,结合农艺性状的改良与选择,株系99T4和99T6可以作为较好的抗逆种质资源在小麦抗性育种过程中应用。低温胁迫下转基因株系99T4和99T6的渗透调节能力、抗氧化酶活性、D1蛋白周转能力均高于4185,99T1、99T4和99T6叶片的净光合速率分别是对照植株的0.96、2.11和1.56倍;-7℃低温胁迫24h以后,株系99T4与99T6没有受到明显的低温伤害,表现出较强的低温胁迫耐性。
    灌浆期不同程度的干旱胁迫表明,99T4与99T6耐干旱胁迫的能力要高于99T1与4185,能够保持相对较高的渗透调节能力与叶绿素含量;较严重干旱胁迫下, 99T4与99T6的Pn(约为7.5 μmolCO2·m-2·s-1)要高于4185(约为4.9 μmol CO2·m-2·s-1);株系99T4与99T6在光抑制环境下PSII反应中心受到的损伤较小,具有较高的抗光氧化能力,99T4与99T6依赖叶黄素循环的热耗散在耗散过剩光能的过程中起到更大作用;
    3. 通过5,-和3,-RACE,从抗旱性小麦旱丰9703叶片中克隆了BADH cDNA全序列,命名为wBADH,在Genebank中注册(注册号:AY 050316)。小麦BADH cDNA开放阅读框架含有1509bp,编码503个AA,将氨基酸序列与Genebank中已登录的几种植物的BADH氨基酸序列比较,与大麦、水稻的相应片断的同源性分别为98%、73%。进一步构建了小麦BADH基因的表达载体,利用农杆菌介导法侵染烟草,通过PCR和PCR-Southern鉴定证明我们已得到转基因烟草植株;低温处理后转基因植株中BADH的活性较低,最高的只有4.8 nmol·mg protein-1·min-1;这些研究为该基因在小麦抗性育种中的应用打下了基础。
Under environmental stress, plant cells usually accumulates some compatible solutes(also regarded as osmotin) in order to alleviate the injury derived from environmental stress. Glycine betaine (GB) is regarded as an extremely effective compatible solute, therefore researchers pay much attention to the bio-engineering of GB. The BADH encoding BADH which catalyzes betaine aldehyde (BA) into GB stands the essential position in the synthesis of GB. Firstly, we determined the OA and photosynthesis of flag leaves in strong and weak drought resistant wheat varieties, and then analyzed the expression level of BADH, BADH activity and GB content of flag leaves in two wheat varieties at different stage under drought stress and dissertated the physiological function of GB in molecular biology. Secondly, some physiological parameters such as the BADH activity, GB content and photosynthesis of transformed wheat plants with BADH from spinach under drought stress were studied; Finally, we cloned complete sequence of the BADH cDNA from the leaves of strong drought resistant cultivar Hanfeng9703, constructed the expression vector and acquired transgenic tobacco plants. The results are followed:
    1. Two winter wheat(Triticum aestivum L.)varieties( Drought-resistant cultivar Hanfeng 9703 and Drought-sensitive cultivar Shannong 215953) were used to study the OA, Pn and photochemical activity of PSII complex as well as the expression level of BADH and GB content in flag leaves at different stage under long-term field drought stress. OA and RWC of Hanfeng 9703 were higher than those of Shannong 215953 at three stages, OA at
    
    seed filling stage was the highest which increased 0.058and 0.284MPa comparing to that of flowering stage and milk ripening stage respectively. Drought stress resulted in the decrease of Pn, Fv/Fm and φPSII of two wheat varieties at three different stage; But Pn, Fv/Fm, φPSII of Hanfeng 9703 were higher than those of Shannong 215953 under drought stress. Drought stress aggravated the depression of Pn in midday in leaves of two wheat varieties at milk ripening stage, PSII photochemical activity of leaves of Hanfeng 9703 were higher than those of Shannong 215953; Higher osmotic adjustment of Hanfeng 9703 maintained Pn and PSII photochemical activity which were beneficial for the higher production, it was concluded that the higher GB content in Hanfeng9703 might play pivotal role in enhancement of stress resistance.
     Northern blot results showed that continuous drought stress leads to the increase of the BADH expression at seed filling stage in two varieties, severe drought stress results in the decline of expression level at milk ripening stage, the BADH expression level of flag leaves in Hanfeng 9703 were obviously higher than that in Shannong 215953. The changes of BADH activity and GB content was similar to the change of BADH expression in two varieties. After moderate drought stress at seed filling stage, the higher BADH expression of leaves in Hanfeng 9703 leaded to the higher GB content in comparason to Shannong 215953 which was one of the major reasons of keeping stronger PSII photochemical efficiency in Hanfeng 9703 under drought stress. It can be concluded that the GB content and BADH activity in flag leaves could be used as the reference criterion for resistance appraisal of crop germplasm.
     The tolerance to the low temperature, drought and anti-photoxidation stress in transgenic wheat plants (line-99T1,99T4,99T6) transformed with BADH from Atriplex hortensis were higher comparing to those of wild-type plants(4185); The stronger OA, higher anti-oxidation enzymes activity and faster turnover of D1 protein were main protective mechanism in 99T4 and 99T6, Furthermore, the higher GB content in leaves may play important role in the enhancement of stress tolerance.. The leaf electrolyte leakage in 99T4 and 99T6 were lower than those in 4185 and 99T1.Under low temperature conditions, compared to the wild-type plants, the osmotic adjustment in 99T4 and 99T6 were 17.3% and 8.2% h
引文
陈善福,舒庆尧. 植物耐干旱胁迫的生物学机理及其基因工程研究进展. 植物学通报,1999,16(5):555-560.
    陈少良, 毕望富, 李金克, 王沙生. 反相HPLC离子对色普法测定植物组织中的甜菜碱,植物学报,2000,42(10):1014~1018.
    陈秀娟,王峻岭,赵彦修,罗达,张慧. 中亚滨藜甜菜碱醛脱氢酶基因的表达特性. 植物生理学报,2001,27: 309-312.
    迟伟,焦德茂,黄雪清,李霞,匡廷云,Maurice Ku SB. 转PEPC基因水稻的光合生理特性. 植物学报,2001,43(6):657-660.
    高爱丽,赵秀梅,秦鑫. 水分胁迫下小麦叶片渗透调节与抗旱性的关系. 西北植物学报,1991,11(1):58-63.
    高辉远 大豆生长发育过程中光合作用及光合效率的调节. 1999,山东农业大学博士学位论文.
    郭北海,张艳敏,李洪杰等 甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达. 植物学报,2000,42(3):279-283.
    郭建军,胥志文,刘连荣等. 冬小麦灌浆期渗透调节能力的研究. 西北农业学报,1994,3(4):23-26.
    郭岩,张莉,肖岗等. 甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究. 中国科学(C辑),1997,27(2):151-155
    韩晓燕,达来,方天祺等 大肠杆菌甜菜碱醛脱氢酶基因的测序及对烟草的转化. 内蒙古大学学报(自然科学版),2000(4):
    何锶洁,董伟,李慧芬等 转甜菜碱醛脱氢酶基因玉米及其耐盐性研究. 高技术通讯,1999(2):
    侯彩霞,徐春和,汤章城等. 甜菜碱对PSII放氧中心结构的选择性保护.科学通报,1997,42:1857-1859
    侯彩霞,於新建,李荣等 甜菜碱稳定PSII外周多肽机理的研究. 中国科学,1998,28(4):355-361.
    侯彩霞,汤章城 细胞相容性物质的生理功能及其作用机制.植物生理学通讯,1999,35(1):1-7.
    景蕊莲,昌小平,胡荣海,董玉琛. 变水处理条件下小麦幼苗的甜菜碱代谢与抗旱性的关系. 作物学报,1999,25(4):494-498
    J.萨姆布鲁克,E.F. 弗里奇,T. 曼尼阿蒂斯。分子克隆实验指南(第二版,金冬雁,黎孟枫等译),科学出版社,1999.
    李春香, 王玮, 李德全. 长期水分胁迫对小麦生育中后期根叶渗透调节能力、渗透调节物质的影响. 西北植物学报, 2001,5:924~930
    李德全, 邹琦, 程炳嵩. 冬小麦渗透调节能力的研究 . 邹琦:作物抗旱生理生态研究. 济南:山东科技出版社,1994:34~39
    
    
    李德全, 邹琦, 程炳嵩. 土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质. 植物生理学报,1992,18(1):37~44
    李秋莉,刘大伟,高晓蓉,苏乔,安利佳. 辽宁碱蓬胆碱单加氧酶基因克隆及转基因烟草的耐盐性.植物学报,2003,45:242-247.
    李新国,许大全,孟庆伟等. 银杏叶片光合作用对强光的响应,植物生理学报,1998,24:354-360
    李银心,常凤启,杜立群等.转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性. 植物学报,2000,42(5):480-484
    李永华,邹琦. 植物体内甜菜碱合成相关酶德基因工程. 植物生理学通讯,2002,38(5):500-504.
    李永华,邹琦. 小麦甜菜碱醛脱氢酶WBADH序列. 植物生理与分子生物学学报,2002,28(6):495-496.
    李永华,王玮,马千全,邹琦.干旱胁迫下抗旱高产小麦新品系旱丰9703的渗透调节与光合特性.作物学报,2003,29(4)
    梁峥,马德钦,汤岚等 菠菜甜菜碱醛脱氢酶基因在烟草中的表达. 生物工程学报,1997(3):236-240.
    林栖凤,李冠一. 植物耐盐性研究进展.生物工程进展,2000,20(2):20-25.
    林植芳,彭长连,孙梓建,林桂珠. 光强对4种亚热带森林植物光合电子传递向光呼吸分配的影响. 中国科学(C辑),2000,30(1):72-77.
    刘凤华,郭岩,谷冬梅,肖岗,陈正华,陈受宜. Salt tolerance of transgenic plants with BADH cDNA. Acta Genet Sin(遗传学报),1997,24:54-58.(in Chinese)
    刘强,赵南明. DREB转录因子在提高植物抗逆性中的作用. 科学通报,2000,45(1):11-16.
    骆爱玲,刘家尧,马德钦等 转甜菜碱醛脱氢酶基因烟草叶片中抗氧化酶活性增高. 科学通报,2000(18):1953-1956.
    彭长连,林植芳,林桂珠. 光氧化胁迫下几种植物叶片的超氧自由基产生速率和光合特性. 植物生理学报,2000,26(2):81-87.
    上官周平, 陈培元. 土壤干旱对小麦叶片渗透调节和光合作用的影响. 华北农学报, 1989, (4):44~49
    上官周平, 陈培元. 小麦叶片光合作用与其渗透调节能力的关系. 植物生理学报, 1990,(4):347~354
    沈义国,杜保兴,张劲松等. 山菠菜胆碱单氧化酶基因(CMO)的克隆与分析.生物工程学报,2001,1:1-5
    舒卫国,艾万东,陈受宜. 菠菜甜菜碱醛脱氢酶基因全序列分析 科学通报,1997,42(22):2442-2445.
    汤学军,傅家瑞. 植物胚胎发育晚期富集蛋白的研究进展.植物学通报,1997,14(1):13-18.
    肖岗,张耕耘,刘风华等. 山菠菜甜菜碱醛脱氢酶基因研究. 科学通报,1995,40(8):741-745.
    王邦锡,何军贤,黄久常. 水分胁迫对小麦光合日变化的影响. 华北农学报,1990,5(增刊):38-43.
    王慧中,黄大年,鲁瑞芳等. 转mtlD/gutD双价基因水稻的耐盐性. 科学通报,2000,45(7):724-729.
    
    
    王玮. 不同 小麦基因型的抗旱性选择及其实践。山东农业大学博士论文,1999
    王玮, 邹琦, 杨兴洪,李岩, 彭涛. 水分胁迫下小麦的胚芽鞘长度、渗透调节与产量之间关系的研究。植物学通报, 1997, 14(增刊):55~59
    吴长艾. 不同小麦品种的光破坏防御机理的研究. 2001,山东农业大学硕士学位论文.
    武玉叶, 李德全, 赵士杰, 邹琦. 干旱胁迫下不同小麦品种的渗透调节与光合作用。作物学报, 1999,(6) :752~758
    许长成. 水分亏缺条件下不同作物的光合作用下调。山东农业大学博士论文,1996
    许大全,张玉忠,张荣铣. 植物光合作用光抑制。植物生理学通讯,1992,28:237-243
    薛青武, 陈培元. 不同干旱胁迫对小麦叶片水分和光合作用的影响。华北农学报,1990,2:26~32
    薛青武, 陈培元. 渗透调节对小麦光合作用日变化的影响。华北农学报, 1990,5(增刊):38~43
    衣艳君,刘家尧,骆爱玲等 转BADH基因烟草的光系统II和呼吸酶活性变化. 植物学报,1999,41(9):993-996.
    赵炜,郑佐华,毛裕民. 全长cDNA的获得-RACE及其它方法进展. 生命科学,1999,11(2):92-96.
    郑仲承. 寡核苷酸的优化设计. 生命的化学,2001,21(3):254-257.
    周建明,朱群,白永延等 高等植物水分胁迫诱导的基因及其表达调控. 细胞生物学杂志,1999,21(1):1-6.
    邹琦. 植物生理生化实验指导. 北京,中国农业出版社,1995,41~46
    Adams WW. III, Demming-Adams B., Verhoeven AS., Barker DH. Photoprotection during winter stress: Involvement of sustained xanthophylls cycle-dependent energy dissipation. Aust. J. Plant. Physiol., 1995b, 22: 261-276.
    Ahmad N.et al.Effect of exogenous glycinebetaine on Na+ transport in barley roots.J Exp Bot,1987,38:913-921
    Alia ,Hayashi H,Chen THH et al. Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ,1998,21:232-239
    Alia et al. Enhancement of the tolerance of the tolerance of Arabidopsis to hegh temperatures by genetic engineeering of the synthesis of glycinebetaine.The Plant Journal,1998b,16:155-161.
    Alia,Kondo,Y., Sakamoto,A., Nonaka, H., Hayashi, H., Saradhi, P.P., Chen,T.H.H., Murata, N.,.Enhanced tolerance to light stree of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol. Biol. 1999, 40, 279-288.
    Allard,F.,Houde,M.,Kr?l,M.,Ivanov,A.,Huner,N.P.A.,Sarhan,F.. Betaine improves freezing tolerance in wheat. Plant Cell Physiol. 1998, 39, 1194-1202.
    Allen, R.D. Dissection of oxidative stress tolerance using transgenic plants . Plant Physiol. 1995, 107,1049-1054.
    Asai N.et al. The effect of osmotic stress on the solutes in guard cells of Vicia faba L..Plant and Cell
    
    physiology ,1999,40(8):843-849.
    Babu R.C.,Pathan M.S.,Blum A&Nguyen H.T. Comparison of measurement methods of osmotic adjustment in rice cultivars. Crop Science .1999, 39,150-158.
    Bernstein L. Osmotic adjustment of plants to saline media.I.Steady state .American Journal of Botany ,1961,48:909-918.
    Bjokman O., Demming-Adams B. Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze E-D, Caldwell MM(eds), Ecophysiology of photosynthesis. Springer, Berlin, 1994, 17-47.
    Blum A. Plant breeding for stress environments. Boca Raton,Florida,1988:CRC Press Inc.,44.
    Blum A.,Mayer J.&Gozlan G. Associations between plant production and some physiological components of drought resistance in wheat. Plant, Cell and Environment 1983, 6: 219-225.
    Blum A., Mumms R., Passioura J.B.&Turner N.C. Genetically engineered plants resistant to soil drying and salt stress: How to interpret osmotic relations? Plant physiology .1996, 110:1051-1062.
    Bohnet HJ. Biochemical and cellular mechanism of stress tolerance in plants:response to salt stress in the halophyte Mesembryanthemum crytallinum.In Cherry JH(ed).Biocheical ad Cellular Mechanisma of Stress Tolerance in Plants .Berlin:Springer-Verlag,1994:415-428.
    Bohnert HJ.et al. Strategies for engineering water-stress tolerance in plants.TIBT,1996,14:89-97.
    Bohnert HJ.et al. Strategies for engeneering water-stress tolerance in plants.Trends in Biotechnology,1996a,14:89-97.
    Bourot S.et al. Glycine betaine-assisted protein folding in a lysA mutant of Escherichia coli.. J Biol Chem,2000,275:1050-1056.
    Boyer, J.S.. Plant productivity and environment. Science. 1982, 218, 443-448.
    Bray EA. Molecular responses to water deficit.Plant Physiol.,1993,103:1035-1040.
    Bray EA. Plant responses to water deficit.Trends in plant science ,1997,2:48-54.
    Breitkreuz K.E. et al. Identification and characterization of GABA,protein and quaternary ammonium compound transporters from Arabidopsis thaliana. FEBS Lett.,1999,450:280-284.
    Cakmak, I.,Strbac, D.,Marschner, H. Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. J.Exp.Bot. 1993, 44, 127-132.
    Calatayud A, Deltoro VI, Barreno E, del Valle-Tascon S. Changes in in vivo chlorophyll fluorescence quenching in lichen thalli as a function of water content and suggestion of zeaxanthin-associated photoprotection. Physiol. Plant.,1997, 101:93-102.
    Chance, B.,Maehly, A.C. Assay of catalases and peroxidases.Methods Enzymol. 1995, 2: 764-755.
    Cona A., Kucera T., Masojidek J, Geiken B., Mattoo AK., Giardi MT. Long-term drought stress symptom: structural and functional reorganization of photosystem II. In: Maths, P.(ed.): Photosynthesis: from Light to
    
    Biosphere. 1995, Vol.Pp. 521-524. Kluwer Acad. Publ., Dordrecht-Boston-London.
    Dejardin A et al .Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis.Biochenical Journal,1999,344(2):503-509.
    Deleu C..Three new osmotic stress-regulated cDNAs identified by differential display polymerase chain reaction in rapeseed leaf discs.Plant Cell and Environment,1999,22(8):979-988.
    Deltoro VI., Calatayud A., Gimeno C., Abadia A., Barreno E. Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophylls cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts. Planta, 1998, 207: 224-228.
    Demming-Adams B. Carotenoids and photoprotection in plants. A role for the xanthophylls zeaxanthin. Biochem. Biophyl. Acta, 1990, 1020: 1-24.
    Demming-Adams B., Adams WW.III. Photoprotection and other responses of plant to high light stress. Annu Rev Plant and Physiol. and Plant Mol. Biol., 1992,43: 599-626.
    Deshnium, P.,Gombos, Z.,Nishiyama, Y.,Murata,N. The action in vivo of glycine betaine in enhancement of tolerance of Synechococcus sp. Strain PCC 7942 to low temperature. J. Bacteriol. 1997, 179: 339-344.
    Downton WJS. OA during water stress protects the photosynthetic apparatus against photoinhibition. Plant Science Letters, 1983, 30: 137-143.
    Elstner EF.et al. Mechanisms of oxygen activation during plant stress.Proc R Soc Edinburgh Sect B.,1994,102:131-154.
    Espartero J.et al. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol Biol,1994,25:217-227.
    Everard J.D.et al. Gas exchange and carbon partitioning in the leaves of celery(Apium graveolcus L.)at various levels of root zone salinity.Plant Physiol.,1994,106:281-292.
    Filon-Smits E.AH.et al. Improved performance of transrenic fructan-accumulating tobacco under drought stress。 Plant Physiology,1995,107:125-130.
    Fischer W.N.et al.Amino acid trznsport in plants.Trends Plant Sci.,1998,3:188-195
    Flagella Z., Camjpanile RG., Stoppelli MC., De Caro A., Di Fonzo N. Drought tolerance of photosynthetic electron transport under CO2-enriched and normal air in cereal species. Physiol. Plant., 1998, 104: 753-759.
    Flagella Z, Campanile R G, Ronga G. The maintenance of photosynthetic electron transport in relation to osmotic adjustment in durum wheat cultivars differing in drought resistance. Plant Science, 1996,118:127~133
    Flower, D.J., Ludlow, M.M. Contribution of osmotic adjustment to the dehydration tolerance of water-stresses pigeonpea(Cajanus cajan(L.) Millsp) leaves. Plant Cell Environ. 1986, 9, 33-44.
    Flower DJ. Influence of osmotic adjustment on the growth,stomatal conductance and light interception of
    
    contrasting sorghum lines in a harsh environment.Australian Journal of Plant Physiology,1990,17:91-105.
    Foryer CH.et al.Photooxidative stress in plants.Physiol Plant.,1994,92:696-717.
    Fukai S.&Cooper M. Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Research .1995, 40: 67-86.
    Gibon Y., Bessieres MA., Larher F. Is glycine betaine a non-compatible solute in higher plants that do not accumulate it? Plant Cell and Environ., 1997,20: 329-340.
    Gilmore AM., Yamamoto HY. Linear models relating xanthophyll and lumen acidity to nonphotochemical fluorescence quenching evidence that antheraxanthin explains zeaxanthin dependent quenching. Photosynthe. Res., 1993, 35: 67-78.
    Girardi MT. et al. Long-term drought stress induces structural and functional reorganization of photosystem II, Planta,1996,199: 118-125.
    Gorham J., McDonnell E., WYN Jones R.G. Determination of betaines as ultraviolet-absorbing esters. Analytica. Chimica. Acta., 1982, 138: 277-283.
    Grumet R.,Albrechtsen R.S.&Handon A.D.(1987) Growth and yield of barley islpopulations differing in solute potential. Crop Science 27,991-995.
    Guan LingQiang et al.Two structurally similar maize cytosolic superoxide dismutase genes,Sod4 and Sod4A,respond differentially to abscisic acid and high osmoticum.Plant Physiology,1998,117(1):217-224.
    Hanson AD, May AM, Grumet R, Bode J, Jamieson GC. Betaine synthesis in chenopods: localization in chloroplasts. Proc Natl Acad Sci USA,1985,82:3678-3682.
    Hare P.D.,Cress W.A.&Van Staden J. Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment .1998, 21:535-553.
    Havaux M. Stress tolerance of photosystem II in vivo. Antagonistic effects of water, heat, and photoinhibition stresses. Plant Physiol., 1992, 100: 424-432.
    Hayashi, H.,Alia,Sakamoto,A.,Nonaka,H.,Chen,T.H.H.,Murata,N. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase:acumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J. 1997, 12,133-142.
    Hayashi J.et al. Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene(codA)for choline oxidase. Jorunal of Plant Research,1998,111:357-362.
    He J., Chee CW., Goh CJ. Photoinhibition of Heliconia under natural tropical conditions: the importance of leaf orientation for light interception and leaf temperature. Plant, Cell and Environ., 1996, 19: 1238-1248.
    He JX., Wang J., Liang HG. Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. Physiol. Plant., 1995, 93: 771-777.
    
    
    Hibino T,Meng YL,Kawamitsu Y et al. Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina(Forsk.)Vierh. Plant Mol Biol,2001,45: 353-363
    Hitz W D., Hanson A D. Determination of glycinebetaine by pyrolysis-gas chromatography in cereals and grasses. Phytochemistry, 1980,19:2371-2374.
    Hsiao T.C.&Xu L.K. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. Journal of Experimental Botany ,2000, 51: 1595-1616.
    Holmstr?m KO,Welin B,Mandal A, Kristiansdottir I, Teeti TH, Lamark T, Strom AR, Palva ET. Production of the Escherichia coli glycinebetaine-aldehyde dehydrogenase,an enzyme required for the synthesis of the osmoprotectant glycine betaine,in transgenic plants.  Plant J,1994,6:749-758
    Holmstrom K.O.et al. Drought tolerance in tobacco. Nature,1996,379:683-684.
    Holmstr?m, K.O.,Somersalo, S.,Mandal, A.,Palva,T.E.,Welin,B. Improved tolerance to salimity and low temperature in transgenic tobacco producing glycine betaine. J. Exp. Bot. 2000, 51: 177-185.
    Hong ZongLie et al. Removal of feedback inhibition of DELTA1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology,2000,122(4):1129-1136.
    Horton P., Ruban AV., Walters RG. Regulation of light harvesting in green plants indication by nonphotochemical quenching of chlorophyll fluorescence. Plant Physiol., 1994, 106: 415-420.
    Huang J,Hirji R,Adam L et al. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants:metabolic limitations.  Plant Physiol,2000,122:747-756
    Igarashi Y. et al. Molecular cloning and characterization of a cDNA encoding proline transporter in Rice. Plant Cell Physiol.,2000,41(6):750-756.
    Ikuta S,Mamura S,Misaki H et al. Purification and characterizationof choline oxidase from Arthrobacter globiformis. J Biochem,1977,82:1741-1749
    Ingram J., Bartels D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant mol. Biol., 1996,47: 377-403.
    Ishitani, M.,Nakamura, T.,Han,S.Y.,Takabe,T. Exression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress. Plant Mol. Biol. 1995,27, 307-315.
    Jaglo-Ottosen KR,Gilmour SJ,Zarka DG et al. Arabidopsis CBF1 overexpression inducea COR genes and enhances freezing tolerance. Sci,1998,280:104-106
    Jenson M., Chakir S., Feige GB. Osmotic and atmospheric dehydration effects in the lichens Hypogymnia physodes,Lobaria pulmonaria, and Peltigera aphthosa: an in vivo study of the chlorophyll fluorescence induction. Photosynthetica, 1999, 37: 393-404.
    Jespersen HM et al. From sequence analysis of three novel ascorbate peroxidases from Arabidopsis
    
    thaliana to structure ,function and evolution of seven types of ascorbate peroxidase. Biochem.J. ,1997,326:305-310.
    Kalosaka K.et al. Differentiation between the structure and the catalytic roles of chloride in photosynthetic oxygen evolution.In:Murata N(ed).Research in Photosynthesis(Vol II).Dordrecht:Kluwer Academic Publishers,1992,349-352.
    Kishitane, S.,Watanabe, K.,Yasuda ,S.,Arakawa,K.,Takabe,T. Accumulation of glycinebetaine during cold acclinatin and freezing tolerance in leaves of winter and spring barley plants. Plant, Cell Environ. 1994, 17, 89-95.
    Kishitani,S.,Takanami,T.,Suzuki,M.,Oikawa,M.,Yokoi,S.,Ishitani,M.,Alvarez-Nakase,A.M.,Takabe,T.,Takabe,T. Compatibility of glycinebetaine in rice plants:evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant, Cell Environ., 2000, 23, 107-114.
    Kishor PBK.et al. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants.Plant Physiology,1995,108:1387-1394.
    Kitayama K et al. Characterization of paraquat-resistant mutants of Chlamydomonas reinhardtii .In Photosrnthesis:From Light to Biosphere,ed.P Mathis,1995,3:595-598.
    Kliebenstein DJ et al. Superoxide dismutase in Arabidopsis:an eclectic enzyme family with disparate regulation and protein localization .Plant Physiol.,1998,118:637-650.
    Klueva N.et al. Molecular strategies for managing environmental stress.In:Chopra VL,Singh RB.Varma A.eds. Crops productivity and sustainability-shaping the future.New Delhi:Oxford and IBH Publishing Co. Pvt.Ltd,1997:537-541.
    Lamark T.et al. DNA sequence and anallysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli.Molecular Microbiology,1991,5:1049-1064.
    Landfald B,Strom AR. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichin coli. J Bacteriol,1986,165:849-855
    Legaria J.,Rajsbaum R, Munoz-Clares RA, Villegas-Sepulveda N, Simpson J. Molecular characterization of two genes encoding betaine aldehyde dehydrogenase from amaranth.Expression in leaves under short-term exposure to osmotic sress or abscisic acid. Gene,1998,218(1-2):69-76.
    Lilley J.M.&Ludlow M.M. Expression of osmotic adjustment and dehydration tolerance in diverse rice lines. Field Crops Research, 1996, 48,185-197.
    LilIus G, Holmberg N, Bulow L. Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Bio Technol,1996,14:177-180
    Ludlow MM. Contribution of osmotic adjustment to the maintenance of photosynthesis during water stress. In Biggens J(eds), Progress in Photosynthesis Research. IV. Martinus Nijhoff Publishers, Dordrecht, The Netherlands. 1987,Vol IV.pp. 161-168.
    
    
    Ludlow M.M.&Muchow R.C. A critical evaluation of traits for improving crop yields in water-limited environments. Advance in Agronomy, 1990, 43: 107-153.
    Mathews M., Boyer JS. Acclimation of photosynthesis to low leaf water potentials. Plant Physiol., 1983, 73: 1002-1007.
    Mattos EA., Herzog B., Luttge U. Chlorophyll fluorescence during CAM-phases in Clusia minor L. under drought stress. J. Exp. Bot, 1999, 50: 253-261.
    Matyssek R.,Tang A.C.&Boyer J.S. Plants can grow on internal water. Plant,Cell and Environment ,1991 , 14: 925-930.
    Maxwell K, Johnson G N. Chlorophyll Fluorescence- a Practical Guide. Jour Exp Bot, 2000 ,345:659~668
    McCord, J.M.,Fridovich, I. Superoxide dismutase: an enzymic function for erythrocuprein(hemocuprein). J.Biol.Chem,. 1969, 244: 6049-6055.
    McCue KF, Hanson AD. Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol Biol, 1992, 18: 1-11.
    Mckersie BD., Bowley SR., Harjanto E., Leprince O. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol., 1996,111: 1177-1181.
    McManus MT. et al. Pinitol accumulation in mature leaves of white clover in response to awater deficit. Environmental and Experimental Botany,2000,43:11-18.
    McNeil SD,Nuccio ML,Hanson AD. Betaine and related osmoprotectants. Targets for metabolic engineering of stress resistance.  Plant Physiol, 1999,120: 945-949
    Mcneil, S.D.,Rhodes, D.,Russell, B.L.,Nuccio, M.L.,Hanson, A.D. Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in Tobacco.Plant Physiol. 2000, 124,153-162.
    Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002,7(9): 405-410.
    Mohanty PS. et al. Stabilization of the Mn-cluster of the oxygen-evolving complex by glycinebetaine. Biochim Biophys Acta.,1993,1144:92-96.
    Morgan JM. Osmoregulation and water stress in high plants. Ann. Rev. Plant Physiol.,1984,35:299-319.
    Morgan JM. Osmoregulation as a selection criterion for drought tolerance in wheat. Aust. J. Agri. Res. 1983, 34: 607-614.
    Morgan J.M&Condon A.G. Water use, grain yield, and osmoregulation in wheat. Australian Journal of Agricultural Research, 1986, 13,523-532.
    Morgan JM., Hare RA., Fletcher RJ. Genetic variation in osmoregulation in bread and durum wheats and its relationship to grain yield in a range of field environment. Aust. J.Agri. Res. 1986, 37: 449-457.
    Morgan J.M. Growth and yield of wheat lines with differing osmoregulative capacity at high soil water
    
    deficit in seasons of varying evaporative demand. Field Crops Research , 1995, 40: 143-152.
    Morgan J.M., Rodriguez-Maribona B.&Knights E.J. Adaption to water-deficit in chickpea breeding lines by osmoregulation: relationship to grain-yields in the field. Field Crops Research ,1991, 27: 61-70.
    Munne-Bosch S., Alegre L. Role of dew on the recovery of water-stressed Melisa officinalis L. plants. J. Plant Physiol., 1999, 154: 759-766.
    Munns R. Why measure osmotic adjustment. Australian Journal of Plant Physiology ,1988,15:717-726.
    Murata, N.,Mohanty, P.S.,Hayashi, H.,Papageorgiou,G.C. Glycinebetaine stabilizes the association of extrinsix proteins with the photosynthetic oxygen-evolving complex.FEBS Letters . 1992, 296: 187-189.
    Mutsada M et al. The catalase-peroxidase of synechococacs PCC7942:purification,nucleotide sequence analysis and expression in Escherichia coli. Biochemical Journal,1996,316:251-257.
    Nakamura T,Yokota S, Muramoto Y, Tsutsui K, Oguri Y, Fukui K, Takabe T. Expression of a betaine aldehyde dehydrogenase gene in rice.a glycinebetaine nonaccumulator,and possible localization of its protein in peroxisomes. Plant J,1997,11:1115-1120
    Nguyen H.T.,Babu R.C.&Blum A. Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Science, 1997, 37: 1426-1434.
    Nishida I.et al. Chilling sensitivity in plants and cyanobacteria:The crucial contribution of membrane lipids. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:541-568.
    Noiraud N. et al.The sucrose transporter of celery .Identification and expression during aslt stress. Plant Physiology,2000,122:1447-1455.
    Nomura, M.,Ishitani, M.,Takabe, T.,Rai,A.K.,Takabe,T. Synechocoaus sp. PCC7942 transformed with Escherichia coli bet genes products glycine betaine from choline and acquires resistance to salt stress. Plant Physiol. 1995, 107: 703-708.
    Nomura M,Hibino T,Takabe T, Sugiyama T, Yokota A, Miyake H, Takabe T. Transgenically produced glycinebetaine protects ribulose 1,5-bisphosphate carboxylase/oxygenase from inactivation in Synechococcus sp. PCC 7942 under salt stress. Plant Cell Physiol,1998,39:425-432
    Nuccio, M.L.,Russell, B.L.,Nolte, K.D.,Rathinasabapathi,B.,Gage,D.A.,Hanson,A.D.,.The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J. 1998,16: 487-496.
    Nyyss?l? A, Kerovuo J, Kaukinen, von Weymarn N, Reinikainen. Extreme halophiles synthesize betaine from glycine by methylation. Journal of Biological Chemistry, 2000, 275: 22196-22201.
    Olesinski AA., Wolf S., Rudich J., Marani A. Effect of leaf age and shading on photosynthesis in potatoes(Solanum tuberosum).Annuals of Botany, 1989, 64: 643-650.
    Orthen B. et al. Hydroxyl radical scavenging properties of cyclitols. Proc R soc Edinburgh Sect B.,
    
    1994,102:269-272.
    Osteras M.,Boncompagni E,Vincent N et al. Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet operon: choline-O-sulfate is metabolized into glycine betaine. Proc Natl Acad Sci, USA ,1998,95: 11394-11399
    Papageorgiou, G.C., Murata ,N. The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynthesis Research., 1995, 44, 243-252.
    Pardossi A.et al. Water relations and osmotic adjustment in Apium graveolens during long-term NaCl stress and subsequent relief. Physiol. Plant.,1998,102:369-376.
    Pitcher LH et al. Overproduction of prtunia chloroplaxtic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiology,1991,97:452-455.
    Pol M., Golebiowska D., Miklewska J. Influence of enhanced concentration of carbon dioxide and moderate drought on fluorescence induction in white clover(Trifolium repens L.). Photosynthetica, 1999, 37: 537-542.
    Prata RTN.et al. Sugar repression of mannnitol dehydrogenase activity in celery cells. Plant Physiol.,1997,114:307-314.
    Price A.& Courtois B. Mapping QTLs associated with drought resistance in rice: Progress, problems and prospects. Plant Growth Regulation, 1999,29: 123-133.
    Rajendrakumar CSV.et al.DNA helix destabilization by proline and betaine:possible role in the salinity tolerance process. FEBS Lettets,1997,410:201-205.
    Rathinasabapathi, B., McCue, K.F.,Gage, D.A.,Hanson,A.D. Metabolic engineering of glycine betaine synthesis:plant betaine aldehyde dehydrogenases lacking typical transit-peptides are targeted to tobacco chloroplasts where they confer betaine sldehyde resistance. Planta, 1994, 193: 155-162.
    Rentsch D.et al. Structure and function of plasma membrane amino acid,oligopeptide and sucrose transporters from higher plants. J.Membr.Biol.,1998,162:177-190.
    Rentsch D.et al. Salt stress-induced proline transporters and salt stress-tepressed broad specificity amino acid permeases identifede by suppresion of a yeast amino acid permease-targeting mutant. Plant Cell,1996,8:1437-1446.
    Rhodes, D.,Hanson, A.D. Quatermary ammonium and tertiary sulfonium compounds in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 1993, 44: 357-384.
    Robinson MP. Osmotic adjustment by intact isolated chloroplast in response to osmotic stress and its effects on photosynthesis and chloroplast volumes. Plant Physiol., 1985,79: 996-1002.
    Robinson, S.P.,Jones, G.P. Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress. Aust. J. Plant Physiol., 1986,13: 659-668.
    
    
    Rodrigues M L, Chaves M M ,Wendler R M , David M M. Osmotic adjustment in water stressed grapevine leaves in relation to carbon assimilation. Aust.J.Plant Physiol., 1993,20:309~321
    Rodriguez-Maribona B., Tenario J.L., Conde J.R.&Ayerve L. Correlation between yield and osmotic adjustment of peas(Pisum sativum L.) under drought stress. Field Crops Research, 1992, 29: 15-22.
    Rout NP., Shaw BP. Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Science, 2001,160: 415-423.
    Russell BL,Rathinasabapathi B,Hanson AD. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth.  Plant Physiol,1998,116: 859-865
    Sakamoto, A.,Alia,Murata, N.. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol. 1998,38: 1011-1019.
    Sakamoto A,Murata N. Genetic engineering of glycinebetaine synthesis in plants:current status and implications for enhancement of stress tolerance. J Exp Bot,2000,51(342):81-88
    Sakamoto A.et al. Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants . Plant J.,2000,22:449-453.
    Sakamoto A,Murata N. The use of bacterial choline oxidase,a glycinebetaine-synthesizing enzyme,to create stress-resistant transgenic plants. Plant Physiol,2001,125:180-188
    Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell and Environment, 2002, 25: 163-171.
    Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Mannual. Cold Spring Harbor, 1989, NY: Cold Spring Harbor Laboratory Press.
    Santoro, M.M.,Liu, Y.,Khan, S.M.A.,Hou,L.X.,Bolen,D.W. Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry. 1982, 31: 5278-5283.
    Schindler C., Lichtenthaler HK. Photosynthetic CO2 assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day. J. Plant Physiol., 1996, 148: 399-412.
    Schwacke R.et al. LeProT1,a transporter for proline,glycine betaine and γ-amino butyric acid tomato pollen. Plant Cell,1999,11:377-391.
    Schroeder J.J.et al. Guard cell abscisic acid signalling and engineering drought hardness in plants. Nature,2001,410:327-330.
    Sengupta A and Berkowitz G A. Chloroplast osmotic adjustment and water stress effects on photosynthesis. Plant Physiol., 1988, 88:200~206
    Sengupta A et al.Overexpression of superoxide dismutase protects plants from oxidative stress.Induction of ascorbate peroxidase in superoxide dismutase-overexpression plants. Plant Physiol,1993,103:1067-1073.
    
    
    Serraj R.& Sinclair T.R. Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell and Environment, 2002, 25: 333-341.
    Shangguan Z P, Shao M G, Dyckmans J. Interaction of Osmotic Adjustment and Photosynthesis in Winter Wheat Under Soil Drought. Journal of Plant Physiology, 1999,154:753~758
    Shibha K.et al.Interaction of glycine betaine,abscisic acid and potassium on proline accumulation and K+ uptake in Raphanus sativus L.seedlings. Proceedings of the National Academy of Sciences.,1999,69(1):79-87.
    Shikanai T et al. Inhibition of ascorbate peroxidase under oxidative sress in tobacco having bacterial catalase in chloroplasts. FEBS Letters,1998(428):47-51.
    Shinozake K.et al. Gene expression and signal transduction in water-stress response. Plant Physiology,1997,115:327-334.
    Shintani D et al. Elevating the vitamin E content of plants through metabolic engineering . Science,1998,282:2098-2100.
    Smimoff N.et al. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry,1989,28:1057-1060.
    Smith DD,Summers PS,Weretilnyk EA. Phosphocholine synthesis in spinach:characterization of phosphoethanolamine N-methyltransferase. Physiol Plant,2000,108(3):286-294
    Soyka S.et al.Arabidopsis knockout mutation of ADC2 gene reveals inducibility by osmotic stress . FEBS Letters ,1999,458(2):219-223.
    Sulpice R., Gibon Y., Bouchereau A., Larher F. Exogeously supplied glycine betaine in spinach and rapeseed leaf discs: compatibility or non-compatibility? Plant , Cell and Environ., 1998, 21: 1285-1292.
    Takabe T,Nakamura T,Nomura M et al. Glycinebetaine and the genetic engineering of salinity tolerance in plants. In: Satoh K. and Murata N. (eds.) Stress Responses of Photosynthetic Organisms. Amsterdam, Elsevier Press,1997, 115-132
    Tangpremsri T.et al. Genotrpic variation in osmotic adjustment in grain sorghum.II.Relation with some growth attributes. Australian Journal of Agricultural Reseatch,1991,42:759-767.
    Tarczynski MC.et al. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science,1993,259:508-510.
    Teulat B.,This D., Khairallah M., Borries C., Ragot C., Sourdille P., Leroy P., Monneveux P& Charrier A. Several QTLs involved in osmotic-adjustment trait variation in barley(Hordeum vulgare L.). Theoretical Applied Genetics, 1998, 96: 688-698.
    Thomas J. Drought resistance in plants.In:Basra AS,Basra RK.eds.Mechanisms of environmental stress resistance in plants.The Netherlands:Harwood Academic Publishers,1997:1-42.
    Thomas JC.et al. Enhancement of seed germination in high salinity by engineering mannitol expression in
    
    Arabidopsis thaliana. Plant Cell Environ.,1995,18:801-806.
    Thomashow MF. Plant cold tolerance: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999,50:571-599
    Trossat C,Rathinasabapathi B,Hanson AD. Transgenically expressed betaine aldehyde dehydrogenase dfficiently catalyzes oxidation of dimethylsulphoniopropionaldehyde and ω-aminoaldehydes. Plant Physiol,1997,113:1457-1461
    Turner NC.et al. Turgor maintenance by osmotic adjustment:a review and evaluation .In:Turner NC,Kramer PJ,eds.Adaptationof plants to water and high temperature stress,1981,New York:John Wley,Inc.,87-103.
    Van Deynze A.E., Nelson J.C., Igleslias E.S., Harrington S.E., Braga D.P., McCouch S.R.&Sorrels M.E. Comparative mapping in grasses. Molecular and General Genetics, 1995,248: 744-754.
    Van Camp W et al. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol.,1996,112:1703-1714.
    Verma DPS. Osmotic stress tolerance in plants:role of proline and sulfur metabolisme.In molecular response to cold,drought,heat and salt stress in higher plants. Edited by Shinozake K. And Yamaguchi K.1999,pp:153-168.R.G.Lands company Austin Texas.U.S.A.
    Weng J H. Photosynthesis of different ecotypes of Miscanthus spp. As affected by water stress. Photosynthetica, 1993,29:43~48
    Weretilnyk EA,Bednarek S,McCue KF, Rhodes D, Hanson AD. Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse familide of dicotyledons. Planta,1989,178:342-352
    Weretilnyk EA., Hanson AD. Molecular cloning of a plant betaine-aldehyde dehydrogenase,an enzyme impicated in adaptation to salinity and drought. Proc Natl Acad Sci USA,1990,87:2745-2749.
    Williams WP.et al. Induction of non-bilayer lipid phase separations in chloroplast thylakoid membrances by compatible co-solutes and its relation to the thermal stability of photosystem II. Biochim Biophys Acta.,1992,1099:137-144.
    Wood AJ, Saneoka D, Joly RJ, Goldsbrough PB. Betaine aldehyde dehydrogenase in sorghum. Plant Physiol, 1996,110: 1301-1308.
    Wyn Jones RG.et al. A hypothesis on cytoplasmic osmoregulation. In:Marre E,Ciferri O(eds).Regulation of Cell Membrane Activities in Higher Plants.Amsterdam:Elsevier/North Holland publication corporation,1977,121-136.
    Wyn Jones R G., R Storey. In: Paleg L G, D Aspinall eds. The Physiology and Biochemistry of Drought Resistance in Plants, New York: Academic Press,1981, 171
    Yang, G.,Rhodes ,D.,Joly, R.J.,1996. Effects of high temperature on membrane stability and chlorophyll
    
    fluorescence in glycinebetaine-deficient and glycinebetaine-containing maize lines. Aust J Plant Physiol,1996,23:437-443.
    Yordanov I., Tsonev T., Goltsev V., Merakchiiska-Nikolova M., Georgieva K. Gas exchange and chlorophyll fluorescence during water and high temperature stresses and recovery. Probable protective effect of carbamide cytokinin 4-PU-30. Photosynthetica, 1997b, 33: 423-431.
    Yordanov I., Velikova V., Tsonev T. Influence of drought, high temperature and carbamide cytokinin 4-PU-30 on photosynthetic activity of plants. 1. Change in chlorophyll fluorescence quenching. Photosynthetica, 1999, 37: 447-457.
    Yordanov I., Velikova V., Tsonev T. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 2000, 38(1): 171-186.
    Zhang J.et al. Plant adaptation and crop improvement for arid and semi-arid environments. Proceedings of the Fifth International Conference on Desrt Development,1996,12-17 August,Twxas.
    Zhang JX, Nguyen HT, Bulm A. Gnetic analysis of osmotic adjustment in crop plants. J Exp Bot,1999,332:291-302.
    Zhu J K ,Hasegawa P M , Bressan R A. Molecular aspects of osmotic stress in plants. Critical Reciews in Plant Sciences,1997,16:253~277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700