用户名: 密码: 验证码:
MAPK在ABA诱导的玉米叶片抗氧化防护中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物激素脱落酸(abscisic acid,ABA)不仅在植物的生长发育过程中而且还在植物对各种环境胁迫的反应中起重要作用。ABA可以引起一氧化氮(nitric oxide,NO)和活性氧(reactive oxygen species,ROS)的产生,诱导抗氧化基因的表达,提高植物抗氧化防护能力。ABA、NO、ROS都可以活化促分裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK),活化的MAPK调节植物对多种胁迫反应的生理过程。ROS在ABA诱导的抗氧化防护中起重要作用。然而,有关ABA诱导抗氧化防护的详细机制仍有待阐明。
     本研究以玉米叶片为材料,研究了在ABA诱导的抗氧化防护过程中MAPK的作用以及H_2O_2、MAPK与NO之间的关系。主要的研究结果如下:
     利用髓鞘碱性蛋白(myelin basic protein,MBP)作为底物,采用凝胶激酶分析方法研究了ABA处理后玉米叶片MAPK的活化情况。100μM ABA处理明显活化一个46 kDa的MBP激酶,以ABA缺失突变体vp5为材料,用10%PEG处理2h,结果发现在野生型中MBP激酶活性明显增加,而突变体中却增加很少,表明水分胁迫诱导的内源ABA积累能够活化MBP激酶。用酪氨酸磷酸化单克隆抗体4G10进行免疫沉淀凝胶激酶分析结果显示,ABA处理的玉米叶片蛋白质与对照的相比具有很高的酪氨酸磷酸化的MBP激酶活性。用两种专一性的MAPKK抑制剂PD98059和U0126预处理都抑制了ABA诱导的MBP激酶活性。这些结果表明ABA活化的46 kDa的MBP激酶是一种MAPK。而两种专一性的蛋白质酪氨酸磷酸酶(protein tyrosine phosphatase,PTP)抑制剂,PAO(phenylarsine oxide)和3,4DP(Methyl-3,4-dephostatin)预处理并不影响ABA诱导的MBP激酶活性。
     ABA处理不仅诱导几种抗氧化防护基因转录水平增加,如CAT1(编码CAT1同工酶)、cAPX(编码细胞质APX同工酶)与GR1(编码质体GR同工酶),还诱导过氧化氢酶(catalase,CAT)、抗坏血酸过氧化物酶(ascorbate peroxidase,APX)、谷胱甘肽还原酶(glutathione reductase,GR)、超氧化物歧化酶(superoxide dismutase,SOD)活性的增加。两种专一性的MAPKK抑制剂PD98059和U0126预处理明显抑制了ABA诱导的抗氧化防护基因表达和酶活性增加,但是两种专一性的PTP抑制剂PAO和3,4DP预处理并不影响ABA诱导的抗氧化防护基因表达与酶活性。表明是MAPK而不是PTP参与ABA诱导的抗氧化防护。
     H_2O_2抑制剂和清除剂DPI(diphenyleneiodonium)、咪唑、DMTU(dimethythiourea)和Tiron预处理结果显示ROS的抑制剂或清除剂几乎完全抑制了ABA诱导的MAPK
Although the phytohormone abscisic acid (ABA) regulates many important aspects of plant growth and development, its main function is to regulate plant adaptive responses to various adverse environmental conditions. ABA can cause the generation of nitric oxide (NO) and reactive oxygen species (ROS) in various plant cells or tissues, induce the expression of antioxidant genes, and enhance the capacity of antioxidant defense systems, including enzymatic and non-enzymatic constituents. ABA, NO and ROS can activate mitogen-activated protein kinases (MAPKs), and the activation of MAPKs play important roles in the regulation of physiological status in plant response to various environmental stresses. ROS are an important intermediate component in the ABA-induced antioxidant defense. However, the detailed mechanism about how ABA induces antioxidant defense in plant cells remains to be determined.
    In the present study, the role of MAPK and the relationship between H_2O_2, MAPK, and NO in the ABA-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants. The results as follows:
    To investigate the effects of ABA on the activation of MAPKs in leaves of maize plants, in-gel kinase assays were performed on protein extracts from the leaves of maize plants treated with ABA, using myelin basic protein (MBP) as a substrate. Treatment with 100 μM ABA led to a significant increase in the activity of a 46 kDa kinase. To investigate whether the MBP kinase can be activated by endogenous ABA, the ABA-deficient maize vp5 mutant was used. Treatment with 10% PEG for 2 h resulted in a significant increase in the activity of the MBP kinase in the wild-type, but only a slight increase in the mutant, indicating that water stress-induced ABA accumulation can activate the MBP kinase. To demonstrate the exogenous and endogenous ABA-activated MBP kinase is a MAPK-like enzyme, protein extracts from control- or ABA-treated leaves were immunoprecipitated with anti-phosphotyrosine monoclonal antibody 4G10, and then subjected to the in-gel kinase assay. Treatment with 100 μM ABA resulted in an increase in immunoprecipitated tyrosine phosphorylated-MBP kinase activity, when compared to the control. Moreover, pretreatment with the widely-used specific MAPKK inhibitors PD98059 and U0126 inhibited the increase in the activity of the MBP kinase induced by ABA. These results obtained from the above clearly suggest that the ABA-activated 46 kDa MBP kinase is a MAPK-like enzyme. However, pretreatment with PAO and 3,4 DP, two specific inhibitors
引文
1.李智念,王光明,曾之文.植物干旱胁迫中的ABA研究.干旱地区农业研究,2003,21(2):99-104.
    2.时忠杰,胡哲森,李荣生.水分胁迫与活性氧代谢.贵州大学学报,2002,21(2):140-145.
    3.宋松泉,王彦荣.植物对干旱胁迫的分子反应.应用生态学报,2002,13(8):1037-1044.
    4.肖强,郑海雷.一氧化氮与植物胁迫响应.植物生理学通讯,2004,40:379-384.
    5.杨洪强,贾文锁,黄丛林等.蛋白磷酸化参与湖北海棠根系中水分胁迫诱导的ABA积累.科学通报,2001,46(1):50-53.
    6. Ame-Claire Cazzle, Marie JD, Cathal W, Erwin HB, Helene BB and Christiane L. MAP kinase activation by hypoosmotic stress of tobacco cell suspension:towards the oxidative burst response?The Plant Journal, 1999, 19(3): 297-307.
    7. Anderson M D, Prasad T K, Martin B A, Stewart C R. Differential gene expression in chilling-acclimate d maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance. Plant Physiology, 1994, 105: 331-339.
    8. Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature, 2001, 4 11: 1053-1057.
    9. Alien R. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiology, 1995, 107: 1049-1054.
    10. Anthony RG, Henriques R, Heifer A, Meszaros T, Rios G, Testerink C, Munnik T, Deak M, Koncz C, Bogre L. A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. The EMBO Journal, 2004, 23: 572-581.
    11. Apel K and Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Physiology, 2004, 55: 373-399.
    12. Asada K and Takahashi M. Production and scavenging of active oxygen in photosynthesis. In Photoinhibition, eds. DJ Kyle, CB Osborne, CJ Amtzen, Amsterdam: Elsevier, 1987, 227-287.
    13. Asada K. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 601-639.
    14. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boiler T, Ausubel FM, Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002, 415: 977-983.
    15. Baler M, Kandlbinder A, Golldack D, Dietz KJ. Oxidative stress and ozone: perception, signaling and response. Plant Cell and environment, 2005,28:1012-1020.
    
    16. Baxter-Burrell A, Yang ZB, Springer PS, Bailey-Serres J. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science, 2002,296: 2026-2028.
    
    17. Beligni MV, Lamattina L. Is nitric oxide toxic or protective? Trends in Plant Science, 1999, 4:299-310.
    
    18. Bellaire BA, Carmody J, Braud J, Gossett DR, Banks SW, Lucas MC, Fowler TE. Involvement of abscisic acid-dependent and -independent pathways in the up-regulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue. Free Radical Reserch, 2000,33: 531-545.
    
    19. Bestwick CS, Brown IR, Bennett MH, Mansfield JW. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. The Plant Cell, 1997, 9: 209-221.
    
    20. Bethke PC, Badger MR, Jones RL. Apoplastic synthesis of nitric oxide by plant tissues. The Plant Cell, 2004,16: 332-341.
    
    21. Bohnert HJ and Sheveleva E. Plant stress adaptations, making metabolism move. Current Opinion in Plant Biology, 1998,1: 267-274.
    
    22. Bowler C, Van Montagu M, Inze D. Superoxide dismutases and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 1992,43: 83-116.
    
    23. Bowler C and Fluhr R. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends in Plant Science, 2000,5: 241-246.
    
    24. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.
    
    25. Bray EA. Plant responses to water deficit. Trends in Plant Science, 1997,2: 48-54.
    
    26. Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H_2O_2 synthesis. The Plant Journal, 2006,45:113-122.
    
    27. Bueno P, Piqueras A, Kurepa J, Savoure A, Verbruggen N, Van Montagu M, Inze D. Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures.Plant Science, 1998,138: 27-34.
    
    28. Burnett EC, Desikan R, Moser RC, Neill SJ. ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. Journal of Experimental Botany, 2000,51:197-205.
    
    29. Burnette RN, Gunesekera BM, Gillaspy GE. An Arabidopsis inositol 5-phosphatase gain-of-function alters abscisic acid signaling. Plant Physiology, 2003,132: 1011-1019.
    
    30. Butt YK-C, Lum JH-K, Lo SC-L. Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies. Planta, 2003, 216: 762-771.
    
    31. Calderini O, Glab N, Bergornioux C, Heberle-Bors E, Wilson C. A novel tobacco mitogen-activated protein (MAP) kinase kinase, NtMEKl,activates the cell cycle-regulated p43Ntf6 MAP kinase.The Journal of Biological Chemistry, 2001, 276:18139-18145.
    
    32. Cardinale F, Meskine L, Ouaked F, Hirt H. Convergence and divergence of stress induced mitogen-activated protein kinase signaling pathway at the level of two distinct mitogen-activated protein kinase kinases. The Plant Cell, 2002,14: 703-711.
    
    33. Caro A, Puntarulo S. Nitric oxide decreases superoxide anion generation by 6 microsomes from soybean embryonic axes. Physiologia Plantarum, 1998, 104: 357-364
    
    34. Cazale A-C, Droillard M-J, Wilson C, Heberle-Bors E, Barbier-Brygoo H, Lauriere C. MAP kinase activation by hypoosmotic stress of tobacco cell suspensions: towards the oxidative burst response? The Plant Journal, 1999,19: 297-307.
    
    35. Chenk PW, Snaar-Jagalska BE. Signal peroeprion and transduction:the role of protein kinases.Biochimica Et Biophysica Acta, 1999,1449:1-24.
    
    36. Chen HH, Li PH, Brenner ML. Involvement of abscisic acid in potato cold acclimation. Plant Physiology, 1983, 71: 362-365.
    
    37. Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, Brazma A, Jones N, Bahler J. Global transcriptional responses of fission yeast to environmental stress. Molecular Biologyof the Cell,2003,14: 214-29.
    
    38. Clardia J, Okresz L, Bogre L. Complexity, cross talk and integration of plant MAP kinase signaling.Current Opinion in Plant Biology, 2001, 5: 415-424.
    
    39. Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ. NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. The Plant Journal, 2000,24: 667-677.
    
    40. Clark D, Durner J, Navarre DA, Klessig DF. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Molecular Plant-Microbe Interactions , 2000,13:1380-1384.
    
    41. Coelho SM, Taylor AR, Ryan KP, Sousa-Pinto I, Brown MT, Brownlee C. Spatiotemporal patterning of reactive oxygen production and Ca~(2+) wave propagation in Fucus rhizoid cells. The Plant Cell, 2002,14: 2369-2381.
    
    42. Corpas FJ, Barroso JB, Carreras A, Quiros M, Leon AM, Romero-Puertas MC, Esteban FJ,Valderrama R, Palma JM, Sandalio LM, Gomez M, del Rio LA . Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiology, 2004,136: 2722-2733.
    
    43. Correa-Aragunde N, Graziano M, Lamattina L. Nitric oxide plays a central role in determining lateral root development in tomato. Planta, 2004,218:900-905
    
    44. Crawford NM, Guo FQ. New insights into nitric oxide metabolism and regulatory functions. Trends in Plant Science, 2005,10:195-200.
    
    45. Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A, Mullineaux P. Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. The Plant Cell, 1999, 11:1277-1292.
    
    46. Cutler AJ and Krochko JE. Formation and breakdown of ABA. Trends in Plant Science, 1999, 4:472-478.
    
    47. Dangl JL, Jones JDG. Plant pathogens and integrated defense responses to infection. Nature, 2001,411: 826-33.
    
    48. Dat JF, Van Breusegem F, Vandenabeele S, Vranova E, Van Montagu M, Inze, D. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences, 2000,57:779-795.
    
    49. Dat JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjarvi J, Inze D, Van Breusegem F. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. The Plant Journal, 2003,33:1-12.
    
    50. del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Banoso JB. Plant peroxisomes, reactive oxygen metabolism and nitric oxide. International Union of Biochemistry and Molecular Biology: Life,2003,55: 71-81.
    
    51. del Pozo O, Pedley KF, Martin GB. MAPKKKa is a positive regulator of cell death associated with both plant immunity and disease. The EMBO Journal, 2004, 23: 3072-3082.
    
    52. Delarey TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M,Kess mann H, Ward E, Ryals J. A central role of salicylic acid in plant disease resistance. Science,1994, 266:12471250.
    
    53. Delaunay A, Isnard A-D, Toledano MB. H_2O_2 sensing through oxidation of the Yap1 transcription factor. The EMBO Journal, 2000,19: 5157-66.
    
    54. Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB. A thiol peroxidase is an H_2O_2 receptor and redox-transducer in gene activation. Cell, 2002, 111: 471-81.
    
    55. Delledonne M. NO news is good news for plants. Current Opinion in Plant Biology, 2005, 8:1-7.
    
    56. Delledonne M, Xia Y, Dixon RA, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature, 1998,394: 585-588.
    
    57. Delledonne M, Zeier J, Marocco A, Lamb C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98:13454-13459.
    
    58. Desikan R, Griffiths R, Hancock JT, Neill S. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2002,99:16314-16318.
    
    59. Desikan R, Cheung M-K, Bright J, Henson D, Hancock JT, Neill SJ. ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. Journal of Experimental Botany, 2004, 55: 205-212.
    
    60. Desikan R, Clarke A, Hancock JT, Neill SJ. H_2O_2 activates a MAP kinase-like enzyme in Arabidopsis thaliana suspension cultures. Journal of Experimental Botany, 1999, 50:1863-1866.
    
    61. Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ. Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiology, 2001, 126:1579-1587.
    
    62. Desikan R, Mackerness SAH, Hancock JT, Neill SJ. Regulation of the Arabidopsis transcriptosome by oxidative stress. Plant Physiology, 2001,127:159-172.
    
    63. Deikan R, Burnett EC, Hancock JT, Neill SJ. Harpin and hydrogen peroxide induce the expression of a homologue of gp91-phox in Arabidopsis thaliana suspension cultures. Journal of Experimental Botany, 1998b, 49:1767-1771.
    
    64. Desikan R, Neill SJ, Hancock JT. Hydrogen peroxide-induced gene expression in Arabidopsis thaliana. Free Radical Biology and Medicine, 2000,28: 773-778.
    
    65. Drollard MJ, Thibivilliers S, Cazale AC, Barbier-Brygoo H, Lauriere C. Protein kinases induced by osmotic stress and elicitor molecules in tobacco cell suspensions: two crossroad MAP kinases and one osmoregulation-specific protein kinase. FEBS Letters, 2000,474: 217-222.
    
    66. Duckham SC, Linforth RST and Taylor IB. Abscisic acid-deficient mutants at the aba gene locus of Arabidopsis thaliana are impaired in the epoxidation of zeaxanthin. Plant Cell and Environment,1991,14:601-606.
    
    67. Durner J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95:10328-10333.
    
    68. Durner J, Klessig DF. Salicylic acid is a modulator of tobacco and mammalian catalases. The Journal of Biological Chemistry, 1996, 271: 28492-28502.
    
    69. Durner J and Klessig DF. Nitric oxide as a signal in plants. Current Opinion in Plant Biology, 1999,2:369-374.
    70. Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. The Plant Journal, 2003, 36: 905-917.
    
    71. Epple P, Mack AA, Morris VRF, Dangl JL. Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins. Proceedings of the National Academy of Sciences of the United States of America, 2003,100: 6831-6836.
    
    72. Etienne P, Petitot A-S, Houot V, Blein J-P, Suty L. Induction of tcI7, a gene encoding a β subunit of proteasome, in tobacco plants treated with elicitin salicylic acid or hydrogen peroxide. FEBS Letters, 2000,466: 213-218.
    
    73. Favata MF, Horiuch KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ,Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. The Journal of Biological Chemistry, 1998,273:18623-18632.
    
    74. Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings. The Plant Cell, 2002,14: S15-45.
    
    75. Finkelstein R and Gibson SI. ABA and sugar interactions regulating development: "cross-talk" or "voices in a crowd"? Current Opinion in Plant Biology, 2002,5: 26-32.
    
    76. Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR. Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organization of Arabidopsis leaves. The Plant Journal, 2003, 33: 691-705.
    
    77. Fryer MJ, Oxborough K, Mullineaux PM, Baker NR. Imaging of photo-oxidative stress responses in leaves. Journal of Experimental Botany, 2002, 53:1249-1254.
    
    78. Frye CA, Tang D, Innes RW. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proceedings of the National Academy of Sciences of the United States of America,2001,98: 373-378.
    
    79. Ganesh KA, Randeep R, Hitoshi I. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochemical and Biophysical Communications, 2002, 294:1009-1016.
    
    80. Garcia-Mata C, Lamattina L. Nitric oxide and abscisic acid cross-talk in guard cells. Plant Physiology, 2002,128:790-792.
    
    81. Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR. Nitric oxide regulated KR and ClS channels in guard cells through a subset of abscisic acid-evoked signaling pathways.Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 11116-11121.
    
    82. Garcia-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant resp onses against drought stress. Plant Physiology, 2001,126:1196-1204.
    
    83. Garreton V, Carpinelli J, Jordana X, Holuigue L. The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiology,2002,130:1516-1526.
    
    84. Gasch A, Spellman P, Kao C, Carmel-Harel O, Eisen M, Storz G, Botstein D, Brown P. Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell, 2000,11:4241-4257.
    
    85. Gazzarrini S and McCourt P. Genetic interactions between ABA, ethylene and sugar signaling pathways. Current Opinion in Plant Biology, 2001,4: 387-391.
    
    86. Georgiou G. How to flip the (redox)switch. Cell, 2002, 111: 607-610.
    
    87. Gomez-Gomez L, Boiler T. Flagellin perception: a paradigm for innate immunity. Trends in Plant Science, 2002, 7: 251-256.
    
    88. Gong M, Li YJ, Chen SZ. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. Journal of Plant Physiology, 1998,153: 488-496.
    
    89. Gouvea CMCP, Souza JF, Magalhaes CAN, Martins IS. NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regulation, 1997, 21:183—187.
    
    90. Grant JJ and Loake GJ. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiology, 2000,124: 21-29.
    
    91. Grant JJ, Yun B-W, Loake GJ. Oxidative burst and cognate redox signaling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. The Plant Journal, 2000, 24: 569-582.
    
    92. Guan L, Scandalios JG . Two structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond differentially to abscisic acid and high osmoticum. Plant Physiology, 1998, 117:217-224.
    
    93. Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D. Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell and Environment, 2003, 26:1851-1862.
    
    94. Guan L, Zhao J, Scandalios JG. Cis-elements and trans-factors that regulate expression of the maize Catl antioxidant gene in response to ABA and osmotic stress: H_2O_2 is the likely intermediary signalling molecule for the response. The Plant Journal, 2000, 22: 87-95.
    
    95. Guan L, Scandalios JG. Two structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond differentially to abscisic acid and high osmoticum. Plant Physiology, 1998a, 117: 2 17-224.
    
    96. Guan L, Scandalios JG. Effects of the plant growth regulator abscisic acid and high osmoticum on the developmental expression of the maize catalase genes. Physiologia Plantarum, 1998b, 104:413-422.
    
    97. Guo FQ, Okamoto M, Crawford NM. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science, 2003,302:100-103.
    
    98. Guo FQ, Crawford NM. Arabidopsis nitric oxide synthasel is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. The Plant Cell, 2005,17:3436-3450.
    
    99. Gupta R, Luan S. Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiology, 2003,132:1149-1152.
    
    100. Haliiwell B, Zhao K, White man M. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Radical Reserch, 1999, 31: 651-669.
    
    101. Hallouin M, Ghelis T, Brault M, Bardat F, Cornel D, Miginiac E, Rona JP, Sotta B, Jeannette E.Plasmal emma abscisic acid perception leads to RAB18 expression via phospholipase D activation in Arabidopsis suspension cells. Plant Physiology, 2002,130:265-272.
    
    102. Hammond-Kosack KE and Jones JDG Resistance gene-dependent plant defense responses. The Plant Cell, 1996, 8:1773-1791.
    
    103. Hasegawa, PM, Bressan, RA, Zhu, JK and Bohnert, HJ. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 2000,51: 463-499.
    
    104. Hayashi K, Noguchi N, Niki E. Action of nitric oxide as an antioxidant against oxidation of soybean phosphatidylcholine liposomal membranes. FEBS Letters, 1995,370(1-2): 37-40.
    
    105. He J-M, Xu H, She X-P, Song X-G, Zhao W-M. The role and interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. Functional Plant Biology, 2005,32:237-247.
    
    106. He C, Fong SH, Yang D, Wang GL. BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Molecular Plant-Microbe Interactions, 1999,12:1064-1073.
    
    107. Hirt H(Ed). Results and Problems in Cell Differentiation: MAP Kinases in Plant Signal Transduction. Heidelberg: Spinger; 2000.
    
    108. Holley SR, Yalamanchili RD, Moura DS, Ryan CA, Stratmann JW. Convergence of signaling pathways induced by systemin, oligosaccharide elicitors, and ultraviolet-B radiation at the level of mitogen-activated protein kinases in Lycopersicon peruvianum suspension-cultured cells. Plant Physiology, 2003,132:1728-1738.
    
    109. Hoth S, Morgante M, Sanchez JP, Hanafey MK, Tingey SV, Chua NH. Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. Journal of Cell Science, 2002,115: 4891-4900.
    
    110. Hoyos ME, Zhang S. Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiology, 2000,122:1355-1363.
    
    111. Huang Y, Li H, Gupta R, Morris P, Luan S, Kieber JJ. AtMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEKl through threonine phosphorylation. Plant Physiology, 2000,122:1301-1310.
    
    112. Huang X, Stettmaier K, Michel C, Hutzler P, Mueller MJ, Durner J. Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta, 2004, 218:938-946.
    
    113. Huang X, von Rad U, Durner J. Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta, 2002, 215: 914-923.
    
    114. Hunt L, Mills LN, Pical C, Leckie CP, Aitken FL, Kopka J, Mueller-Roeber B, McAinsh MR,Hethering ton AM, Gray JE. Phospholipase C is required for the control of stomatal aperture by ABA. The Plant Journal, 2003, 34: 47-55.
    
    115. Hu X, Jiang M, Zhang A, Lu J. Abscisic acid-induced apoplastic H_2O_2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta, 2005, 223:57-68.
    
    116. Hwang I, Chen H-C, Sheen J. Two component signal transduction pathways in Arabidopsis. Plant Physiology, 2002,129: 500-515.
    
    117. Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. The Plant Journal, 2000, 24: 655-665.
    
    118. Ichimura K, Mizoguchi T, Iriek, Morris P, Giraudat J, Matsumoto K, Shinozaki K. Isolation of AtMEKK1(a MAP kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis. Biochemical and Biophysical Research Communications, 1998, 253: 532-543.
    
    119. Ingram J and Bartel D. The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 377-403.
    
    120. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K and Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. The Plant Journal, 2001, 27: 325-333.
    
    121. Jiang J, An G, Wang P, Wang P, Han J, Jia Y, Song C-P. MAP kinase specifically mediates the ABA-induced H_2O_2 generation in guard cells of Vicia faba L. Chinese Science Bulletin, 2003, 48: 1919-1926.
    
    122. Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant and Cell Physiology, 2001, 42:1265-1273.
    
    123. Jiang M, Zhang J. Involvement of plasma membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta, 2002a, 215:1022-1030.
    
    124. Jiang M, Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves.Journal of Experimental Botany, 2002b, 53: 2401-2410.
    
    125. Jiang M, Zhang J. Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radical Reserch, 2002c, 36:1001-1015.
    
    126. Jiang M, Zhang J. Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defense in leaves of maize seedlings. Plant Cell and Environment, 2003,26:929-939.
    
    127. Jiang M, Zhang J. Abscisic acid and antioxidant defense in plant cells. Acta Botanica Sinica, 2004,46:1-9.
    
    128. Jin H, Axtell MJ, Dahlbeck D, Ekwenna O, Zhang S, Staskawicz B, Baker B. NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Developmental Cell, 2002,3: 291-297.
    
    129. Jih PJ, Chen YC, Jeng ST. Involvement of hydrogen peroxide and nitric oxide in expression of the ipomoelin gene from sweet potato. Plant Physiology, 2003,132: 381-389.
    
    130. Jonak C, Okresz L, Bogre L, Hirt H. Complexity, cross talk and integration of plant MAP kinase signaling. Current Opinion in Plant Biology, 2002, 5: 415-424.
    
    131. Jonak C, Ligterink W, Hirt H. MAP kinases in plant signal transduction. Cellular and Molecular Life Sciences, 1999, 55: 204-213.
    
    132. Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H. Stress signaling in plant: a mitogen-activated protein kinase pathway is activated by cold and drought. Proceedings of the National Academy of Sciences of the United States of America, 1996,93:11274-79.
    
    133. Jonak C, Hirofumi N, Hirt H. Heavy metal stress activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiology, 2004,136: 3276-3283.
    
    134. Jung JY, Kim YW, Kwak JM, Hwang JU, Young J, Schroeder JI, Hwang I, Lee Y.Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. The Plant Cell, 2002,14: 2399- 2412.
    
    135. Karin M, Liu Z, Zandi E. AP-1 function and regulation. Current Opinion in Cell Biology, 1997, 9: 240- 246.
    
    136. Kaminaka H, Morita S, Tokumoto M, Masumura T, Tanaka K. Differential gene expression of rice superoxide dismutase isoforms to oxidative and environmental stresses. Free Radical Reserch, 1999,31: S219-S225.
    
    137. Karpinski S, Reynolds H, Karpinska B, Wingsle G,Creissen G, Mullinearx P. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science, 1999, 284:654-657.
    
    138. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases.Cell, 1993, 72: 427-441.
    
    139. Kiegerl S, Cardinale F, Siligan C, Cross A, Baudouin E, Liwosz A, Eklof S, Till S, Bogre L, Hirt H,Meskiene I. S1MKK, a mitogen-activated protein kinase(MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. The Plant Cell, 2000,12: 2247-2258.
    
    140. Kim Y, Zhang S. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in bobacco. The Pant Journal, 2004,38:142-151.
    
    141. Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang SQ, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H. Nitric oxide and salicylic acid signaling in plant defense. Proceedings of the National Academy of Sciences of the United States of America, 2000,97:8849-8855.
    
    142. Klu sener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI. Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiology, 2002,130: 2152-2163.
    
    143. Knetsch MLW, Wang M, Snaar-Jagalska BE, Heimovaara-Dijkstra S. Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. The Plant Cell, 1996, 8:1061-1067.
    
    144. Knight H and Knight M.R. Abiotic stress signalling pathways: specificity and cross-talk. Trends in Plant Science, 2001, 6: 262-267.
    
    145. Kocsy G, Galiba G and Brunold C. Role of glutathione in adaptation and signaling during chilling and cold acclimation in plants. Physiologia Plantarum, 2001,113:158-164.
    
    146. Koornneef M, Leon-Kloosterziel KM, Schwartz SH and Zeevaart JAD. The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiology and Biochemistry, 1998, 36: 83-89.
    
    147. Kovtun Y, Chiu W-L, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen- activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 2940-2945.
    
    148. Kovtun Y, Chiu W-L, Zeng, Sheen J. Suppression of auxin signal transduction by a MAPK cascade in higher plants.Nature, 1998,395: 716-720.
    
    149. Kumar D, Klessig DF. Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene and jasmonic acid. Molecular Plant-Microbe Interactions, 2000, 13:347-351.
    
    150. Kuo TH, Kao CH. Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. Journal of Plant Physiology, 2004,161:1347-1357.
    
    151. Kwak JM, Mori IC, Pei Z-M, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG Schroeder JI. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. The EMBO Journal, 2003, 22: 2623-2633.
    
    152. Laloi C, Mestres-Ortega D, Marco Y, Meyer Y, Reichheld J-P. The Arabidopsis cytosolic h5 gene induction by oxidative stress and its w-box-mediated response to pathogen elicitor. Plant Physiology,2004,134:1006-1016.
    
    153. Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G Nitric oxide: The versatility of an extensive signal molecule. Annual Review of Plant Biology, 2003, 54:109-136.
    
    154. Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebun-Garcia A, Durner J, Pugin A,Wendehe nne D. Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiology, 2004,135: 516-529.
    
    155. Lang V, Mantyla E, Welin B, Sundberg B, Palva ET. Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiology, 1994,104:1341-1349.
    
    156. Larkindale J, Knight M R. Protection against heat stressinduced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. Plant Physiology, 2002,128: 682-695.
    
    157. Lee J, Klessig DF, Nurnberger T. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesisrelated gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. The Plant Cell, 2001,13:1079-1093.
    
    158. Leshem YY, Haramaty E.The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum Sativum Linn foliage. Journal of Plant Physiology,1996,148:258-263.
    
    159. Leshem YY. Nitric oxide in biological systems. Plant Growth Regulation, 1996,18(3): 155—159.
    
    160. Leshem YY, Pinchasov Y. Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anan nasa (Duch.) and avocados Persea Americana (Mill.). Journal of Experimental Botany, 2000, 51:1471-1473.
    
    161. Leung J and Giraudat J. Abscisic acid signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49:199-222.
    
    162. Ligterink W, Hirt H. Mitogen-activated protein (MAP) kinase pathway in plant: versatile signaling tools. International Review of Cytology, 2001,201:209-275.
    
    163. Liotenberg S, North H and Marion-Poll A. Molecular biology and regulation of abscisic acid biosynthesis in plants. Plant Physiology and Biochemistry, 1999, 37:341-350.
    
    164. Lin CC, Kao CH . Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Science, 2001,160: 323-329.
    
    165. Lipton S A, Chol Y B, Pan Zh, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric xoide and related nitroso-compounds. Nature, 1993,364: 626-632.
    
    166. Liu Y, Zhang S, Klessig DF. Molecular cloning and characterization of a tobacco MAP kinase kinase that interacts with SIPK. Molecular Plant-Microbe Interactions, 2000,13: 118-124.
    
    167. Lopez-Huertas E, Charlton WL, Johnson B, Graham I A, Baker A. Stress induces peroxisome biogenesis genes. The EMBO Journal, 2000,19: 6770-6777.
    
    168. Lum HK, Butt YK, Lo SC. Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus). Nitric Oxide, 2002, 6: 205-213.
    
    169. Lu C, Han MH, Guevara-Garcia A, Fedoroff NV. Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proceedings of the National Academy of Sciences of the United States of America, 2002,99:15812-15817.
    
    170. MacRobbie EAC . Evidence for a role for protein tyrosine phosphatase in the control of ion release from the guard cell vacuole in stomatal closure. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 11963-11968.
    
    171. Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A and Marion-Poll A.Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. The EMBO Journal, 1996,15: 2331-2342.
    
    172. Matsuoka D, Nanmori T, Sato K, Fukami Y, Kikkawa U, Yasuda T. Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E.coli and generation of the active form in stress response in seedlings. The Plant Journal, 2002,29: 637-647.
    
    173. Mayrose M, Bonshtien A, Sessa G. LeMPK3 is a mitogen activated protein kinase with dual specificity induced during tomato defense and wounding responses. Journal of Biological Chemistry, 2004,279:14819-14827.
    
    174. Mayer B, Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells. Trends in Biochemic al Science, 1997, 22: 477-481.
    
    175. Meinhard M, Grill E. Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Letters, 2001, 508: 443-446.
    
    176. Meinhard M, Rodriguez PL, Grill E. The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signaling. Planta, 2002, 214: 775-782.
    
    177. Menke FL, van Pelt JA, Pieterse CM, Klessig DF. Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. The Plant Cell, 2004,16: 897-907.
    
    178. Mikolajczyk M, Awotunde OS, Muszynska G, Klessig DF, Obrowolska G. Osmotic stress induces rapid activation of a alicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. The Plant Cell, 2000,12:165-178.
    
    179. Mizoguchi T, Gotoh Y, Nishida E, Yamaguchi-Shinozaki K, Hayashida N, Iwasaki T, Kamada H,Shinozaki K. Characterisation of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activation in cultured cells. The Plant Journal, 1994,5:111-122.
    
    180. Mizoguchi T, Ichimura K, Shinozaki K. Environmental stress response in plant: the role of mitogn-activated protein kinases. Trends in Biotechnology, 1997,15:15-19.
    
    181. Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold and water stress in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 765-769.
    
    182. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002, 7:405-410.
    
    183. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants.Trends in Plant Science, 2004, 9:490-498.
    
    184. Mittler R, Herr EH, Orvar BL, van CampW, Willekens H, Inze D and Ellis BE. Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 14165-14170.
    
    185. Mockaitis K, Howell SH. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. The Plant Journal, 2000, 24: 785-796.
    
    186. Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak S-S, Kim DH, Nam J, Bank J, Hong JC,Lee SY, Cho MJ, Lim CO, Yun D-J. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants.Proceedings of the National Academy of Sciences of the United States of America, 2003, 100:358-363.
    
    187. Morita S, Kaminaka H, Masumura T, Tanaka K. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress, the involvement of hydrogen peroxide in oxidative stress signaling.Plant and Cell Physiology, 1999, 40: 417-422.
    
    188. Munnik T, Ligterink W, Meskiene I, Calderini O, Beyerly J, Musgrave A, Hirt H. Distinct osmo-sensing protein kinase pathways are involved in signaling moderate and severe hyper-osmotic stress. The Plant Jounal, 1999, 20: 381-388.
    
    189. Murata Y, Pei ZM, Mori IC, Schroeder JI. Abscisic acid activation of plasma membrane Ca~(2+) channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abil-1 and abi2-l protein phosphatase 2C mutants. The Plant Cell, 2001,13: 2513-2523.
    
    190. Murgia I, de Pinto MC, Delledonne M, Soave C, De Gara L. Comparative effects of various nitric oxide donors on ferritin regulation, programmed cell death, and cell redox state in plant cells. Journal of Plant Physiology, 2004a, 161: 777-783.
    
    191. Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C. Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. The Plant Journal, 2004b, 38: 940-953.
    
    192. Murgia I, Delledonne M, Soave C. Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. The Plant Journal, 2002, 30: 521-528.
    
    193. Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signaling. Trends in Plant Science, 2005,10: 339-346.
    
    194. Nambara E, Suzuki M, Abrams S, McCarty DR, Kamiya Y, McCourt P. A screen for genes that function in abscisic acid signaling in Arabidopsis thaliana. Genetics, 2002,161:1247-1255.
    
    195. Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology, 2005, 56:165-185.
    
    196. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT. Hydrogen peroxide and nitric oxide as signaling molecules in plants. Journal of Experimental Botany, 2002, 53:1237-1247.
    
    197. Neill SJ, Desikan R, Clarke A, Hancock JT. Nitric oxide is a novel component of abscisic acid signalling in stomatal guard cells. Plant Physiology, 2002,128:13-16.
    
    198. Neill SJ, Desikan R, Hancock JT. Nitric oxide signalling in plants. New Phytologist, 2003, 159:11-35.
    
    199. Neill S, Desikan R, Hancock J. Hydrogen peroxide signalling. Current Opinion in Plant Biology,2002,5: 388-395.
    
    200. Nishihama R, Ishikawa M, Araki S, Soyano T, Asada T, Machida Y. The NPK1 mitogen-activated protein kinase kinase kinase is a regulater of cell-plate formation in plant cytokinesis. Genes& Development, 2001,15: 352-363.
    
    201. Noctor G and Foyer C. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 1998,49: 249-279.
    
    202. Nuccio ML, Rhodes D, McNeil SD and Hanson AD. Metabolic engineering of plants for osmotic stress resistance. Current Opinion in Plant Biology, 1999, 2:128-134.
    
    203. Orozco-Cardenas ML, Ryan CA. Hydrogen peroxide is generated systematically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences of the United States of America, 1999,96: 6553-6557.
    
    204. Orozco-Cardenas ML, Ryan CA. Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiology, 2002,130:487-493.
    
    205. Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L. Nitric oxide is required for root organogenesis. Plant Physiology, 2002,129: 954-956.
    
    206. Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiology, 2004,135:279-286.
    
    207. Pagnussat GC, Lanteri ML, Lamattina L. Nitric oxide and cyclic GMP are messengers in the indole acetic acid induced adventitious rooting process. Plant Physiology, 2003, 132:1241-1248.
    
    208. Panchuk II, Volkov RA, Schoffl F. Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiology, 2002, 129:838-853.
    
    209. Park SY, Ryu SH, Jang IC, Kwon SY, Kim JG, Kwak SS. Molecular cloning of a cytosolic ascorbate peroxidase cDNA from cell cultures of sweetpotato and its expression in response to stress. Molecular Genetics and Genomics, 2004, 271: 339-346.
    
    210. Pedley KF, Martin GB. Identification of MAPKs and their possible MAPKK activators involved in the Pto-mediated defense response of tomato. Journal of Biological Chemistry, 2004, 279: 49229-49235.
    
    211. Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature,2000, 406: 731-734.
    
    212. Pellinen R, Palva T, Kangasjarvi J. Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. The Plant Journal, 1999, 20: 349-356.
    
    213. de Pinto MC, Tommasi F, de Gara L. Changes in the antioxidant systems as part of the signalling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in Bright-Yellow 2 cells. Plant Physiology, 2002,130: 698-708.
    
    214. Pnueli L, Liang H, Rozenberg M, Mittler R. Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apxl)-deficient Arabidopsis plants. The Plant Journal, 2003, 34:187-203.
    
    215. Polle A. Dissecting the superoxide dismutase-ascorbate peroxidase-glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiology, 2001,126: 445-462.
    
    216. Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M. Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2003, 16:1094-1105.
    
    217. Popping B, Gibbons T, Watson MD. The pisum sativum MAP kinase homologum(PsMAPK) rescues the Saccharomyces cerevisiae hog1 deletion mutant under conditions of high osmotic stress. Plant Molicular Biology, 1996, 31: 355-363.
    
    218. Prasad TK, Anderson MD, Stewart CR. Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiology, 1994a, 105:619-627.
    
    219. Prasad TK, Anderson MD, Martin BA and Steward CR. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. The Plant Cell, 1994, 6:65-74.
    
    220. Price AH, Taylor A, Ripley SJ, Griffiths A and Trewavas AJ. Oxidative signals in tobacco increase cytosolic calcium. The Plant Cell, 1994, 6: 1301-1310.
    
    221. Qin X and Zeevaart JAD. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 15354-15361.
    222. Quinn J, Findlay VJ, Dawson K, Millar JB, Jones N, Morgan BA, Toone WM. Distinct regulatory proteins control the graded transcriptional response to increasing H_2O_2 levels in fission yeast Schizosaccharomyces pombe. Molecular Biology of the Cell, 2002,13: 805-816.
    
    223. Ren D, Yang H, Zhang S. Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. Journal of Biological Chemistry, 2002, 277: 559-565.
    
    224. Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen1 L, Okamoto1 H, Knightl H, Peck SC, Grie rson CS, Hirt H, Knightl MR. OXI1 kinase is necessary for oxidative burst mediated signalling in Arabidopsis. Nature ,2004,427: 858-861.
    
    225. Reyes D, Rodriguez D, Nicolas G, Nicolas C. Evidence of a role for tyrosine dephosphorylation in the control of postgermination arrest of development by abscisic acid in Arabidopsis thaliana L.Planta, 2006, 223(2): 381-385.
    
    226. Ribeiro EA, Cunha FQ, Tamashiro W, Martins IS. Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Letters, 1999,445:283-286.
    
    227. Ritchie SM, Swanson SJ, Gilroy S. From common signaling components to cell specific responses: insights from the cereal aleurone. Physiologia Plantarum, 2002,115: 342-351.
    
    228. Rizhsky L, Davletova S, Liang H, Mittler R. The zinc finger protein Zatl2 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. Journal of Biollgical Chemistry, 2004,279:11736-11743.
    
    229. Rizhsky L, Liang H, Mittler R. The water-water cycle is essential for chloroplast protection in the absence of stress. Journal of Biological Chemistry, 2003, 278: 38921-38925.
    
    230. Rock C. Pathways to abscisic acid-regulated gene expression. New Phytologist, 2000, 148: 357-396.
    
    231. Rock CD and Zeevaart JAD. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88:7496-7499.
    
    232. Rock CD. Pathways to abscisic acid-regulated gene expression. New Phytologist, 2000, 148:357-396.
    
    233. Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany, 2002,53:103-110.
    
    234. Roel GL, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C,Feussner I, Nater M and Apel K. Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. The Plant Cell, 2003,15: 2320-2332.
    
    235. Rohde A, Kurup S and Holdsworth M.ABI3 emerges from the seed. Trends in Plant Science, 2000b, 5:418-419.
    
    236. Romeis T, Piedras P, Zhang S, Klessig DF, Hirt H, Jones JDG Rapid Avr9- and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. The Plant Cell, 1999,11:273-287.
    
    237. Romero-Puertas MC, Perazzolli M, Zago E, Delledonne M. Nitric oxide signalling functions in plant pathogen interaction. Cellular Microbiology, 2004, 6: 795-803.
    
    238. Ruan HH, Shen WB, Ye MB. Protective effects of nitric oxide on salt stress-induced oxidative damage to wheat leaves. Chinese Sciense Bulletin, 2002, 7(8): 677-681.
    
    239. Samuel MA, Ellis BE. Double jeopardy: both overexpression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. The Plant Cell, 2002,14: 2059-2069.
    
    240. Samuel MA, Miles GP, Ellis BE. Ozone treatment rapidly activates MAP kinase signaling in plants.The Plant Journal, 2000,22: 367-376.
    
    241. Sanchez JP, Chua NH. Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. The Plant Cell, 2001,13:1143-1154.
    
    242. Sano T, Nagata T. The possible involvement of a phosphate-induced transcription factor encoded by phi-2 gene from tobacco in ABA-signaling pathways. Plant and Cell Physiology, 2002, 43(1):12-20.
    
    243. Schroeder JI, Kwak JM, Allen GJ. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature, 2001, 410: 327-330.
    
    244. Schwartz SH, Tan BC, Gage DA, Zeevaart JAD and McCarty DR. Specific oxidative cleavage of carotenoid by VP14 of maize. Science, 1997b, 276:1872-1874.
    
    245. Schwartz SH, Qin XP, Zeevaart JAD. Elucidation of the Indirect Pathway of Abscisic Acid Biosynthesis by Mutants, Genes, and Enzymes. Plant physiology, 2003, 131:1591-1601.
    
    246. Schoenbeck MA, Samac DA, Fedorova M, Gregerson RG, Gantt JS, Vance CP. The alfalfa(Medicago sativa) TDY1 gene encodes a mitogen-activated protein kinase homolog. Molecular Plant-Microbe Interactions, 1999,12: 882-893.
    
    247. Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A,Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y,Shinozaki K. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Functional & integrative genomics, 2002, 2:282-291.
    
    248. Seo M, Peeters AJM, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JAD, Koornneef M, Kamiya Y, Koshiba T. The Arabidopsis aldehyde oxidase 3(AAO3)gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97:12908-12913.
    
    250. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiology, 1997,115: 327-334.
    
    251. Singh KK. The Saccharomyces cerevisiae SLN1P-SSK1P two component system mediates response to oxidative stress and in an oxidant-specific fashion. Free Radical Biology and Medicine,2000,29:1043-1050.
    
    252. Shinozaki K and Yamaguchi-Shinozaki K. Molecular response to dehydration and low temperature:Differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology,2000, 3: 217-223.
    
    253. Sharp RE. Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell and Environment, 2002, 25: 211-222.
    
    254. Shi W, Jia W, Liu X, Zhang S. Protein tyrosine phosphatases involved in signaling of the ABA-induced H_2O_2 generation in guard cells of Vicia faba L. Chinese Science Bulletin, 2004, 49:1841-1846.
    
    255. Shinozaki K and Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology,2000, 3:217-223.
    
    256. Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell, 1994,78: 931-936.
    
    257. Tan BC, Schwartz SH, Zeevaart JAD and McCarty DR. Genetic control of abscisic acid biosynthesis in maize. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94:12235-12240.
    
    258. Taylor IB, Burbidage A and Thompson AJ. Control of abscisic acid synthesis. Journal of Experimental Botany, 2000,51:1563-1574.
    
    259. Tena G, Asai T, Chiu WL, Sheen J. Plant mitogen-activated protein kinase signaling cascades. Current Opinion in Plant Biology, 2001,4: 392-400.
    
    260. Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB. Subcellular localization of H_2O_2 in plants:H_2O_2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. The Plant Journal, 1997,11:1187-1194.
    
    261. Thomashow ME Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms.Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 571-599.
    262. Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, Burbidge A and Taylor IB. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. The Plant Journal, 2000,23: 363-374.
    
    263. Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozakik, Seki M, Hirayama T, Shinozaki K. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. The Plant Cell, 1999,11:1743-1754.
    
    264. van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature, 2003, 423: 773-77.
    
    265. Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inze D, Van Breusegem F. Catalase deficiency drastically affects high light-induced gene expression in Arabidopsis thaliana. The Plant Journal, 2004,39: 45-58.
    
    266. Vandenabeele S, KelenKVD, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers, SlootenL,Montagu MV, Zabeau M, Inze D, Breusegem FV. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2003,100:16113-16118.
    
    267. Vranova E, Atichartpongkul S, Villarroel R, Van Montagu M, Inze D, Van Camp W.Comprehensive analysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99:10870-10875.
    
    268. Wendehenne D, Durner J, Klessig DF. Nitric oxide: a new player in plant signalling and defence responses. Current Opinion in Plant Biology, 2004, 7:1-7.
    
    269. Wendehenne D, Pugin A, Klessig D, Durner J. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends in Plant Science, 2001, 6:177-183.
    
    270. Whistler CA, Corbell NA, Sarniguet A, Ream W, Loper JE. The two component regulators GacS and GacA influence accumulation of the stationaryphase sigma factor sigmaS and the stress response in Pseudomonas fluorescens Pf-5. The Journal of Bacteriology, 1998,180: 6635-6641.
    
    271. Whitmarsh AJ, Davis RJ, Whitmarsh AJ, Davis RJ. Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends in Biochemical Science, 1998,23: 481-485.
    
    272. Widmann C, Gibson S, Jarpe MB & Johnson GL. Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physical Review, 1999,79: 143-180.
    
    273. Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Montagu MV, Inze D,Camp WV. Catalase is a sink for H_2O_2 and is indispensable for stress defence in C_3 plants. The EMBO Journal, 1997,16:4806-4816.
    
    274. Wright STC, Hiron RWP. (+)Abscisic acid, the growth inhibitor induced in detached leaves by a period of wilting. Nature, 1969,224: 719-720.
    
    275. Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. The Plant Cell, 2003,15:745-759.
    
    276. Xiong L, Ishitani M and Zhu JK. Interaction of osmotic stress, ABA and low temperature in the regulation of stress gene expression in Arabidopsis thaliana. Plant Physiology, 1999b, 119: 205-211.
    
    277. Xiong L, Ishitani M, Lee H and Zhu JK. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold and osmotic stress responsive gene expression.The Plant Cell, 2001b, 13: 2063-2083.
    
    278. Xiong L, Lee H, Ishitani M, Zhu JK. Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. Journal of Biological Chemistry, 2002,277: 8588-8569.
    
    279. Xiong L, Ishitani M, Lee H, Zhu JK. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold and osmotic stress responsive gene expression. The Plant Cell, 2001,13:2063-2083.
    
    280. Xiong L, Lee B, Ishitani M, Lee H, Zhang C, Zhu JK. FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Development, 2001,15:1971-1984.
    
    281. Xiong L and Zhu JK. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell and Environment, 2002, 25:131-139.
    
    282. Yamaguchi-Shinozaki K, Shinozaki K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Molecular & general genetics, 1993,236: 331-340.
    
    283. Yamaguchi-Shinozaki K and Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 1994, 6:251-264.
    
    284. Yamasaki H. Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355:1477-1488.
    
    285. Yamamoto A, Katou S, Yoshioka H, Doke N, Kawakita H. Nitrate reductase, a nitric oxide-producing enzyme: induction by pathogen signals. Journal of General Plant Pathology, 2003,69: 218-229.
    286. Yang KY, Liu Y, Zhang S. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 741-746.
    
    287. Yoshida K, Igarashi E, Wakatsuki E, Miyamoto K, Hirata K. Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii. Plant Science, 2004,167:1335-1341.
    
    288. Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JDG, Doke N.Nicotiana benthamiana gp91~(phox) homologs NbrbohA and NbrbohB participate in H_2O_2 accumulation and resistance to Phytophthora infestans. The Plant Cell, 2003,15: 706-718.
    
    289. Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K. Oxidative stress activates AtMPK6, an Arabidopsis homologue of MAP kinase. Plant and Cell Physiology, 2001, 42:1012-1016.
    
    290. Zeier J, Delledonne M, Mishina T, Severi E, Sonoda M, Lamb C. Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions. Plant Physiology, 2004,136:2875-2886.
    
    291. Zhang X, Zhang L, Dong F, Gao J, Galbraith DW and Song CP. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiology, 2001,126:1438-1448.
    
    292. Zhang DP, Wu ZY, Li XY, Zhao ZX. Purification and identification of a 42-kiIodaIton abscisic acid- specific-binding protein from epidermis of broad bean leaves. Plant Physiology, 2002, 128:714-725.
    
    293. Zhang DP, Chen SW, Peng YB, Shen YY. Abscisic acid-specific binding sites in the flesh of developing apple fruit. Journal of Experimental Botany, 2001, 52: 2097-2103.
    
    294. Zhang S, Du H, Klessig DF. Activation of the tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp. The Plant Cell,1998,10: 435-450.
    
    295. Zhang S, Klessig DF. Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 7433-7438.
    
    296. Zhang S, Klessig DF. Salicylic acid activates a 48-kD MAP kinase in tobacco. The Plant Cell, 1997,9: 809-824.
    
    297. Zhang S, Klessig DF. MAPK cascades in plant defense signaling. Trends in Plant Science, 2001, 6:520-527.
    
    298. Zhao Z, Chen G and Zhang C. Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Austrilian Journal of Plant Physiology, 2001,28:1055-1061.
    299. Zheng M, Aslund F, Storz G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science, 1998,279:1718-1721.
    
    300. Zhou B, Guo Z, Xing J, Huang B. Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. Journal of Experimental Botany, 2005,56: 3223-3228.
    
    301. Zhu D, Scandalios JG. Differential accumulation of manganese-superoxide dismutase transcripts in maize in response to abscisic acid and high osmoticum. Plant Physiology, 1994,106:173-178.
    
    302. Zhu JK, Salt and drought stress signal transduction in plants. Annual Review of Plant Biology,2002,53: 247-273.
    
    303. Zwerger K, Hirt H. Recent advances in plant MAP kinase signaling. Biological chemistry, 2001,382:1123-1131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700