用户名: 密码: 验证码:
ABA和H_2O_2对干旱高温复合胁迫诱导的玉米sHSPs和抗氧化防护酶的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为确定脱落酸(ABA)和H_2O_2在干旱高温复合胁迫诱导的玉米(Zea mays L.)叶片和根系小热休克蛋白(sHSPs)和抗氧化防护中的作用,本研究以玉米郑单958及ABA缺失突变体vp5为实验材料,首先通过引物设计和RT-PCR分析筛选出干旱高温复合胁迫诱导产生的sHSPs基因,其次采用ABA抑制剂钨酸钠(T)和H_2O_2清除剂KI(I),通过RT-PCR分析ABA和H_2O_2对玉米叶片和根中sHSPs和抗氧化防护酶基因表达的影响,最后通过Western blot分析验证了sHSP26的表达。具体研究结果如下:
     1.从NCBI数据库(http://www.ncbi.nlm.nih.gov/)GenBank中查找出玉米sHSPs已发表的全部基因序列,利用软件Dnaman对不同家族的sHSPs基因序列分别进行比对分析,并利用软件Oligo6.0分别在其保守区设计引物,最后通过RT-PCR筛选出诱导型sHSPs基因,本实验筛选出的诱导型sHSPs基因分别有:sHSP16.9、sHSP17.2、sHSP17.4、sHSP17.5、sHSP22和sHSP26。另外还分别对四种抗氧化防护酶的基因设计了引物:过氧化氢酶1(catalase 1,CAT1)、抗坏血酸过氧化物酶(cytolic ascorbate peroxidase,cAPX)、谷胱甘肽还原酶1(glutathione reductase 1,GR1)和超氧化物歧化酶4(superoxide dismutase 4,SOD4)。
     2.ABA抑制剂钨酸钠和H_2O_2清除剂KI预处理结果表明:(1)六种sHSPs基因在玉米叶片中的表达分别都受到T不同程度的抑制,而根中只有sHSP16.9、sHSP17.2、sHSP17.5和sHSP22表达稍微受到抑制,CAT1、cAPX、GR1和SOD4四种抗氧化防护酶基因表达在玉米叶片和根中均受到T明显抑制。(2)与未用100μM ABA预处理的vp5相比,100μM ABA预处理明显增强了四种抗氧化防护酶基因在突变体vp5叶片和根中的表达,但是仅稍微提高了六种sHSPs基因在叶片中的表达和sHSP17.2在根中的表达。(3)KI预处理明显抑制了四种酶基因在玉米叶片和根中的表达,但是稍微抑制了六种sHSPs基因在玉米叶片中的表达和sHSP16.9、sHSP17.2、sHSP17.5、sHSP22和sHSP26五种基因在根中的表达。
     3. Western blot实验检测分析sHSP26的表达,结果显示,在玉米叶片中T和I均明显抑制了sHSP26的表达,而在根中,T对sHSP26的表达几乎没有影响而I仅稍微抑制了sHSP26的表达。
     这些研究结果为进一步研究植物抗逆机制及基因克隆奠定基础,并为揭示植物在多胁迫条件下耐逆机理提供重要的科学证据。
In order to determine the effects of H_2O_2 and ABA on small heat shock protein (sHSPs) and antioxidant defense enzymes induced by the combination of drought and heat stress in maize (Zea mays L.) leaves and roots, Zheng dan 958 and ABA deletion mutant vp5 maize plants as experimental materials were used in this study. Fristly, through primer designing and RT-PCR analyzing, selected out sHSPs that induced by the combination of drought and heat stress. Secondly, ABA inhibitor tungstate (T) and H_2O_2 scavenger KI(I) were used to analyse the influences of H_2O_2 and ABA on sHSPs and antioxidant defense enzymes genes expression induced by the combination of drought and heat stress in maize leaves and roots by RT-PCR. Finally, the expression of sHSP26 was analysed by western blot. The detailed research results are as follows.
     1、Searching out all of maize sHSPs gene sequences published in NCBI database GenBank. Fristly, sHSPs gene sequences with different families were compared and analysised by Dnaman software; Then, primers in its conservative districts were designed by Oligo6.0 software. In the end, sHSPs genes induced by combined drought and heat stress were selected out by RT-PCR, which incluced sHSP16.9、sHSP17.2、sHSP17.4、sHSP17.5、sHSP22 and sHSP26. In addition, the four antioxidant defense enzymes such as catalase 1( CAT1)、cytolic ascorbate peroxidase ( cAPX)、glutathione reductase 1 ( GR1) and superoxide dismutase 4 (SOD4) primers were also designed.
     2、The results of pretreatment with ABA inhibitor T and H_2O_2 scavenger KI showed that: (1) The six sHSPs genes expression in maize leaves were all inhibited by T more or less, but only sHSP16.9、sHSP17.2、sHSP17.5 and sHSP22 were slightly inhibited in maize roots. The expression of four antioxidant defense enzymes gene SOD4, GR1, CAT1 and cAPX were all significantly inhibited by T both in maize leaves and roots. (2) Compared with vp5 maize plant that without 100μM ABA pretreatment, the pretreatment significantly increased the four enzymes genes expression in leaves and roots, but only slightly increased the six sHSPs genes expression in maize leaves and sHSP17.2 expression in roots. (3) The pretreatment with KI significantly inhibited the genes expression of four antioxidant defense enzymes both in maize leaves and roots and slightly inhibited the genes expression of six sHSPs in maize leaves, but only slightly inhibited the genes expression of sHSP16.9、sHSP17.2、sHSP17.5、sHSP22 and sHSP26 in maize roots.
     3、The results of sHSP26 expression analysed by western blot showed that, sHSP26 was significantly inhabited by T and KI in maize leaves, but T was almostly no influence to sHSP26 expression and KI only slightly inhabited sHSP26 expression in maize roots.
     These results supplied the basis for further researching the mechanisms of plant response to stress and gene cloning, and also offered important scientific evidences to reveal the mechanism of plants tolerant to combination stress.
引文
[1] Thomson AM, Brown RA, Osenberg NJ, Izaurrai DE R C, Benson V. Climate change impacts for the conterminous USA: Integrated assessment. Part 3. Dryland production of grain and forage crops[M]. Clim Change, 2005, 69: 3-65.
    [2] Zhu JK. Salt and drought stress signal transduction in plants[J]. Annu Rev Plant Biol, 2002, 53: 247-273.
    [3] Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings[J]. Plant Cell, 2002, 14: S15-S45.
    [4] Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J].Trends Plant Sci, 2004, 9: 244-252.
    [5] Koornneef M, Léon-Kloosterziel KM, Schwartz SH, Zeevaart JAD. The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis[J]. Plant Physiology and Biochemistry, 1998, 36: 83-89.
    [6] Cutler AJ, Krochko JE. Formation and breakdown of ABA[J]. Trends in Plant Science, 1999, 4: 472-478.
    [7] Liotenberg S, North H, Marion-Poll A. Molecular biology and regulation of abscisic acid biosynthesis in plants[J]. Plant Physiology and Biochemistry, 1999, 37: 341-350.
    [8] Tena G.Asai T, Chiu WL, Sheen J. Plant mitogen-activated protein kinase signaling cascades[J]. Current Opinion in Plant Biology, 2001, 4: 392-400.
    [9] Leung J, Giraudat J. Abscisic acid signal transduction[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 199-222.
    [10] Rock CD. Pathways to abscisic acid-regulated gene expression[J]. New Phytologist, 2000, 148: 357-396.
    [11] Rohde A, Kurup S, Holdsworth M, ABI3 emerges from the seed[J]. Trends in Plant Science, 2000b, 5: 418-419.
    [12] Rock C. Pathways to abscisic acid-regulated gene expression[J]. New Phytologist, 2000 148: 357-396.
    [13] Shinozaki K, Yamaguchi-Shinozaki K. Molecular response to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways[J]. Current Opinion in Plant Biology, 2000, 3: 217-223.
    [14] Gazzarrini S. McCourt P.Genetic interactions between ABA,ethylene and sugar signaling pathways[J]. Current Opinion in Plant Bilogy, 2001, 4: 387-391.
    [15] Finkelstein R, Gibson SI. ABA and sugar interactions regulating development: "cross-talk"or "voices in a crowd"?[J]. Current Opinion in Plant Biology, 2002, 5: 26-32.
    [16] Ingram J, Bartel D. The molecular basis of dehydration tolerance in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 377-403.
    [17] Bray EA. Plant responses to water deficit[J]. Trends in Plant Science, 1997, 2: 48-54.
    [18] Thompson A J, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, Burbidge A, Taylor IB. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid[J]. The Plant Journal, 2000, 23: 363-374.
    [19] Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide[J]. Cell, 1994, 78: 931-936.
    [20] Xiong L, Ishitani M, Lee H, Zhu JK. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold and osmotic stress responsive gene expression[J]. The Plant Cell, 2001, 13: 2063-2083.
    [21] Xiong L, Lee H, Ishitani M, Zhu JK. Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus inArabidopsis[J]. Journal of Biological Chemistry, 2002, 227: 8588-8569.
    [22] SAAB I N, SHARP R E, PRITCHARD J, VOETBERG G S. Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials [J]. Plant Physiol, 1990, 93: 1329-1336.
    [23] Guan L, Scandalios JG. Two structurally similar maize cytosolic superoxide dismutase genes Sod4 and Sod4A respond differentially to abscisic acid and high osmoticum[J]. Plant Physiology, 1998a, 117: 217-224.
    [24] Daves WJ, Zhang J. Root signals and the regulatioa of growth and development plants in drying soil[J]. Ann Rev Plant Physiol and Plant Mol Bud, 1991, 42: 55-76.
    [25] McDunald AJS, Davies WJ. Keeping in touch: Responses of the whole plant to deficits in water and nitrogen supply[J]. Adv. Bot. Res., 1996, 22: 230-300.
    [26] Liang J, Zhang J, Wong M H. Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying? [J]. Photosyn Res, 1997, 51: 149-159.
    [27] Aroca R, Vemieri P. Involvement of abscisic acid in leaf and root of maize(Zea mays L.)in avoiding chilling-induced water stress[J]. Plant Science, 2003, 165: 67I-679.
    [28] Perales L, Arbona V, Gamez-Cadenas A. A relationship between tolerance to dehydration of rice cell lines and ability for ABA synthesis under stress[J]. Plant Physiology and Biochemistry, 2005, 43: 786-792.
    [29] Nayyar H, Walia D P. Water stress induced praline accumulation in contrasting wheat genotypes as afected by calcium and abscisic acid[J]. Biologia Plantarum, 2003, 46(2): 275-279.
    [30] Zhu J K. Salt and drought stress signal transduetion in plants[J]. Annu Rev Plant Biol, 2002, 53: 247-273.
    [31] Morgan JM, Osmoregulation and water stress in higher plants[J]. Ann Rev Plant Physia1, 1984, 35: 299-319.
    [32] Teulat B, This D, Khairallah M. Several QTls involvedin osmotic adjustment trait variation in barley[J]. Thevretical andApplied Genetics, 1998, 96(5): 688-698.
    [33] Huo ZH L, Li J S. Stimulative Effect of Osmotic Stress on K~+ Accumulation in Sorghum Roots[J]. Acta phytophysiologoca Sinica, 1993, 19(4): 379-386.
    [34] Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation[J]. New phytal., 1993, 25: 21-31.
    [35] Sovoure A, Hua X J, Bertauche N. Abseisic acid-independent and abscisie acid dependent aegnation of prollne biosynthesis following cold and osmotic stress[J]. Molecular and Gencrul Genetits, l997, 254: 104-109.
    [36] Voetberg G S, Sharp R E. Growth of the maize primary root at low water potentials: Role of increased proline deposition in osmotic adjustment[J]. Plant Physio1., 1991, 96: 1125-1130.
    [37] Carcelier M, Prystupa P, Lemcoff J H. Remobilization of proline and other nitrogen compounds from seneseing leaves of maize under water stress[J]. Agron Cro. Sci., 1999, 183(1): 61-66.
    [38] Ilahi I, Dorffing K. Changes in abscisic acid and proline levels in maize varieties of different drought resistance[J]. Physio1. Planta, 1982, 55(2): 129-135.
    [39] Wang J, Yang D G, Ma F M, Chang J L. Effects of water stress on soluble sugar and praline contents in maize leaves[J]. Journal of Maize Sciences, 2007, 15(6): 57-59(in Chinese).
    [40] Roberts S K. Regulation of K channels in maize roots by water stress and abscisic acid[J]. Plant Physio1., 1998, 116: 145-153.
    [41] Schroeder J I, Hugouvieux V, Kwak J M, Waner D. Guard cell signal transduction[J]. Plant Mo1. Bio1., 200l, 52: 627-668.
    [42] Shinozaki K, Yamaguchishinozaki K. Gene networks involved in drought stress response and tolerance[J]. Exp. Bot., 2007, 58: 221-227.
    [43] Jiang M Y, Zhang J H. Involvement of plasma memberne NADPH oxidase in abscisic acid and water-induced antioxidant defense in leaves of maize seedlings[J]. Planta, 2002, 215: 1022-1030.
    [44] Jiang M Y, Zhang J H. Role of abscisic acidin water stress-induced antioxidant defense in leaves of maize seedlings[J]. Free Rad Res, 2002, 36: 1001-1015.
    [45]张孝华等, ABA对水分胁迫下玉米幼苗细胞氧化损伤的保护作用[J].江苏农业科学, 2008, 6: 22-24.
    [46] Jiang M Y. Generation of hydroxyl radicals and its relation to cellular oxidative damage in plants suected to water stress[J]. Acta Botanica Sinic, 1999, 41(3): 229-234.
    [47] Jiang M Y, Zhang J H. Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings[J]. Free Radieal Res, 2002, 36: 100l-1015.
    [48] Liu R X, Li Y H, Chen S N, Yu Y, Hu X L. Effects of collaborative stress of drought and high temperature on antioxidant defense system in maize[J]. Journal of Henan Agricultural University, 2008, 42(4): 363-366 (in Chinese).
    [49] Ge T D, Sui F G, Bai I P, LV Y Y, Zhou G SH. Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize[J]. Agricultural Sciences in China, 2006, 5(4): 291-298(in Chinese).
    [50] Laloi C, Mestresortega D, Marc Y, Meyer Y, Reichheld J P. The Arabidopsis cytosolic h5 gene induction by oxidative stress and its w box mediated response to pathogen elicitor[J]. Plant PhTsio1., 2004, 134: 1006-1016.
    [51] Hu X L, Wang W, I I CH Q, Zang J H, Tan M P, Zang A Y, Jiang M Y. Cross-talk between Ca2+/CaM and H_2O_2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress[J]. Plant Growth Regu1., 2008, 55(3): 183-198.
    [52] Nayyar H, Gupta D. Differential sensitivity of C3 and C4 plants to water deficit stress:association with oxidative stress and antioxidants[J]. Environ Exp. Bot., 2006, 58(1-3): 106-l13.
    [53] Bai L P, Sui F G, Ge T D, Sun ZH H, LV Y Y, Zhou G SH. Effect of soil drought stress on leaf water status,membrane permeability and enzymatic antioxidant system of maize[J]. Pedosphere, 2006, 16 (3): 326-332(in Chinese).
    [54] Hu X L, Zhang A Y, Zhang J H, Jiang M Y. Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress[J]. PlantCell Physio1.,2006, 47(11): 1484-1495.
    [55] Zhang A Y, Jiang M Y, Zhang J H, Tan M P, Hu X I. Mitogen activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants[J]. Plant Physio1., 2006, 141: 475-487.
    [56] Zhang A Y, Jiang M Y, Zhang J H, Ding H D, Xu S C, Hu X I, Tan M P. Nitric oxide induced by hydrogen peroxide mediates abscisic acid induced activation of the mitogen activated protein kinase cascade involved in antioxidant defense in maize leaves[J]. New Phyto1., 2007, 175(1): 36-50.
    [57] Zhang A Y, Jiang M Y, Zhang J H, Tan M P, Hu X I. Mitogen activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants[J]. Plant Physio1., 2006, 141: 475-487.
    [58] Serraj R, Sinaiair T R. Osmolyte accumulation: Can it really help increase crop yield under drought conditions? [J]. Plant Cell Environ., 2002, 25: 333-341.
    [59] Ober E S, Sharp R E. Proline accumulation in Maize primary roots at low water potentials[J]. Plant Physio1., 1994, 105(3): 981-987.
    [60] Guo A H, Liu G SH, Ren S X, An SH Q, Yang Y Y. The response of yield formation and abscisic acid content in root, stem, and leaf of maize to soil drying[J]. ActaAgronomica Sinica, 2004, 30(9): 888-893(in Chinese).
    [61] Saab I N, Sharp R E, Pritchard J, Voetberg G S. Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials[J]. Plant Physio1., 1990, 93: 1329-1336.
    [62] Li ZH N, Wang G M, Ceng Z W. The study on ABA in plants under drought stress[J]. Agricultural Research in the Arid Areas, 2003, 21(2): 99-104(in Chinese).
    [63] Spoilen W G, Lenobi E M E, Samuels T D, Bernstein N, Sharp R E. Abscisic acid accumulation maintains maize prim ary root elongation at low water potentials by restricting ethylene production[J]. Plant Physio1., 2000, 122: 967-976.
    [64] Sab I N, Sharp R E, Pritchard J. Effect of inhibition of abscisic acid accumulation on the spatial distribution of elongation in the primary root and mesocoty1 of maize at low water potentials[J]. Plant Physio1., 1992, 99(1): 26-33.
    [65] Young T E, Meeiey R B. ACC synthase expression regulates leaf performance and drought tolerance in maize[J]. Plant J., 2004, 40(5): 8I3-825.
    [66] Fryer MJ, Oxborough K, Mullineaux PM, Baker NR. Imaging of photo-oxidative stress responses in leaves [J]. J Exp Bot, 2002, 53: 1249-1254.
    [67] Volkov R A, Panchuk I I. Heat stress-induced H_2O_2 is required for effective expression of heat shock genes in Arabidopsis[J]. Plant Mol Biol, 2006, 61: 733-746.
    [68] Mullineaux P M, Schoffl F. Acid-induced antioxidant defense in leaves of maize plants exposed to water stress[J]. Plant Grow Regul, 2008, 55: 183?198.
    [69] Apel K, Hirt H. Reactive oxygen species: Metabolism,oxidative stress and signal transduction[J]. Annu Rev Plant Biol, 2004, 55: 373?399.
    [70] Cheeseman J M. Hydrogen peroxide and plant stress: a challenging relationship[J]. Plant Stress, 2007, 1(1): 4-15.
    [71] Hu X L, Li Y H, Yang H R, Liu Q J, Li C H. Heat Shock Protein 70 May Improve theAbility of Antioxidant Defense Induced by the Combination of Drought and Heat in Maize Leaves[J]. Acta Agronomica Sinica, 2010, 36(4): 636?644 (in Chinese).
    [72] Emerich DF, Dean R, Bartus RT. The role of leukocytes following cerebral ischemia: pathogenic variable orbystander reaction to emerging infarct[J]. Exp Neuro, 2002, 173 (1): 168.
    [73] Green DR, Reed JC. Mitochondrial and apoptosis[J]. Science, 1998, 281(5381): 1309-1312.
    [74] Foyer C H, Noctor G. Redox sensing and signaling associated with reactive oxygen in chloroplasts peroxisomesand mitochondria[J]. Plant Physiol., 2003, 119: 355-364.
    [75] Jiang M Y, Zhang J H. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves[J]. Exp. Bot., 2002, 53 (379): 2401-2410.
    [76] Wen F, XingD, Zhang L R. Hydrogen peroxide is involved in high blue light-induced chlorop last avoidance movements in A rabidopsis[J]. Exp. Bot., 2008, 59(10): 2891- 2901.
    [77] Alscher RG, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants relationships in green cells[J]. Physiol Plant, 1997, 100: 224-233.
    [78] Mallick N, Mohn FH. Reactive oxygen species response of algal cells[J]. J Plant Physiol, 2000, 157: 183-193.
    [79] Bowler C, Fluhr R. The role of calcium and activated oxygens as signals for controlling cross-adaptation[J]. Trends Plant Sci, 2000, 5: 241-246.
    [80] Vranova E, Inze D, Breusegem FV. Signals transduction during oxidative stress[J]. J Exp Bot, 2002, 53: 1227-1236.
    [81] Neill S, Desikan R, Hancock J. Hydrogen peroxide signalling[J]. Curr Opin Plant Biol, 2002, 5: 388-395.
    [82] Neill SJ, Desikan R, Clarke A. Hydrogen peroxide and nitric oxide as signalling molecules in plants[J]. J Exp Bot, 2002, 53: 1237-1247.
    [83] Prasad TK, Andrson MD, Martin BA. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide[J]. Plant Cell, 1994, 6: 65-74.
    [84] Gong M, Chen B, Li Z G. Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H_2O_2[J]. J Plant physiol, 2001, 158: 1125-1130.
    [85] Morita S, Kaminaka H, Masumura T. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress: the involvement of hydrogen peroxide in oxidative stress signalling[J]. Plant Cell Physiol, 1999, 40: 417-422.
    [86] Polidoros A, Scandalios J. Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione Stransferase gene expression in maize(Zea mays L.) [J]. Plant Physiol, 1999, 106: 112-120.
    [87] Vranova E, Atichartpongkul S, Villarroel Ret. Comprehensive analysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress[J]. Plant Physiol, 2002, 99: 10870-10875.
    [88] L EE S C, KANG B G, OH S E. Induction of ascorbate peroxidase by ethylene and hydrogen peroxide during growth of cultured soybean cells[J]. Molecular Cells, 1999, 9: 166-177.
    [89] Morita S, Kamian Ka H, Masumura T, Tanaka K. Induction of rice cytosolic ascorbateperoxidase mRNA by oxidative stress:the involvement of hydrogen peroxide in oxidative stress signaling[J]. Plant Cell Physiol., 1999, 40: 417-422.
    [90] Foyer C H, Lopez-Delgado H, Dat J F. Hydrogen peroxide and glutathione associated mechanisms of acclimatory stress tolerance and signalling[J]. Physiol Plant, 1997, 100: 241-254.
    [91] Neill S, Desikan R, Hancock J. Hydrogen peroxide signalling[J]. Curr Opin Plant Biol, 2002, 5: 388-395.
    [92] Neill S J, Desikan R, Clarke A. Hydrogen peroxide and nitric oxide as signalling molecules in plants[J]. Ex p Bot, 2002, 53: 1237-1247.
    [93] Prasad T K, Andrson M D, Martin BA. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide[J]. Plant Cell, 1994, 6: 65-74.
    [94]李春光,李海燕,龚明. Ca~(2+)-CaM对过氧化氢诱导玉米幼苗耐冷性的影响[J].植物生理学通讯, 2003, 39: 197-200.
    [95] Uchida A , Jagendorf AT , Hibino T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Sci, 2002, 163: 515-523.
    [96] Nover L, Neumann D, Scharf K D. Heat Shock and Other Stress Response Systems of Plants[J]. Berlin: Springer Verlag, 1989. 1-75.
    [97] Burke JJ. Identification of genetic diversity and mutations in higher plant acquired thermotolerance[J]. Physiol Plant, 2001, 112: 167-170.
    [98] Lopez-Delgado H, Dat J F, Foyer CH. Induction of thermo tolerance in potato microplants by acetylsalicylic acid and H_2O_2[J]. Exp Bot, 1998, 49: 713-720.
    [99]李忠光,龚明.抗氧化系统在H_2O_2诱导的玉米幼苗耐热性形成中的作用.植物生理学通讯[J]. 39(6), 2003, 12, 575.
    [100] Howarth CJ, Ougham HJ. Gene expression under temperature stress. New Phytol 1993, 125: 1-26.
    [101] Meinhard M, Grill E. Hydrogen peroxide is a regulator of ABI1 a protein phosphatase 2C from Arabidopsis[J]. FEBS Lett, 2001, 508: 443-446.
    [102] Meinhard M, Rodriguez PL, Grill E. The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signaling [J]. Planta, 2002, 214: 775-782.
    [103] Pei Z M, Murata Y, Banning G. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature, 2000, 406: 731-734.
    [104] Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway[J]. Plant J, 2001, 25(3): 295-303.
    [105] Itossa F. A New Puffing Pattern Induced by Temperature Shock and DNP in Drosophila [J]. Experientia, 1962, 18(1): 571-573.
    [106] Tissieres A, Mitchell H K, Tracyum. Protein Synthesis in Salivary Glands of Drosophila Melanogaster Relation to Chromosome Puffs[J]. J Mol Biol. 1974, 84(3): 389.
    [107] Pelhamh R B. A Regulatory up Stream Promoter Element in the Drosophil HSP70 Heat Shock Gene[J]. Cell, 1982, 30: 517-528.
    [108] Peter K, Sorger A, Michael J. Heat Shock Factor is Regulated Differently in Yeast and HeLa Cells[J]. Nature, 1987, 329: 81-84.
    [109] Basha E, Lee G J, Demeler B, Vierling E. Chaperone activity of cytosolic small heat shock proteins[J]. Eur J Biochem, 2004, 271: 1426-1436.
    [110]杨进波.热应激反应的调节[J].国外医学卫生学分册, 2003, 30(3): 146-151.
    [111]邓家术,段彬江,刘中来.植物热激蛋白的研究进展及其应用[J].生命的化学, 2003, 23 (3): 226-228.
    [112] Lindquist S, Raig E A. The Heat Shock Response[J]. Annu Rev Genet, 1988, 22: 631- 677.
    [113] Vierling E. Expression of Small Heat-shock Proteins at Low Temperatures a Possible Role in Protecting Against Chilling Injuries[J]. Plant Physiol, 1991, 42: 579- 620.
    [114] Vierling E. The roles of heat shock proteins in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 579-620.
    [115] Lee G J, Pokala N, Vierling E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea[J]. Biol Chem, 1995, 270: 10432-10438.
    [116] Lindquist S, Craig EA. The heat-shock proteins [J]. Ann RevGenet, 1988, 22(3): 6311.
    [117] Sullivan ML, Green PJ. Posttranscriptional regulation of nuclear encoded genes in higher plants: the roles of mRNA stability and translation[J]. Plant Mol Biol, 1993, 23: 1091-1104.
    [118] Waters E R, Lee G J, Vierling E. Evolution,structure and function of the small heat shock proteins in plants[J]. Exp Bot, 1996, 47: 325-338.
    [119] Morimoto R I, Tissiere A, Georgopoulos C(eds). The Biology of Heat Shock Proteins and Molecular Chaperones[J]. New York Cold Spring Habor Laboratory Press , 1994. 335-338.
    [120] DeRocher A E, Vierling E. Developmental control of small heat shock protein expression during pea seed maturation[J]. The Plant Journal, 1994, 5: 93-102.
    [121] Kobayashi T, Kobayashi E, Sato S. Characterization of cDNAs induced in meiotic prophase in lily microsporocytes[J]. DNA Research, 1994, 1: 15-26.
    [122] Nover L, Scharf K D, Neumann D. Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs[J]. Molecular and Cellular Biology, 1989, 9: 1298-1308.
    [123] Jinn T L, Yeh YC, Chen YM. Stabilization of soluble proteins in vitro by heat shock protein enriched ammonium sulfate fraction from soybean seedlings[J]. Plant Cell Physiol, 1989, 30: 463-469.
    [124] Lindquist S, Craig EA. The heat shock proteins[J]. Annual Review of Genetics, 1988, 22: 631-677.
    [125] Vierling E, Mishkind ML, Schmidt GW, Key JL. Specific heat shock proteins are transported into chloroplasts[J]. Proceedings of the National Academy of Sciences of USA, 1986, 83: 361-365.
    [126] Waters E R, Vierling E. Chloroplast small heat shock proteins: evidence for atypical evolution of an organelle-localized protein[J]. Proceedings of the National Academy of Sciences of USA, 1999, 96: 14394-14399.
    [127] Landary S J, Gierasch LM. Polypeptide interactions with molecular chaperones and their relationship to in vivo ptrotein folding[J]. Annual Review of Biophysics and Biomolecular Structure, 1994, 23: 645-669.
    [128] Jakob U, Gaestel M, Engel K, Buchner J. Small heat shock proteins are molecular chaperones[J]. Journal of Biological Chemistry, 1993, 268: 1515-1520.
    [129] Ito H, Inaguma Y, Kato K. Small heat shock proteins participate in the regulation of cellular aggregates of misfolded protein[J]. Nippon Yakurigaku Zasshi, 2003, 121(1):27-32.
    [130] Tsvetkova N M, Horvath I, T?r?k Z, Wolkers W F, Balogi Z, Shigapova N, Crowe L M, Tabin F, Vierling E, Crowe J H, Vigh L. Small heat-shock proteins regulate membrane lipid polymorphism[J]. Proceedings of the National Academy of Sciences of USA, 2002, 99: 13504-13509.
    [131] Stromer T, Ehrnsperger M, Gaestel M, Buchner J. Analysis of the interaction of small heat shock proteins with unfolding proteins[J]. Journal of Biological Chemistry, 2003, 27 8:18015-18021.
    [132] Jinn T L, Yeh Y C, Chen Y H, Lin C Y. Stabilization of soluble proteins in vitro by heat shock proteins-enriched ammonium sulfate fraction from soybean seedlings[J]. Plant and Cell Physiology, 1989, 30: 463-469.
    [133] Lee GJ, Pokala N, Vierling E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea[J]. Journal of Biological Chemistry, 1995, 270: 10432-10438.
    [134] Moseley, Pope L. Heat shock proteins and heat adaptation of the whole organism[J]. Appl. Physiol. 83(5): 1413-1417.
    [135] Stromer T, Ehrnsperger M, Gaestel M, Buchner J. Analysis of the interaction of small heat shock proteins with unfolding proteins[J]. Journal of Biological Chemistry, 2003, 278: 18015-18021.
    [136] Friedrich K L, Giese K C, Buan N R, Vierling E. Interactions between small heat shock protein subunits and substrate in small heat shock proteinsubstrate complexes[J]. Journal of Biological Chemistry, 2004, 279: 1080-1089.
    [137] T?r?k Z, Goloubinoff P, Horvath I, Tsvetkova NM, Glatz A, Balogh G, Varvasovzki V, Los D, Vierling E, Crowe J H, Vigh L. Synechocystis HSP17 is an amphitropic protein that stabilizes heatstressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding[J]. Proceedings of the National Academy of Sciences of USA, 2001, 98: 3098-3103.
    [138] Schuster G, Even D, Kloppstech K, Ohad I. Evidence for protection by heat-shock protein against photoinhibition during heat-shock[J]. The EMBO Journal, 1988, 7:1-6.
    [139] Downs CA, Heckathorn SA, Bryan JK, Coleman JS. The methionine-rich low-molecular-weight choloroplast heat-shock protein: evolutionary conservation and accumulation in relation to thermotolerance[J]. American Journal of Botany, 1998, 85: 175-183.
    [140] Preczewski P, Heckathorn SA, Downs CA, Coleman JS. Photosynthetic thermotolerance is positively and quantitatively correlated with production of specific heat-shock proteins among nine genotypes of tomato[J]. Photosynthetica, 2000, 38: 127-134.
    [141] Heckathorn SA, Downs CA, Sharkey TD, Coleman JS. The small, methionine-rich chloroplast heat-shock protein protects photosystemⅡelectron transport during heat stress[J]. Plant Physiology, 1998, 116: 439-444.
    [142] Downs CA, Coleman JS, Heckathorn SA. The chloroplast 22-Ku heat-shock protein: a luminal protein that associates with the oxygen evolving complex and protects photosystemⅡduring heat stress[J]. Journal of Plant Physiology, 1999a , 155: 477-487
    [143] Downs CA, Jones LR, Heckathorn SA. Evidence for a novel set of small heat-shock proteins that associate with mitochondria of murine PC12 nerve cells and protects NADH:ubiquinone oxidoreductase from heat stress and oxidative stress[J]. Archives of Biochemistry and Biophysics, 1999b, 365: 344-350.
    [144]李新国,段伟,孟庆伟,邹琦. PSI的低温光抑制[J].植物生理学通讯, 2002, 38: 375-381.
    [145] Kloppstech K, Meyer G, Ohad I. Synthesis, transport and localization of a nuclear coded 22kD heat-shock protein in the chloroplast membranes of peas and Chlamydomonas reinhardtii[J]. The EMBO Journal, 1985, 4: 1901-1909.
    [146] Glaczinski H, Kloppstech K. Temperature-dependent binding to the thylakoid membranes of nuclear-coded chloroplast heat-shock proteins[J]. European Journal of Biochemistry, 1988, 173: 579-583.
    [147] Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J. Hsp26: a temperature-regulated chaperone[J]. The EMBO Journal, 1999, 18: 6744-6751.
    [148] Stromer T, Fischer E, Richter K. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: the N-terminal domail is important for oligomer assembly and the binding of unfolding proteins[J]. Biol. Chem. 2004, 279: 11222 -112281.
    [149] Daisuke S, L i B, Xia Q Y. Gene Encoding Small Heat Shock Proteins of the Silkworm[J]. Bombyx mori1 Bioci1 Biotechnoi1 Biochem, 2006, 70 (10): 2443-2450.
    [150] Koteiche H A, Mchaourab H S. Mechanism of chaperone function in small heat-shock proteins1 Phosphorylation–induced activation of two-mode binding inαB-crystallin[J]. B iol. Chem. 2003, 278: 10361-10367.
    [151] Crack J A1, MansourM, Sun Y. Functional analysis of a small heat shock crystallin protein from Artemia franciscana Oligomerization and thermotolerance1 Eur[J]. Biochem. 2002, 269: 933-942.
    [152] Guo Z, Cooper L. An N-terminal33-amino-acid-deletion variant of hsp25 retains oligomerization and functional properties[J]. Biocheml Biophys. Res. Comm1, 2000, 270: 183-189.
    [153] Dat JF, Lopez-Delgado H, Foyer CH, and Scott IM. Parallel changes in H_2O_2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings [J]. Plant Physiol, 1998, 116: 1351-1357.
    [154] Storozhenko S, De Pauw P, Van Montagu M, Kushnir S. The heat shock element is a functional component of the Arabidopsis APX1 gene promoter[J]. Plant Physiol, 1998. 116: 1005-1014.
    [155] Schett G, Steiner CW, Groger M, Winkler S, Graninger W, Smolen J, Xu Q, Steiner G. Activation of Fas inhibits heat induced activation of HSF1 and upregulation of HSP70[J]. FASEB J, 1999, 13: 833-842.
    [156] Gong M, Chen SN, Song YQ, Li ZG. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings[J]. Plant Physiol., 1997a, 24: 371-379.
    [157] Gong M, Li X-J, Dai X, Tian M, Li Z-G. Involvement of calcium and calmodulin in the acquisition of HS induced thermotolerance in maize seedlings[J]. Plant Physiol, 1997b, 150: 615-621.
    [158] Larkindale J, Knight MR. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid [J]. PlantPhysiology, 2002, 128: 682-695.
    [159] Dat J, Vandenabeele S, VranováE, Van Montagu M, InzéD, Van Breusegem F. Dual action of the active oxygen species during plant stress responses[J]. CMLS Cell Mol Life Sci, 2000, 57: 779-795.
    [160] Mittler R. Oxidative stress antioxidants and stress tolerance[J]. Trends Plant Sci, 2000, 7: 405-410.
    [161] Coca M A, almoguera C, Thomas T L. Differential regulation of small heat-shock genes in plants:analysis of a warter-stress inducible and developmentally activated sunflower promoter[J]. plant mol biol, 1996, 31(4).
    [162] Alammillo J, Almoguera C, Bartels D. Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum[J]. Plant Mol Biol, 1995, 29(5): 1093-1099.
    [163] Walters E R, Lee G J, Vierling E. Evolution, structure and function of the small heat proteins in plants[J]. Exp Bot, 1996, 47(296): 325-338.
    [164] Pingali PL. Meeting world maize needs: technological opportunities and priorities for the public sector[J]. CIMMYT, Mexico City, 2001, p1-60.
    [165] Wei Wang, Rita Vignani, Monica Scali, Mauro Cresti. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis[J]. Electrophoresis, 2006, 27: 2782-2786.
    [166] Hu X L, Liu R X, Mao X J. Signal cascads of antioxidative defenses induced by water stress-accumulated ABA[J]. Acta Bot. Boreal.-Occident. Sin., 2007, 27 (5) : 859-863(in Chinese).
    [167] Lee BH, Tanaka Y, Iwasaki T, Yamamoto N, Kayano T, Miyao M. Evolutionary origin of two genes for chloroplast small heat shock protein of tobacco[J]. Plant Mol Biol, 1998, 37: 1035-1043.
    [168] Zhou B Y, Guo Z F. Effects of abscisic acid and abscisic acid biosynthesis inhibitor to the cold resistance and antioxidant enzymes activity in Stylosanthes guianensis[J]. Acta Pratacul Turae Sinica, 2005, 14(6): 94-99.
    [169] Xiuli Hu, Yanhui Li, Chaohai Li, Hairong Yang, Wei Wang, Minghui Lu. Characterization of small Heat Proteins Associated with Maize Tolerance to Combined Drought and Heat Stress[J]. Journal of Plant Growth Regulation, 2010, 29: 455-464.
    [170] Rizhsky L, Hongjian L, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco[J]. Plant Physiol, 2002, 130: 1143-1151.
    [171] Dat J F, Foyer C H, Scott I M. Changes in salicylic acid and antioxidants during induction of thermotolerance in mustard seedlings[J]. Plant Physiol, 1998, 118: 1455-1461.
    [172] Aebi H. Catalase in vitro[J]. Methods Enzymol, 1984, 105: 121-125.
    [173] Gongm, Li Y J , Chen S Z. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems[J]. Plant Physiol, 1998, 153: 488-496.
    [174] Foyer C H, Lopez-delgado H, Dat J F. Hydrogen peroxide and glutathione-associatedmechanisms of acclamatory stress tolerance and signaling[J]. Physiol Plant, 1997, 100: 241-254.
    [175] Hu X L, Zhang A Y, Zhang J H. Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress[J]. Plant Cell Physiol, 2006, 47 (11): 1484-1495.
    [176] Dat J F, Lopez-delgado H, Foyer C H. Parallel changes in H_2O_2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings[J]. Plant Physiol, 1998, 116: 1351-1357.
    [177] Laloi C, Mestres-ortega D, Marco Y, Meyer Y, Reichheld J P. The Arabidopsis cytosolic h5 gene induction by oxidativestress and its w-box-mediated response to pathogen elicitor [J]. Plant Physiol., 2004, 134: 1006-1016.
    [178] Nayar H, Gupta D. Differential sensitivity of C3 and C4 plants to water deficit stress:association with oxidative stress and antioxidants[J]. Environ Exp. Bot., 2006, 58 (1-3): 106-113.
    [179] Albert J, Roberston. Abscisic Acid Induced heat tolerance in Bromus Leyss cell suspension cultures [J]. Plant Physiol, 1994, 105: 181-190.
    [180] Lee S C, Kang B G. Induction of ascorbate peroxidase by ethylene and hydrogen peroxide during growth of cultured soybean cells[J]. Molecular Cells, 1999, 9: 166-177.
    [181] Morita S, Kamina KA H, MasumurA T, Tana KA K. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress:the involvement of hydrogen peroxide in oxidative stress signaling[J]. Plant Cell Physiol., 1999, 40: 417-422.
    [182] Li Y H,Liu Q J,Liu R X,Chen S N,Hu X L. Improvement Method of Using 3,3-Diamino-Benzidine Detecting H_2O_2 Production in Plant Leaves [J]. Acta Bot. Boreal. -Occident.Sin., 2008, 28 (5): 1063-1068 (in Chinese).
    [183] Wen F, XingD, Zhang L R. Hydrogen peroxide is involved in high blue light-induced chloroplast avoidance movements in A rabidopsis[J]. Exp. Bot., 2008, 59(10): 2891-2901.
    [184] Verslues P E, Kim Y S, Zhu J K. Altered ABA, proline and hydrogen peroxide in an A rabidopsis glutamate: glyoxylate aminotransferase mutant[J]. Plant Mol. Biol., 2007, 64: 205-217.
    [185] Xia X J, Wang Y G, Zhou Y H. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber[J]. Plant Physiol., 2009, 150: 801- 814.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700