用户名: 密码: 验证码:
Ti表面构建Ⅳ型胶原/肝素抗凝促内皮双功能层的研究与探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对临床上常见的血栓、再狭窄等并发症,心血管支架材料表面修饰已从单分子、单功能研究逐渐转向多分子、多功能的设计。基于内皮细胞层的天然抗凝功能及支架材料表面内皮化的理念,兼具抗凝与促内皮双功能的表面微环境设计与构建成为新的研究热点。但是,微环境设计中,不同功能生物分子的选用、不同功能生物分子之间的作用发挥以及制约与平衡等,是支架材料表面微环境构建中面临并急需解决的问题。本文以起抗凝作用的肝素为目标分子,结合有促内皮化功能的Ⅳ型胶原,在Ti基材料表面进行了抗凝/促内皮双功能微环境的构建、表征、优化以及系列体内外生物相容性评价。
     首先,在碱活化后富含羟基活性基团的负电荷Ti基材料表面,通过聚赖氨酸有机过渡层或硅烷化的方法引入大量氨基基团。在此基础上,构建Ⅳ型胶原/肝素生物修饰层。利用FTIRR、SEM、 AFM、水接触角测试、免疫荧光染色、QCM-D等方法对生物修饰层进行的定性和定量表征,结果表明,肝素和Ⅳ型胶原能够通过层层静电自组装的方式固定到Ti表面。通过优化得出,在肝素浓度为5mg/mL条件下,适宜的工艺参数为:以聚赖氨酸构建氨基化表面、Ⅳ型胶原浓度为25μg/mL、自组装双层的数目为15个、肝素与Ⅳ型胶原的反应时间分别为6分钟和25分钟。通过体外静态实验发现,生物修饰层具有一定抗凝血性能并能够促进内皮细胞与内皮祖细胞的粘附、生长、增殖以及内皮细胞的迁移,细胞相容性较好。但是,体外动态血液实验显示,生物修饰层的血液相容性表现较差,容易形成血栓,体现了肝素与Ⅳ型胶原两种不同功能分子不同环境下的竞争与平衡。动物体内系列实验结果表明,生物修饰层表面可以促进内膜新生,内皮化程度较大,但新生内膜较厚。这可能与生物修饰层表面Ⅳ型胶原对于细胞无选择性有关。
     接着,本文对两种不同功能生物分子的相互作用、竞争与平衡机制进行的研究发现,在抗凝血与促凝血的竞争方面,肝素主要是通过内源性凝血途径抑制凝血酶防止血栓形成,以及同种电荷排斥的作用减少血小板的粘附,肝素还可以减少早期血小板膜表面糖蛋白GPⅡb/Ⅲa的表达。而Ⅳ型胶原通过引起凝血因子Ⅻ的自我激活启始内源性凝血途径,通过胶原蛋白序列PGQOGVMGF、GFOGER、(GPO)x与血小板受体血管性血友病因子(von Willebrand Factor, VWF)的A3区(VWF-A3),整合素α2β1和糖蛋白VI(Glycoprotein VI, GpVI)结合,促进血小板的粘附和激活,进而引起纤维蛋白原变性形成纤维蛋白,促进血栓的发生。在促内皮化与抑制内皮化的竞争方面,Ⅳ型胶原主要通过肽链上的氨基酸残基构成的CB3(IV)片段与内皮细胞表面的整合素受体α1β1和α2β1结合,促进细胞的增殖。而肝素则通过糖胺抑制选择性蛋白激酶C (PKC)介导的ODC基因表达来抑制内皮细胞的增殖。另外,Ⅳ型胶原表面的正电荷,肝素表面的负电荷,二者对于表面有负电荷的内皮细胞也具有相反的作用。最终,肝素与Ⅳ型胶原主要在内源性凝血途径、血小板粘附以及内皮细胞粘附与增殖等方面进行生物功能竞争,进而达到一个相对平衡的状态。
     鉴于Ⅳ型胶原存在条件下,也会促进平滑肌细胞的生长,考虑选择具有内皮细胞选择性粘附的GREDVY多肽分子,结合肝素,在聚赖氨酸引入氨基的表面构建GREDVY多肽/肝素生物修饰层。同样,利用FTIR、AFM、水接触角测试、免疫荧光染色等方法对生物修饰层进行的定性定量表征,结果表明,肝素和GREDVY多肽能够通过静电结合作用共同固定到Ti表面。利用血小板粘附与激活实验、APTT测试、细胞培养实验、内皮细胞与血小板的竞争性粘附实验、内皮细胞与平滑肌细胞的竞争性粘附实验等体外静态评价手段进行血液相容性与细胞相容性评价,结果表明,在具备抗凝血及促内皮细胞粘附作用的同时,肝素与GREDVY多肽构建的生物修饰层表现出显著抑制平滑肌粘附与增殖的功能。
     总之,使用不同功能的生物分子进行双功能或多功能生物修饰层的构建具有可行性,生物修饰层外层两种功能生物分子的交叉分布,为双功能或多功能的实现提供了可能。但是多功能的实现并非几种功能的简单叠加,而是存在着竞争与平衡。这种竞争与平衡关系会随着外界环境的变化有所调整,从而通过新一轮的竞争实现新的平衡。本文获得的进展对血液接触材料的表面微环境构建中生物分子的选用与设计提供了重要参考,为心血管支架材料表面多功能微环境构建开拓了新的思路。
Owing to the emergence of stent thrombosis (ST), in-stent restenosis (ISR) and other clinical complications after the stent implantation, the modification of cardiovascular stent surface have gradually changed from single-molecule, single-functional designs to multi-molecule, multi-functional ones. Based on the theories that endothelial cell layer has good property of natural anti-coagulation and endothelialization on material's surface is absolutely necessary for the cardiovascular stent, the surface modification pursuing both the anti-coagulation function and promoting endothelialization micro-environment becomes a new hotspot. However, there still exist some problems that need to resolve, for example, the design of the micro-environment including the selection of different functional biomolecules, the restriction and equilibrium between two functional biomolecules. In this paper, heparin, acting as anticoagulant, was used as the target molecule to construct a bifunctional micro-environment of anticoagulation/promoting endothelialization on the Ti-based material surface, combining with the promoting endothelialization molecule type IV collagen. Series of characterization tests, optimization as well as in vitro and in vivo animal tests were carried out to evaluate the properties of the multi-functional layer.
     Firstly, negatively charged surface is produced with hydroxyl reactive groups on the Ti-based materials after alkaline activation, then large number of amino groups are introduced to the surface by assembling a polylysine media layer or silanizing with APTES. Then the biological modification layer, type IV collagen/heparin biological modification layer, was obtained based on the former layer through coating two different molecules, type IV collagen and heparin. Some quantitative and qualitative characterizations, such as FTIR, SEM, AFM, the water contact angle test, the immunofluorescence staining and quartz crystal microbalance with dissipation (QCM-D) were carried out, it was indicated that heparin and type IV collagen can be fixed on the Ti-surface through layer-by-layer electrostatic self-assembly. The experimental parameters results of process optimization indicate that the optimum parameter are assembling a polylysine media layer, the heparin concentration is5mg/mL, the concentration of type IV collagen is25μg/mL, the optimal number of double layer is15, and the best reaction time of heparin and type IV collagen is6minutes and25minutes respectively. The in vitro static results show that the bionic layer has anticoagulant properties and good cytocompatibility, on which ECs and EPCs could be promoted to adhere, grow, proliferate and migrate. The in vitro dynamic blood tests show that the bionic layer has a poor performance of hemocompatibility, on which thrombosis can easily happen, indicating there exist the competition and balance effects between heparin and type Ⅳ collagen with two different functions in different environment. The in vivo animal experiment results manifest that the bionic surface can encourage new endometrial growth which has more endothelialization but thicker endothelial neointimal, this maybe related to that IV collagen belongs to non-selective biomolecule and could promote the migration and proliferation of both smooth muscle cells and other cells.
     Moreover, the interaction and the competition-equilibrium mechanisms of heparin and type IV collagen were also studied. It was found that during the competition of anticoagulant and procoagulant, heparin prevent thrombosis mainly via endogenous coagulation pathway, and reduce platelet binding through the charge repulsion effect. In addition, the heparin also can inhibit the expression of GPⅡ b/Ⅲa on the surface of the prophase platelets. While the type Ⅳ collagen play a role on promoting clotting factor XII self-activating then resulting in starting extrinsic coagulation pathways, and binding with the platelet receptors VWF-A3, α2β1and Glycoprotein Ⅵ through collagen sequences PGQOGVMGF, GFOGER and (GPO)x leading to facilitating platelet adhesion and activated, thereby causing the degeneration of fibrinogen to fibrin. In the competition of inhibiting and promoting endothelialization, fragment3(CB3(Ⅳ)) on type IV collagen, constituted of amino acid residues of peptide chain, show the advantage that could promote the cell proliferation by binding with the integrate receptors α1β1and α2β1on the endothelial cell surface. On the contrary, heparin represents a role of inhibiting the proliferation of endothelial cells through the ODC gene expression mediated by the select protein kinase C (PKC) which could be prevented by glycosaminoglycan on the heparin. In addition, compared to type IV collagen with the positive charges, the heparin with the negative charges possesses opposite effect on the endothelial cells which bear negative charges on the surface. Ultimately, heparin and type IV collagen could achieve a relative equilibrium condition with the competitions during the extrinsic coagulation pathway, platelet adhesion and endothelial cell adhesion and proliferation.
     Finally, due to the type IV collagen in this work also promotes the smooth muscle cells adhesion and growth, GREDVY polypeptide which has the endothelial cells selectivity adhesion property was chosen to construct the GREDVY polypeptide/heparin bionic layer. FTIR, AFM, the water contact angle test, and the immunofluorescence staining etc. were also used to characterize the GREDVY polypeptide/heparin bionic layer. It was shown that heparin and GREDVY polypeptide can be jointly fixed by electrostatic binding on Ti. The in vitro static experiments, including the platelet adhesion experiments, APTT test, cell culture experiments, competitive binding experiments of endothelial cells and platelets, were used for hemocompatibility and cytocompatibility contrastive evaluation, and the evaluation of competitive adhesion and growth experiments of endothelial cells and smooth muscle cells on Ti and GREDVY polypeptide/heparin bionic layer. The results showed that GREDVY polypeptide/heparin bionic layer not only represents a good hemocompatibility and promoting endothelial cells adhesion, but also inhibits smooth muscle cells adhesion and proliferation obviously.
     In short, it is feasible to construct a dual-function or multifunction surface using the biological molecules with different functions. The cross-distribution of the two biomolecules on the outer layer may provide the realization of the dual-function or multifunction. But the implementation of the multi-function is not a simple sum of several functions, there is a competition and balance. The competition and balanced relationship will be adjusted with the changes of external biological environments, and a new balance can be achieved after a new round of competition. Progress in this work provides an important reference for surface microenvironment building on the artificial materials contact the blood, including the selection and design of biological molecules, which opens up new ideas for the construction of multi-function micro-environment on the cardiovascular scaffold surface.
引文
[1]Armin Zittermann, Jan F. Gummert. Sun. vitamin D, and cardiovascular disease. Journal of Photochemistry and Photobiology B:Biology [J].2010,101(2):124-129.
    [2]Palmira Pramparo, Carlos Mendoza Montano, Alberto Barcelo, et al. Cardiovascular diseases in Latin America and the Caribbean:The present situation. Prevention and Control [J].2006,2(3):149-157.
    [3]Shengshou Hu, Yan Li. The surgeon's role in the control and prevention of cardiovascular disease in contemporary China. CVD Prevention and Control [J].2009, 4(1):85-90.
    [4]John Andersson, Peter Libby, Goran K. Hansson. Adaptive immunity and atherosclerosis. Clinical Immunology [J].2010,134(1):33-46.
    [5]Peter F Ludman. Percutaneous Coronary Intervention.Medicine [J].2010,38(8):438-445.
    [6]Alice Y Li, Kelsey B Law, Katharine RB Phillips, et al. Pathology of cardiovascular interventions and surgery. Diagnostic Histopathology [J].2010,16(1):17-30.
    [7]Ozlem Karakurt, Ramazan Akdemir. Stent thrombosis:Nightmare of the interventional cardiology era. International Journal of Cardiology [J].2011,148 (3):e51-e52.
    [8]Turgay Celik, Atila Iyisoy, Murat Celik, et al. A case of very late stent thrombosis after bare metal coronary stent implantation:A neglected complication. International Journal of Cardiology [J].2009,134(1):111-113.
    [9]Claudio Larosa, Annalisa Ricco, Nicola Cosentino, et al. A case of very late thrombosis of bare metal stent successfully treated with Excimer Laser Coronary Angioplasty. International Journal of Cardiology [J].2010,145 (2):e60-e63.
    [10]Cheol Whan Lee, Su-Jin Kang, Duk-Woo Park, et al. Intravascular Ultrasound Findings in Patients With Very Late Stent Thrombosis After Either Drug-Eluting or Bare-Metal Stent Implantation. Journal of the American College of Cardiology [J].2010,55 (18):1936-1942.
    [11]David R. Holmes Jr, Dean J. Kereiakes, Scot Garg, et al. Stent Thrombosis. Journal of the American College of Cardiology [J].2010,56 (17):1357-1365.
    [12]C. Giglioli, S. Valente, M. Margheri, et al. An angiographic evaluation of restenosis rate at a six-month follow-up of patients with ST-elevation myocardial infarction submitted to primary percutaneous coronary intervention. International Journal of Cardiology [J]. 2009,131(3):362-369.
    [13]Lukasz Kalinczuk, Marcin Demkow, Gary S. Mintz, et al. Impact of Different Re-stenting Strategies on Expansion of a Drug-Eluting Stent Implanted to Treat Bare-Metal Stent Restenosis.The American Journal of Cardiology [J].2009,104(4):531-537.
    [14]Xu Bo, Li J J, Yang Y J, et al. A single center investigation of bare-metal or drug-eluting stent restenosis from 1633 consecutive Chinese Han population. Chin Med J (Engl) [J].2006,119(7):533-538.
    [15]Harvey S. Hecht, Sotir Polena, Vladimir Jelnin, et al. Stent Gap by 64-Detector Computed Tomographic Angiography:Relationship to In-Stent Restenosis, Fracture, and Overlap Failure. Journal of the American College of Cardiology 2009,54 (21):1949-1959.
    [16]Marco A. Costa, Daniel I. Simon. Molecular Basis of Restenosis and Drug-Eluting Stents. Circulation [J].2005,111:2257-2273.
    [17]Neal A. Scott. Restenosis following implantation of bare metal coronary stents: Pathophysiology and pathways involved in the vascular response to injury. Advanced Drug Delivery Reviews [J].2006,58 (3):358-376.
    [18]Hiroshi Narita, Sen Chen, Kimihiro Komori, et al. Midkine is expressed by infiltrating macrophages in in-stent restenosis in hypercholesterolemic rabbits. Journal of Vascular Surgery [J].2008,47 (6):1322-1329.
    [19]Harry C. Lowe, Stephen N. Oesterle, Levon M. Khachigian. Coronary in-stent restenosis:Current status and future strategies. Journal of the American College of Cardiology [J].2002,39 (2):183-193.
    [20]Adriana Laser, Nichole Baker, John Rectenwald, et al. Graft infection after endovascular abdominal aortic aneurysm repair. Journal of Vascular Surgery [J].2011,54 (1) 58-63.
    [21]Vera S. Antonios, Audra A. Noel, James M. Steckelberg, et al. Prosthetic vascular graft infection:A risk factor analysis using a case-control study. Journal of Infection [J]. 2006,53(1):49-55.
    [22]B. Cherie Millar, Bernard D. Prendergast, Abass Alavi, John E. Moore.18FDG-positron emission tomography (PET) has a role to play in the diagnosis and therapy of infective endocarditis and cardiac device infection. International Journal of Cardiology [J]. 2013,167(5):1724-1736.
    [23]Louis C. Thibodeaux, Kevin V. James, Joann M. Lohr, et al. Infection of endovascular stents in a swine model. The American Journal of Surgery [J].1996,172 (2):151-154.
    [24]Ratul Raychaudhuri, Wengui Yu, Kimoo Hatanpaa, et al. Basilar artery dissection treated by Neuroform stenting:fungal stent infection. Surgical Neurology [J].2009,71(4): 477-480.
    [25]Eugene B. Wu, Wilson W.M. Chan, Cheuk-Man Yu. Left main stem rupture caused by methicillin resistant Staphylococcus aureus infection of left main stent treated by covered stenting. International Journal of Cardiology [J].2010,144 (2):e39-e41.
    [26]Christian Kuehn, Karolin Graf, Bakr Mashaqi, et al. Prevention of Early Vascular Graft Infection Using Regional Antibiotic Release. Journal of Surgical Research [J].2010,164 (1): el85-el91.
    [27]Ben R. Saleem, Robbert Meerwaldt, Ignace F.J. Tielliu, et al. Conservative treatment of vascular prosthetic graft infection is associated with high mortality. The American Journal of Surgery [J].2010,200 (1):47-52.
    [28]Jenny Fernebro. Fighting bacterial infections—Future treatment options. Drug Resistance Updates [J].2011,14 (2):125-139.
    [29]Mei-Chin Chen, Yen Chang, Chin-Tang Liu, et al. Mechanical properties, drug eluting characteristics and in vivo performance of a genipin-crosslinked chitosan polymeric stent. Biomaterials [J].2009,30 (29):79-88.
    [30]N. Huang, P. Yang, Y.X. Leng, et al. Surface modification of biomaterials by plasma immersion ion implantation. Surface and Coatings Technology [J].2004,186 (1-2): 218-226.
    [31]Gopinath Mani, Marc D. Feldman, Devang Patel, et al. Coronary stents:A materials perspective. Biomaterials [J].2007,28(9):1689-1710.
    [32]Xuanyong Liu, Paul K. Chu, Chuanxian Ding. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering R [J].2004,47 (3-4):49-121.
    [33]N. Huang, P. Yang, Y. X. Leng, et al. Hemocompatibility of titanium oxide films. Biomaterials [J].2003,24 (13):2177-2187.
    [34]P. Yang, Y.X. Leng, A.S. Zhao, et al. Bloodcompatibility improvement of titanium oxide film modified by phosphorus ion implantation. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms [J].2006,242 (1-2):15-17.
    [35]P. Yang, N. Huang, Y. X. Leng, et al. Effect of annealing on structure and biomedical properties of amorphous hydrogenated carbon films. Surface and Coatings Technology [J]. 2004,186 (1-2):265-269.
    [36]N. Huang, P. Yang, Y. X. Leng, et al. Surface modification of biomaterials by plasma immersion ion implantation. Surface and Coatings Technology [J].2004,186 (1-2):218-226.
    [37]R.A. Yankov, N. Shevchenko, A. Rogozin, et al. Reactive plasma immersion ion implantation for surface passivation. Surface and Coatings Technology [J].2007,201 (15): 6752-6758.
    [38]I.A. Tsyganov, M.F. Maitz, E. Richter, et al. Hemocompatibility of titanium-based coatings prepared by metal plasma immersion ion implantation and deposition. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms [J].2007,257 (1-2):122-127.
    [39]Sang Ho Ye, Carl A. Johnson Jr, Joshua R. Woolley, et al. Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance. Colloids and Surfaces B:Biointerfaces [J]. 2009,74(1)96-102.
    [40]Stuart D. Plant, David M. Grant, Lopa Leach. Surface modification of NiTi alloy and human platelet activation under static and flow conditions. Materials Letters [J]. 2007,61(14-15):2864-2867.
    [41]Gopinath Mani, Marc D. Feldman, Devang Patel, et al. Coronary stents:A materials perspective. Biomaterials [J].2007,28(9):1689-1710.
    [42]Koster R, Vieluf D, Kiehn M, et al. Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet [J].2000,356(9245):1895-1897.
    [43]Arash Shahryari, Fereshteh Azari, Hojatollah Vali, et al. The response of fibrinogen, platelets, endothelial and smooth muscle cells to an electrochemically modified SS316LS surface:Towards the enhanced biocompatibility of coronary stents. Acta Biomaterialia [J]. 2010,6(2):695-701.
    [44]Zhilu Yang, Jin Wang, Rifang Luo, et al. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility. Biomaterials [J].2010,31 (8):2072-2083.
    [45]B. Subramanian, M. Jayachandran. Electrochemical corrosion behavior of magnetron sputtered TiN coated steel in simulated bodily fluid and its hemocompatibility. Materials Letters [J].2008,62 (10-11):1727-1730.
    [46]He-feng WANG, Bin TANG, Xiu-yan LI. Microstructure and Wear Resistance of N-Doped TiO2 Coatings Grown on Stainless Steel by Plasma Surface Alloying Technology. Journal of Iron and Steel Research, International [J].2011,18 (7):73-78.
    [47]B. Liu, Y.F. Zheng. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomaterialia [J]. 2011,7(3):1407-1420.
    [48]Shengfa Zhu, Nan Huang, Hui Shu, et al. Corrosion resistance and blood compatibility of lanthanum ion implanted pure iron by MEVVA. Applied Surface Science [J].2009,256 (1):99-104.
    [49]Shengfa Zhu, Nan Huang, Li Xu, et al. Biocompatibility of Fe-O films synthesized by plasma immersion ion implantation and deposition. Surface and Coatings Technology [J]. 2009,203(10-11):1523-1529.
    [50]M. Li, Y. Cheng, Y.F. Zheng, et al. Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film. Applied Surface Science [J].2012,258(7): 3074-3081.
    [51]Gott VL, Whiffen JD, Dutton RC. Heparin bonding on colloidal graphite surfaces. Science [J].1963,142:1297-1298.
    [52]Edward Young. The anti-inflammatory effects of heparin and related compounds. Thrombosis Research [J].2008,122(6):743-752.
    [53]E.M. Stewart, X. Liu, G.M. Clark, et al. Inhibition of smooth muscle cell adhesion and proliferation on heparin-doped polypyrrole. Acta Biomaterialia [J].2012,8(1):194-200.
    [54]Kjeld Christensen, Rolf Larsson, Hakan Emanuelsson, et al. Heparin coating of the stent graft—effects on platelets, coagulation and complement activation. Biomaterials [J]. 2001,22(4):349-355.
    [55]Yoram Neuman, Vladimir Rukshin, Vivian Tsang, et al. An ex-vivo canine shunt study.Thrombosis Research[J].2003,112(1-2):99-104.
    [56]Kjeld Christensen, Rolf Larsson, Hakan Emanuelsson, et al. Improved blood compatibility of a stent graft by combining heparin coating and abciximab. Thrombosis Research [J].2005,115(3):245-253.
    [57]Tzu-Wen Chuang, Kristyn S. Masters. Regulation of polyurethane hemocompatibility and endothelialization by tethered hyaluronic acid oligosaccharides. Biomaterials [J].2009,30(29):5341-5351.
    [58]Y.J. Weng, F.J. Jing, J.Y. Chen, et al. Construction of heparinylated multilayer films on Ti-O via streptavidin/biotin interaction. Applied Surface Science [J].2012,258(16): 5947-5954.
    [59]Paul A Gurbel, Kevin P Bliden. Platelet activation after stenting with heparin-coated versus noncoated stents. American Heart Journal [J].2003,146(4):691.
    [60]Sheng Meng, Zongjun Liu, Li Shen, et al. The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system. Biomaterials [J].2009,30(12):2276-2283.
    [61]Wen-Ching Lin, Ting-Yu Liu, Ming-Chien Yang. Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials [J].2004,25(10):1947-1957.
    [62]Sumanas W. Jordan, Elliot L. Chaikof. Novel thromboresistant materials. Journal of Vascular Surgery [J].2007,45(6):A104-Al 15.
    [63]Shawn L. Chin-Quee, Steve H. Hsu, Kim L. Nguyen-Ehrenreich, et al. Endothelial cell recovery, acute thrombogenicity, and monocyte adhesion and activation on fluorinated copolymer and phosphorylcholine polymer stent coatings. Biomaterials [J].2010,31(4): 648-657.
    [64]Sang Ho Ye, Carl A. Johnson Jr, Joshua R. Woolley, et al. Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance. Colloids and Surfaces B:Biointerfaces [J]. 2009,74(1):96-102.
    [65]Sang-Ho Ye, Carl A. Johnson Jr., Joshua R. Woolley, et al. Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. Colloids and Surfaces B:Biointerfaces [J].2010,79(2):357-364.
    [66]K. Enomoto, T. Hasebe, R. Asakawa, et al. Controlling the drug release rate from biocompatible polymers with micro-patterned diamond-like carbon (DLC) coating. Diamond and Related Materials [J].2010,19(7-9):806-813.
    [67]Thomas Hermann,Dinshaw J. Patel. SCIENCE [J].2000,287:820-825.
    [68]Richard C. Becker. Novel constructs for thrombin inhibition. American Heart Journal [J].2005,149(1):S61-S72.
    [69]Shahid M. Nimjee, Christopher P. Rusconi, Bruce A. Sullenger. The potential of aptamers as anticoagulants. Annu. Rev. Med. [J].2005,56(1):555-583.
    [70]Meltem Avci-Adali, Angela Paul, Gerhard Ziemer, et al. New strategies for in vivo tissue engineering by mimicry of homing factors for self-endothelialisation of blood contacting materials. Biomaterials [J].2008,29(29):3936-3945.
    [71]Per H. Nilsson, Anna E. Engberg, Jennie Back, et al. The creation of an antithrombotic surface by apyrase immobilization. Biomaterials [J].2010,31(16):4484-4491.
    [72]John E. Paderi, Kate Stuart, Michael Sturek, et al. The inhibition of platelet adhesion and activation on collagen during balloon angioplasty by collagen-binding peptidoglycans. Biomaterials [J].2011,32(10):2516-2523.
    [73]Neil Soni, Michael Margarson. Albumin. Where are we now? Current Anaesthesia & Critical Care [J].2004,15(1):61-68.
    [74]Wahid Khan, Mamta Kapoor, Neeraj Kumar. Covalent attachment of proteins to functionalized polypyrrole-coated metallic surfaces for improved biocompatibility. Acta Biomaterialia [J].2007,3(4):541-549.
    [75]Kimberly A. Woodhouse, Petr Klement, Vivian Chen, et al. Investigation of recombinant human elastin polypeptides as non-thrombogenic coatings. Biomaterials [J]. 2004,25(19):4543-4553.
    [76]Patrick H. Blit, W. Glenn McClung, John L. Brash, et al. Platelet inhibition and endothelial cell adhesion on elastin-like polypeptide surface modified materials. Biomaterials [J].2011,32(25):5790-5800.
    [77]Terry C. Major, David O. Brant, Melissa M. Reynolds, et al. The attenuation of platelet and monocyte activation in a rabbit model of extracorporeal circulation by a nitric oxide releasing polymer. Biomaterials [J] 2010,31 (10):2736-2745.
    [78]Paul S. Fleser, Vijay K. Nuthakki, Lauren E. Malinzak, et al. Nitric oxide-releasing biopolymers inhibit thrombus formation in a sheep model of arteriovenous bridge grafts. Journal of Vascular Surgery [J].2004,40(4):803-811.
    [79]Sonia Cherian, Cherian Sebastian, Aniket Puri, et al. AS-167:Drug-Eluting Stents in the Treatment of In-Stent Restenosis. The American Journal of Cardiology [J] 2010,105(9):71A.
    [80]Wessely, R. New drug-eluting stent concepts. Nat. Rev. Cardiol. [J].2010,7:194-203.
    [81]Sudhir Rathore, Yoshihisa Kinoshita, Mitsuyasu Terashima, et al. Sirolimus eluting stent restenosis:Impact of angiographic patterns and the treatment factors on angiographic outcomes in contemporary practice. International Journal of Cardiology [J].2011,146(3): 390-394.
    [82]Vinicius Esteves, Marinella P Centemero, Alexandre Abizaid, et al. TCT-393:Five-year Clinical Results of the Biolimus A9 Eluting Stent with Biodegradable Polymer. The American Journal of Cardiology [J].2009,104(6):146D.
    [83]Cihan Simsek, Michael Magro, Eric Boersma, et al. The Unrestricted Use of Sirolimus-and Paclitaxel-Eluting Stents Results in Better Clinical Outcomes During 6-Year Follow-Up Than Bare-Metal Stents:An Analysis of the RESEARCH (Rapamycin-Eluting Stent Evaluated At Rotterdam Cardiology Hospital) and T-SEARCH (Taxus-Stent Evaluated At Rotterdam Cardiology Hospital) Registries. JACC:Cardiovascular Interventions [J].2010,3(10):1051-1058.
    [84]Turgay Celik, Atila Iyisoy, Hurkan Kursaklioglu, et al. The forgotten player of in-stent restenosis:Endothelial dysfunction. International Journal of Cardiology [J].2008,126(3):443-444.
    [85]Patrick W. Serruys, John A. Ormiston, Georgios Sianos, et al. Actinomycin-eluting stent for coronary revascularization:A randomized feasibility and safety study:The ACTION trial. Journal of the American College of Cardiology [J].2004,44(7):1363-1367.
    [86]Stefan Verheye, Pierfrancesco Agostoni, Keith D. Dawkins, et al. The GENESIS (Randomized, Multicenter Study of the Pimecrolimus-Eluting and Pimecrolimus/Paclitaxel-Eluting Coronary Stent System in Patients with De Novo Lesions of the Native Coronary Arteries) Trial. JACC:Cardiovascular Interventions [J].2009,2(3): 205-214.
    [87]Michael C. John, Rainer Wessely, Adnan Kastrati, et al. Differential Healing Responses in Polymer-and Nonpolymer-Based Sirolimus-Eluting Stents. JACC: Cardiovascular Interventions [J].2008,1(5):535-544.
    [88]Xiaodong Ma, Shizu Oyamada, Fan Gao, et al. Paclitaxel/sirolimus combination coated drug-eluting stent:In vitro and in vivo drug release studies. Journal of Pharmaceutical and Biomedical Analysis [J].2011,54(4):807-811.
    [89]Yingying Huang, Subbu S. Venkatraman, Freddy Y.C. Boey, et al. In vitro and in vivo performance of a dual drug-eluting stent (DDES). Biomaterials [J].2010,31(15): 4382-4391.
    [90]Ryan J.O. Dowling, Ivan Topisirovic, Bruno D. Fonseca, et al. Dissecting the role of mTOR:Lessons from mTOR inhibitors. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics [J].2010,1804(3):433-439.
    [91]Sunao Nakamura, Hisao Ogawa, Jang-Ho Bae, et al. TCT-5:Drug-Eluting Stents for the Treatment of Chronic Total Occlusion:A Comparison with Sirolimus, Paclitaxel, Zotarolimus (Endeavor Resolute), BiolimusA9, EPC Capture and Everolimus-Eluting Stent: Multicenter Registry in Asia. Journal of the American College of Cardiology [J]. 2013,61(10):1691.
    [92]Daniela Trabattoni, Antonio L. Bartorelli. Late occlusive in-stent restenosis of a bare-metal stent presenting with ST-elevation anterior MI:Is restenosis better than a late stent thrombosis? International Journal of Cardiology [J].2009,135(2):e65-e67.
    [93]Raul Moreno. Stents recubiertos y otros dispositivos antirreestenosis. Revista Espanola de Cardiologia [J].2005,58(7):842-862.
    [94]Giora Weisz, Martin B. Leon, David R. Holmes Jr, et al. Five-Year Follow-Up After Sirolimus-Eluting Stent Implantation:Results of the SIRIUS (Sirolimus-Eluting Stent in De-Novo Native Coronary Lesions) Trial. Journal of the American College of Cardiology [J].2009,53(17):1488-1497.
    [95]Adriano Caixeta, Martin B. Leon, Alexandra J. Lansky, et al.5-Year Clinical Outcomes After Sirolimus-Eluting Stent Implantation:Insights From a Patient-Level Pooled Analysis of 4 Randomized Trials Comparing Sirolimus-Eluting Stents With Bare-Metal Stents. Journal of the American College of Cardiology [J].2009,54(10):894-902.
    [96]Jin Won Kim, Soon Yong Suh, Cheol Ung Choi, et al. Six-Month Comparison of Coronary Endothelial Dysfunction Associated With Sirolimus-Eluting Stent Versus Paclitaxel-Eluting Stent. JACC:Cardiovascular Interventions [J].2008,1(1):65-71.
    [97]Gaku Nakazawa, Aloke V. Finn, Marc Vorpahl, et al. Coronary Responses and Differential Mechanisms of Late Stent Thrombosis Attributed to First-Generation Sirolimus-and Paclitaxel-Eluting Stents. Journal of the American College of Cardiology [J]. 2011,57(4):390-398.
    [98]D.P. Leong, B.K. Dundon, R. Puri, et al. Very Late Stent Fracture Associated With a Sirolimus-eluting Stent. Lung and Circulation [J].2008,17(5):426-428.
    [99]Nehiro Kuriyama, Yoshio Kobayashi, Tatsuya Nakama, et al. Late Restenosis Following Sirolimus-Eluting Stent Implantation. JACC:Cardiovascular Interventions [J]. 2011,4(1):123-128.
    [100]Takahiro Sawada, Junya Shite, Toshiro Shinke, et al. Very late thrombosis of sirolimus-eluting stent due to late malapposition:Serial observations with optical coherence tomography. Journal of Cardiology [J].2008,52(3):290-295.
    [101]Tina L. Pinto Slottow, Ron Waksman. Drug-Eluting Stent Safety. The American Journal of Cardiology [J].2007,100(8):S10-S17.
    [102]Gilles Lemesle, Gabriel Maluenda, Sara D. Collins, et al. Drug-Eluting Stents:Issues of Late Stent Thrombosis. Cardiology Clinics [J].2010,28(1):97-105.
    [103]Xacobe Flores-Rios, Juan P. Abugattas-de Torres, Rosa Campo-Perez, et al. Effect of Stent Thrombosis on the Risk-Benefit Balance of Drug-Eluting Stents and Bare Metal Stents. Revista Espanola de Cardiologia (English Edition) [J].2010,63(5):528-535.
    [104]George D. Dangas, Bimmer E. Claessen, Adriano Caixeta, et al. In-Stent Restenosis in the Drug-Eluting Stent Era. Journal of the American College of Cardiology [J].2010,56 (23):1897-1907.
    [105]Daniel H. Steinberg, Michael A. Gaglia Jr., MSc, Tina L. Pinto Slottow, et al. Outcome Differences With the Use of Drug-Eluting Stents for the Treatment of In-Stent Restenosis of Bare-Metal Stents Versus Drug-Eluting Stents. Am J Cardiol [J].2009,103(4): 491-495.
    [106]Robert Byrne, Raisuke Iijima, Julinda Mehilli, et al. Tratamiento de la reestenosis de stents liberadores de paclitaxel mediante implantation de stents liberadores de sirolimus. Resultados angiograficos y clinicos. Revista Espanola de Cardiologia (English Edition) [J].2008,61(11):1134-1139.
    [107]George J. Dimopoulos, Ronald O. Langner. Inhibition of phosphodiesterase has an additive effect on estrogen's ability to inhibit collagen synthesis in vascular smooth muscle cells. Vascular Pharmacology [J].2009,50(1-2):78-82.
    [108]J-F. Arnal, P. Gourdy, C. Filipe, et al. Characterizing the protective and deleterious vascular effects of estrogens. Drug Discovery Today:Disease Models [J].2004,1(3): 213-221.
    [109]Francoise Lenfant, Florence Tremollieres, Pierre Gourdy, et al. Timing of the vascular actions of estrogens in experimental and human studies:Why protective early, and not when delayed? Maturitas [J].2011,68(2):165-173.
    [110]Alexandre Abizaid, Mariano Albertal, Marco A Costa, et al. First human experience with the 17-beta-estradiol-eluting stent:The estrogen and stents to eliminate restenosis (EASTER) trial. Journal of the American College of Cardiology [J].2004,43(6):1118-1121.
    [111]Kristof Hirschberg, Timea Gombos, Edit Dosa, et al. Association between estrogen receptor a gene polymorphisms and early restenosis after eversion carotid endarterectomy and carotid stenting. Atherosclerosis [J].2009,206(1):186-192.
    [112]Zenon S. Kyriakides, Elias Lymberopoulos, Apostolos Papalois, et al. Estrogen decreases neointimal hyperplasia and improves re-endothelialization in pigs. International Journal of Cardiology [J].2006,113(1):48-53.
    [113]Turgay Celik, Atila Iyisoy, Hurkan Kursaklioglu, et al. An effective vascular-healing agent after coronary stent implantation:Estrogen. International Journal of Cardiology [J].2007,118 (1):116-117.
    [114]Yoon Ki Joung, Hyun Ⅱ Kim, Sung Soo Kim, et al. Estrogen release from metallic stent surface for the prevention of restenosis. Journal of Controlled Release [J].2003,92(1-2):83-91.
    [115]A.D. Hughes, G.F. Clunn, J Refson, et al. Platelet-derived growth factor (PDGF): Actions and mechanisms in vascular smooth muscle. General Pharmacology:The Vascular System [J].1996,27(7):1079-1089.
    [116]Enrico Jandt, Oliver Mutschke, Siavosh Mahboobi, et al. Stent-based release of a selective PDGF-receptor blocker from the bis-indolylmethanon class inhibits restenosis in the rabbit animal model. Vascular Pharmacology [J].2010,52(1-2):55-62.
    [117]Dietlind Zohlnhofer, Jorg Hausleiter, Adnan Kastrati, et al. A Randomized, Double-Blind, Placebo-Controlled Trial on Restenosis Prevention by the Receptor Tyrosine Kinase Inhibitor Imatinib. Journal of the American College of Cardiology [J].2005,46(11): 1999-2003.
    [118]Kae-Woei Liang, Sui-Chu Yin, Chih-Tai Ting, et al. Berberine inhibits platelet-derived growth factor-induced growth and migration partly through an AMPK-dependent pathway in vascular smooth muscle cells. European Journal of Pharmacology [J].2008,590(1-3):343-354.
    [119]Allison C. Morton, David Crossman, Julian Gunn. The influence of physical stent parameters upon restenosis. Pathologie Biologie 2004,52(4):196-205.
    [120]Meng Chen, Shigemasa (Gem) Osaki, Paul O. Zamora. Biological response of stainless steel surface modified by N2O/O2 glow discharge plasma. Applied Surface Science [J].2009,255(16):7257-7262.
    [121]Yang Shen, Guixue Wang, Liang Chen, et al. Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy:Effects of surface micropatterning combined with plasma nanocoatings. Acta Biomaterialia.2009,5(9):3593-3604.
    [122]Benjamin Thierry, Francoise M Winnik, Yahye Merhi, et al. Radionuclides-hyaluronan-conjugate thromboresistant coatings to prevent in-stent restenosis. Biomaterials 25 (2004) 3895-3905.
    [123]Pengxia Liu, Bin Zhou, Dongsheng Gu, et al. Endothelial progenitor cell therapy in atherosclerosis:A double-edged sword? Ageing Research Reviews [J].2009,8(2):83-93.
    [124]Belly Koren, Anat Weisz, Lukas Fischer, et al. Efficient transduction and seeding of human endothelial cells onto metallic stents using bicistronic pseudo-typed retroviral vectors encoding vascular endothelial growth factor. Cardiovascular Revascularization Medicine [J].2006,7(3):173-178.
    [125]Mihail Hristov, Christian Weber. Endothelial progenitor cells in vascular repair and remodeling. Pharmacological Research [J].2008,58(2):148-151.
    [126]Neal A. Scott, Francisco J. Candal, Keith A. Robinson, et al. Seeding of intracoronary stents with immortalized human microvascular endothelial cells. American Heart Journal [J].1995,129(5):860-866.
    [127]Alison P. McGuiga n, Michael V. Sefton. The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials [J].2007,28(16):2547-2571.
    [128]Georg Noll. Pathogenesis of atherosclerosis:a possible relation to infection. Atherosclerosis [J].1998,140(1):S3-S9.
    [129]Eduard Shantsila, Timothy Watson, Gregory Y.H. Lip. Endothelial Progenitor Cells in Cardiovascular Disorders. Journal of the American College of Cardiology [J].2007,49(7): 741-752.
    [130]Takayuki Asahara, Toyoaki Murohara, Alison Sullivan, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science [J].1997,275:964.
    [131]Marcie R. Finney, Nicholas J. Greco, Stephen E. Haynesworth, et al. Direct Comparison of Umbilical Cord Blood versus Bone Marrow-Derived Endothelial Precursor Cells in Mediating Neovascularization in Response to Vascular Ischemia. Biology of Blood and Marrow Transplantation [J].2006,12(5):585-593.
    [132]Huakang Wu, Gordon M. Riha, Hui Yang, et al. Journal of Surgical Research [J].2005,126(2):193-198.
    [133]Annalisa Pacilli, Gianandrea Pasquinelli. Vascular wall resident progenitor cells:A review. Experimental cell research [J].2009,315(6):901-914.
    [134]Brendan Doyle, Noel Caplice. A new source of endothelial progenitor cells-vascular biology redefined? Trends in Biotechnology [J].2005,23(9):444-446.
    [135]Xuefeng Bu, Yulan Yan, Zhijian Zhang, et al. Properties of Extracellular Matrix-Like Scaffolds for the Growth and Differentiation of Endothelial Progenitor Cells. Journal of Surgical Research [J].2010,164(1):50-57.
    [136]Guido Krenning, Marja J.A. van Luyn, Martin C. Harmsen. Endothelial progenitor cell-based neovascularization:implications for therapy. Trends in Molecular Medicine [J].2009,15(4):182-183.
    [137]Jeremy D. Pearson. Endothelial progenitor cells-an evolving story. Microvascular Research [J].2010,79(3):162-168.
    [138]Mervin C. Yoder, Laura E. Mead, Daniel Prater, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood [J].2007,109:1801.
    [139]Bertrand Lapergue, Askar Mohammad, Ashfaq Shuaib. Endothelial progenitor cells and cerebrovascular diseases. Progress in Neurobiology [J].2007,83(6):349-362.
    [140]Mitsushige Murata, Shugo Tohyama, Keiichi Fukuda. Impacts of recent advances in cardiovascular regenerative medicine on clinical therapies and drug discovery. Pharmacology & Therapeutics [J].2010,126(2):109-118.
    [141]Eduardo Anitua, Mikel Sanchez, Gorka Orive. Potential of endogenous regenerative technology for in situ regenerative medicine. Advanced Drug Delivery Reviews [J].2010,62(7-8):741-752.
    [142]Fabio Formosa, Carmelina D. Anfuso, Cristina Satriano, et al. UV-O3-treated and protein-coated polymer surfaces facilitate endothelial cell adhesion and proliferation mediated by the PKCα/ERK/cPLA2 pathway Original Research Article. Microvascular Research [J].2008,75(3):330-342.
    [143]J.Y. Chen, Y.X. Leng, X. Zhang, et al. Effect of tantalum content of titanium oxide film fabricated by magnetron sputtering on the behavior of cultured human umbilical vein endothelial cells (HUVEC). Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms [J].2006,242(1-2):26-29.
    [144]J.Y. Chen, X. Zhang, G.J. Wan, et al. Effect of hydrogen on the behavior of cultured human umbilical vein endothelial cells (HUVEC) on titanium oxide films fabricated by plasma immersion ion implantation and deposition. Surface and Coatings Technology [J].2007,201(19-20):8140-8145.
    [145]Loraine L.Y. Chiu, Milica Radisic. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials [J].2010, 31(2):226-241.
    [146]N.B. Thebaud, R. Bareille, R. Daculsi, et al. Polyelectrolyte multilayer films allow seeded human progenitor-derived endothelial cells to remain functional under shear stress in vitro. Acta Biomaterialia [J].2010,6(4):1437-1445.
    [147]Hardean E. Achneck, Ryan M. Jamiolkowski, Alexandra E. Jantzen, et al. The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells:EPC-seeded antithrombotic Ti Implants. Biomaterials [J].2011,32(1):10-18.
    [148]Toshihiko Shirota, Hisataka Yasui, Hiroaki Shimokawa, et al. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials [J].2003,24(13):2295-2302.
    [149]Xiaofeng Ye, Xiang Hu, Haozhe Wang, et al. Polyelectrolyte multilayer film on decellularized porcine aortic valve can reduce the adhesion of blood cells without affecting the growth of human circulating progenitor cells. Acta Biomaterialia [J].2012, 8(3):1057-1067.
    [150]Alexandra E. Jantzen, Whitney O. Lane, Shawn M. Gage, et al. Use of autologous blood-derived endothelial progenitor cells at point-of-care to protect against implant thrombosis in a large animal model. Biomaterials [J].2011,32(33):8356-8363.
    [151]Bradley K. Wacker, Shannon K. Alford, Evan A. Scott, et al. Endothelial Cell Migration on RGD-Peptide-Containing PEG Hydrogels in the Presence of Sphingosine 1-Phosphate. Biophysical Journal [J].2008,94(1):273-285.
    [152]Cristina Borselli, Francesca Ungaro, Olimpia Oliviero, et al. Bioactivation of collagen matrices through sustained VEGF release from PLGA microspheres. J Biomed Mater Res [J].2010,92A:94-102.
    [153]Chye Khoon Poh, Zhilong Shi, Tee Yong Lim, et al. The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials [J].2010,31(7): 1578-1585.
    [154]Quankui Lin, Xin Ding, Fuyu Qiu, et al. In situ endothelialization of intravascular stents coated with an anti-CD34 antibody functionalized heparin-collagen multilayer. Biomaterials [J].2010,31(14):4017-4025.
    [155]Gaku Nakazawa, Juan F. Granada, Carlos L. Alviar, et al. Anti-CD34 Antibodies Immobilized on the Surface of Sirolimus-Eluting Stents Enhance Stent Endothelialization. JACC:Cardiovascular Interventions [J].2010,3(1):68-75.
    [156]Jialong Chen, Jianjun Cao, Juan Wang, et al. Biofunctionalization of titanium with PEG and anti-CD34 for hemocompatibility and stimulated endothelialization. Journal of Colloid and Interface Science [J].2012,368(1):636-647.
    [157]Christoph A. Schmitt, Verena M. Dirsch. Modulation of endothelial nitric oxide by plant-derived products. Nitric Oxide [J].2009,21(2):77-91.
    [158]Bernhard Brune. Nitric oxide:A short lived molecule stays alive. Pharmacological Research [J].2010,61(4):265-268.
    [159]Aude Carreau, Claudine Kieda, Catherine Grillon. Nitric oxide modulates the expression of endothelial cell adhesion molecules involved in angiogenesis and leukocyte recruitment. Experimental Cell Research [J].2011,317(1):29-41.
    [160]Meenakshi Kushwaha, Joel M. Anderson, Charles A. Bosworth, et al. A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials [J].2010,31(7):1502-1508.
    [161]Muneera R. Kapadia, Lesley W. Chow, Nick D. Tsihlis, et al. Nitric oxide and nanotechnology:A novel approach to inhibit neointimal hyperplasia. Journal of Vascular Surgery [J].2008,47(1):173-182.
    [162]Gareth J. Padfield, David E. Newby, Nicholas L. Mills. Understanding the Role of Endothelial Progenitor Cells in Percutaneous Coronary Intervention. Journal of the American College of Cardiology [J].2010,55(15):1553-1565.
    [163]Chan-Koo Kang, Woo-Hyun Lim, San Kyeong, et al. Fabrication of biofunctional stents with endothelial progenitor cell specificity for vascular re-endothelialization. Colloids and Surfaces B:Biointerfaces [J].2013,102(1):744-751.
    [164]Hans P. Wendel, Meltem Avci-Adali, Gerhard Ziemer. Endothelial progenitor cell capture stents-hype or hope? International Journal of Cardiology [J].2010,145(1):115-117.
    [165]Margo Klomp, Marcel A. Beijk, Karel T. Koch, et al. LONG-TERM CLINICAL OUTCOME OF A REAL WORLD EXPERIENCE IN PATIENTS TREATED WITH A GENOUSTM EPC CAPTURING STENT. Journal of the American College of Cardiology [J].2010,55(10):A180.E1683.
    [166]Jiro Aoki, Patrick W. Serruys, Heleen van Beusekom, et al. Endothelial Progenitor Cell Capture by Stents Coated With Antibody Against CD34:The HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. Journal of the American College of Cardiology [J].2005,45(10):1574-1579.
    [167]Melissa Co, Edgar Tay, Chi Hang Lee, et al. Use of endothelial progenitor cell capture stent (Genous Bio-Engineered R Stent) during primary percutaneous coronary intervention in acute myocardial infarction:Intermediate-to long-term clinical follow-up. American Heart Journal [J].2008,155(1):128-132.
    [168]Marcel A.M. Beijk, Margo Klomp, Karel T. Koch, et al. One-year clinical outcome after provisional T-stenting for bifurcation lesions with the endothelial progenitor cell capturing stent compared with the bare-metal stent. Atherosclerosis [J].2010,213(2): 525-531.
    [169]Marco L. Rossi, Dennis Zavalloni, Gabriele L. Gasparini, et al. The first report of late stent thrombosis leading to acute myocardial infarction in patient receiving the new endothelial progenitor cell capture stent. International Journal of Cardiology [J]. 2010,141(1):e20-e22.
    [170]Stephen F. Badylak. The extracellular matrix as a biologic scaffold material. Biomaterials [J].2007,28(25):3587-3593.
    [171]Xiaoqing Xue, Jin Wang, Ying Zhu, et al. Biocompatibility of pure titanium modified by human endothelial cell-derived extracellular matrix. Applied Surface Science [J]. 2010,256(12):3866-3873.
    [172]Chennazhy Krishna Prasad, Lissy K. Krishnan.C. Regulation of endothelial cell phenotype by biomimetic matrix coated on biomaterials for cardiovascular tissue engineering. Acta Biomaterialia [J].2008,4(1):182-191.
    [173]Z.G. Chen, P.W. Wang, B. Wei, et al. Electrospun collagen-chitosan nanofiber:A biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomaterialia [J].2010,6(2):372-382.
    [174]Meenakshi Kushwaha, Joel M. Anderson, Charles A. Bosworth. A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials [J].2010,31(7):1502-1508.
    [175]Adinarayana Andukuri, Meenakshi Kushwaha, Ajay Tambralli, et al. A hybrid biomimetic nanomatrix composed of electrospun polycaprolactone and bioactive peptide amphiphiles for cardiovascular implants. Acta Biomaterialia [J].2011,7(1):225-233.
    [176]Alison P. McGuigan, Michael V. Sefton. The thrombogenicity of human umbilical vein endothelial cell seeded collagen modules. Biomaterials [J].2008,29(16):2453-2463.
    [177]Daniel V. Bax, David R. McKenzie, Anthony S. Weiss, et al. The linker-free covalent attachment of collagen to plasma immersion ion implantation treated polytetrafluoroethylene and subsequent cell-binding activity. Biomaterials [J].2010,31(9): 2526-2534.
    [178]Daniel V. Bax, David R. McKenzie, Anthony S. Weiss, et al. Linker-free covalent attachment of the extracellular matrix protein tropoelastin to a polymer surface for directed cell spreading. Acta Biomaterialia [J].2009,5(9):3371-3381.
    [179]Yi Hao Shen, Molly S. Shoichet, Milica Radisic. Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomaterialia [J].2008,4(3):477-489.
    [180]Anna Waterhouse, Yongbai Yin, Steven G. Wise, et al. The immobilization of recombinant human tropoelastin on metals using a plasma-activated coating to improve the biocompatibility of coronary stents. Biomaterials [J].2010,31(32):8332-8340.
    [181]Coby C. Larsen, Faina Kligman, Chad Tang, et al. A biomimetic peptide fluorosurfactant polymer for endothelialization of ePTFE with limited platelet adhesion. Biomaterials [J].2007,28(24):3537-3548.
    [182]Megan S. Lord, Weiyun Yu, Bill Cheng, et al. The modulation of platelet and endothelial cell adhesion to vascular graft materials by perlecan. Biomaterials [J]. 2009,30(28):4898-4906.
    [183]Guicai Li, Ping Yang, Wei Qin, et al. The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials [J]. 2011,32(21):4691-4703.
    [184]G. De Visscher, L. Mesure, B. Meuris, A. Ivanova, et al. Improved endothelialization and reduced thrombosis by coating a synthetic vascular graft with fibronectin and stem cell homing factor SDF-la. Acta Biomaterialia [J].2012,8(3):1330-1338.
    [185]N. Huang, P. Yang, Y. X. Leng, et al. Hemocompatibility of titanium oxide films. Biomaterials [J].2003,24(13):2177-2187.
    [186]Xuanyong Liu, Paul K. Chu, Chuanxian Ding. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering R [J].2004,47(3-4):49-121.
    [187]Richard O Hynes. The extracellular matrix:not just pretty fibrils. Science [J]. 2009,326:1216-1219.
    [188]Soo-Hyun Kim, Jeremy Turnbull, Scott Guimond. Extracellular matrix and cell signalling:the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol [J].2011,209:139-151.
    [189]J.L. Chen, Q.L. Li, J.Y. Chen, et al. Improving blood-compatibility of titanium by coating collagen-heparin multilayers.Applied Surface Science[J].2009,255(15):6894-6900.
    [190]Michael J Barnes, Richard W Farndale. Collagens and atherosclerosis. Experimental Gerontology [J].1999,34(4):513-525.
    [191]Emmanuelle Monchaux, Patrick Vermette. Effects of surface properties and bioactivation of biomaterials on endothelial cells. Frontiers in Bioscience [J].2010, S2:239-255.
    [192]Zi Gu, Barbara E. Rolfe, Zhi P. Xu, et al. Enhanced effects of low molecular weight heparin intercalated with layered double hydroxide nanoparticles on rat vascular smooth muscle cells. Biomaterials [J].2010,31(20):5455-5462.
    [193]Guicai Li, Fengming Zhang, Yuzhen Liao, et al. Coimmobilization of heparin/fibronectin mixture on titanium surfaces and their blood. Colloids and Surfaces B: Biointerfaces [J].2010,81(1):255-262.
    [194]Ji Y, Wei Y, Liu X, et al. Zwitterionic polycarboxybetaine coating functionalized with REDV peptide to improve selectivity for endothelial cells. J Biomed Mater Res Part A
    [J].2012,100A:1387-1397. [195] Brian D. Plouffe, Danson N. Njoka, Joscelyn Harris, et al. Peptide-Mediated Selective
    Adhesion of Smooth Muscle and Endothelial Cells in Microfluidic Shear Flow. Langmuir [J].2007,23(9):5050-5055.
    [196]Charles S Chen, Ioannis A Papayannopoulos, Sheila Timmons, et al. A modified Arg-Asp-Val (RDV) peptide derived during the synthesis of Arg-Glu-Asp-Val (REDV), a tetrapeptide derived from an alternatively spliced site in fibronectin, inhibits the binding of fibrinogen, fibronectin, von Willebrand factor and vitronectin to activated platelets.Biochimica et Biophysica Acta (BBA)-General Subjects [J].1991, 1075(3):237-247.
    [197]魏雨,纪璎,肖琳琳,等.具有内皮细胞选择性的细胞膜生物修饰支架材料的研究.高分子学报[J].2010,12:1474-1478.
    [198]K. Gelse, E. Poschl, T. Aigner. Collagens—structure, function, and biosynthesis. Advanced Drug Delivery Reviews [J].2003,55(12):1531-1546.
    [199]Stephan Soder, Ernst Poschl. The NC1 domain of human collagen Ⅳ is necessary to initiate triple helix formation.Biochemical and Biophysical Research Communications [J]. 2004,325(1):276-280.
    [200]Patrick B. Kelley, Yoshikazo Sado, Melinda K. Duncan. Collagen Ⅳ in the developing lens capsule. Matrix Biology [J].2002,21(5):415-423.
    [201]Michae1 J. Griffith. Chapter 9A Inhibitors:antithrombin Ⅲ and heparin. New Comprehensive Biochemistry [J].1986,13:259-283.
    [202]任科峰,沈利燕,孙婕衍,等.生物大分子层层组装:从生物分子的固定,界面控释到细胞外基质模拟.中国科学:化学[J].2011,41(2):239-249.
    [203]程海明,王磊,王睿,等Zeta电位法测定胶原及其降解物的等电点.皮革科学与工程[J].2006,16(6):40-43.
    [204]Guicai Li, Ping Yang, Nan Huang. Layer-by-layer construction of the heparin/fibronectin coatings on titanium surface:stability and functionality. Physics Procedia [J].2011,18:112-121.
    [205]陈诚,陈俊英,李全利,等.钛表面自组装牛血清白蛋白以控制血小板粘附行为的研究.功能材料[J].2009,04:660-662.
    [206]涂秋芬.以脱细胞犬动脉为基质的新型组织工程血管支架的制备和体外再细胞化研究.四川大学博士论文[D].2007:31-60
    [207]Sebastian Bauer, Patrik Schmuki, Klaus von der Mark, et al. Engineering biocompatible implant surfaces:Part I:Materials and surfaces. Progress in Materials Science [J].2013,58(3):261-326.
    [208]Seung Woo Chung, Myungjin Lee, Sang Mun Bae, et al. Potentiation of anti-angiogenic activity of heparin by blocking the ATIII-interacting pentasaccharide unit and increasing net anionic charge. Biomaterials [J].2012,33(35):9070-9079.
    [209]翟青霞,黄英,李玉青.静电自组装膜研究进展.材料开发与应用[J].2010,25(2):86-92.
    [210]罗磊,毛祖彝,李声伟.医用胶原的溶血试验.中国修复重建外科杂志[J].1997:4
    [211]涂秋芬.以脱细胞犬动脉为基质的新型组织工程血管支架的制备和体外再细胞化研究.四川大学博士论文[D].2007:31-60
    [212]李贵才.Ti表面共固定肝素和纤连蛋白分子:复合生物功能化的实现.西南交通大学博士论文[D].2012
    [213]韩猛.SV40T介导的SD大鼠胰岛细胞永生化的实验研究.华中科技大学硕士论文[D].2010
    [214]陈佳龙.内皮祖细胞捕获表面构建及其功能评价.西南交通大学博士论文[D].2012,6.
    [215]Pober JS. Just the FACS or Stalking the Elusive Circulating Endothelial Progenitor Cell. Arterioscler Thromb Vase Biol [J].2012;32:837-838.
    [216]Tura O, Skinner EM, Barclay GR, et al. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived frombone marrow. Stem Cells [J].2013, 31(2):338-348.
    [217]张伶俐,朱蔚精,谭言飞,等.生物材料溶血性标准化评价方法比较:溶血率法和氰化高铁血红蛋白法.生物医学工程学杂志[J].2004;21(1):111-114。
    [218]Stephan Niland, Christoph Westerhausen, Stefan W. Schneider, et al. Biofunctionalization of a generic collagenous triple helix with the α2β1 integrin binding site allows molecular force measurements.The International Journal of Biochemistry & Cell Biology [J].2011,43(5):721-731.
    [219]F. Misselwitz, S.P. Domogatsky, V.S Repin, et al. Substances that polymerize or depolymerize cytoskeletal proteins affect platelet spreading and thrombus-formation on surfaces coated with human collagen isotypes Ⅰ,Ⅳ, and Ⅴ.Thrombosis Research [J]. 1988,50(5):627-636.
    [220]David Richard Schmidt, Weiyuan John Kao. The interrelated role of fibronectin and interleukin-1 in biomaterial-modulated macrophage function. Biomaterials [J]. 2007,28(3):371-382.
    [221]陆树洋,洪涛,王春生,等Stanford A型主动脉夹层及升主动脉瘤样扩张血管组织结构的特点.复旦学报(医学版)[J].2010,37(5):531-534.
    [222]翟中和,王喜忠,丁明孝.细胞生物学[M],第三版,北京:高等教育出版社,2007
    [223]朱庆三,尹飞,郭丽,等.脊髓缺血再灌注损伤中神经细胞凋亡的研究.吉林大学学报(医学版)[J].2003,05:609-611.
    [224]L. Balleisen, J. Rauterberg. Platelet activation by basement membrane collagens. Thrombosis Research [J].1980,18 (5):725-732.
    [225]M.J. Barnes, A.J. Bailey, J.L. Gordon, et al. Platelet aggregation by basement membrane-associated collagens Thrombosis Research [J].1980,18 (5):375-388.
    [226]郭明珂.预防移植静脉内膜增生和再狭窄的实验研究.河北医科大学博士论文[D]. 2007:46
    [227]Anderson JM. Biological responses to materials. Annu Rev Mater Res [J].2001,31: 81-110.
    [228]孙桂芝,周同,张玉梅,等.肝素的抗炎作用与抗细胞粘附调节.生命科学.2003(04).
    [229]Achala deMel, Brian G. Cousins, AlexanderM. Seifalian. Surface Modification of Biomaterials:A Quest for Blood Compatibility. International Journal of Biomaterials [J].
    2012, doi:10.1155/2012/707863. Epub 2012 May 27. [230] Sharon L. Sanborn, Gurunathan Murugesan, Roger E. Marchant, et al. Endothelial cell formation of focal adhesions on hydrophilic plasma polymers. Biomaterials [J].2002,23 (1):1-8.
    [231]Bacakova L, Filova E, Parizek M, et al. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011,29(6):739-767.
    [232]Kay C Dee, David A. Puleo, Rena Bizios. An Introduction To Tissue-Biomaterial Interactions [M]. Published by John Wiley & Sons, Inc., Hoboken, New Jersey.2002:73-76.
    [233]Stephanie Ann Smith. Antithrombotic Therapy.Topics in Companion Animal Medicine [J].2012,27(2):88-94.
    [234]Weihua Jin, Quanbin Zhang, Jing Wang, et al. A comparative study of the anticoagulant activities of eleven fucoidans. Carbohydrate Polymers [J].2013,91 (1):1-6.
    [235]Benedicte P. Nuyttens, Tim Thijs, Hans Deckmyn, et al. Platelet adhesion to collagen. Thrombosis Research [J].2011,127(2):S26-S29.
    [236]Kay C Dee, David A. Puleo, Rena Bizios. An Introduction To Tissue-Biomaterial Interactions [M]. Published by John Wiley & Sons, Inc., Hoboken, New Jersey.2002:77.
    [237]Evi Stavrou, Alvin H. Schmaier. Factor XII:What does it contribute to our understanding of the physiology and pathophysiology of hemostasis & thrombosis. Thrombosis Research [J].2010,125(3):210-215.
    [238]Brian C. Cooley. Collagen-induced thrombosis in murine arteries and veins. Thrombosis Research [J].2013,131(1):49-54.
    [239]Ursula Labermeier, M.Cristina Kenney. The presence of EC collagen and type IV collagen in bovine Descemet's membranes. Biochemical and Biophysical Research Communications [J].1983,116(2):619-625.
    [240]Gianfranco Pintus, Bruna Tadolini, Margherita Maioli, et al. Heparin inhibits phorbol ester-induced ornithine decarboxylase gene expression in endothelial cells. FEBS Letters [J]. 1998,423(1):98-104.
    [241]Jian Yu, Aijun Wang, Zhenyu Tang, et al. The effect of stromal cell-derived factor-la/heparin coating of biodegradable vascular grafts on the recruitment of both endothelial and smooth muscle progenitor cells for accelerated regeneration. Biomaterials [J].2012,33(32):8062-8074.
    [242]Zhilu Yang, Qiufen Tu, Jin Wang, et al. The role of heparin binding surfaces in the direction of endothelial and smooth muscle cell fate and re-endothelialization. Biomaterials [J].2012,33(28):6615-6625.
    [243]Sarah C. Heilshorn, Kathleen A. DiZio, Eric R. Welsh, et al. Endothelial cell adhesion to the fibronectin CS5 domain in artificial extracellular matrix proteins. Biomaterials [J]. 2003,24(23):4245-4252.
    [244]Yu Wei, Ying Ji, Linlin Xiao, et al. Different complex surfaces of polyethyleneglycol (PEG) and REDV ligand to enhance the endothelial cells selectivity over smooth muscle cells. Colloids and Surfaces B:Biointerfaces [J].2011,84(2):369-378.
    [245]Aurore Schneider, Gregory Francius, Rodolphe Obeid, et al. Polyelectrolyte Multilayers with a Tunable Young's Modulus:Influence of Film Stiffness on Cell Adhesion. Langmuir,2006,22(3):1193-1200.
    [246]Ping Yang, Nan Huang, Yongxiang Leng, et al. Wettability and bloodcompatibility of a-C:N:H films deposited by PIII-D. Surface and Coatings Technology [J].2010, 204(18-19):3039-3042.
    [247]Emmanuelle Monchaux, Patrick Vermette. Bioactive Microarrays Immobilized on Low-Fouling Surfaces to Study Specific Endothelial Cell Adhesion. Biomacromolecules [J].2007,8(11):3668-3673.
    [248]Liu Shouchun, Thomas Sheila M., Woodside Darren G., et al. Binding of paxillin to a4 integrins modifies integrin-dependent biological responses. Nature [J].1999, 402(6762):676-681.
    [249]Paula K Shireman, Lian Xue, Ewa Maddox, et al. The S130K fibroblast growth factor-1 mutant induces heparin-independent proliferation and is resistant to thrombin degradation in fibrin glue. Journal of Vascular Surgery [J].2000,31(2):382-390.
    [250]Jean-Luc Giraux, Sabine Matou, Andree Bros, et al. Modulation of human endothelial cell proliferation and migration by fucoidan andheparin. European Journal of Cell Biology [J].1998,77(4):352-359.
    [251]Pengxia Liu, Bin Zhou, Dongsheng Gu, et al. Endothelial progenitor cell therapy in atherosclerosis:A double-edged sword? Ageing Research Reviews [J].2009,8(2):83-93.
    [252]Corinne R. Wittmer, Jennifer A. Phelps, W. Mark Saltzman, et al. Fibronectin terminated multilayer films:Protein adsorption and cell attachment studies. Biomaterials [J]. 2007,28(5):851-860.
    [253]Andreas Greinacher, Theodore E. Warkentin, Beng H. Chong. Chapter 42 Heparin-Induced Thrombocytopenia. Platelets (Third Edition) [M].2013,851-882.
    [254]Seung Woo Chung, Myungjin Lee, Sang Mun Bae, et al. Potentiation of anti-angiogenic activity of heparin by blocking the ATIII-interacting pentasaccharide unit and increasing net anionic charge. Biomaterials [J].2012,33(35):9070-9079.
    [255]Massia SP, Hubbell JA. Vascular endothelial-cell adhesion and spreading promoted by the peptide REDV of the IIICS region of plasma fibronectin is mediated by integrin a4b1. J Biol Chem [J].1992,267:14019-14026.
    [256]Barbara Garmy-Susini, Hui Jin, Yuhong Zhu, et al. Integrin a4[31-VCAM-1-media ted adhesion between endothelial and mural cells is required for blood vessel maturation. J Clin Invest [J].2005,115(6):1542-1551.
    [257]Richard W. Farndale. Collagen-induced platelet activation. Blood Cells, Molecules, and Diseases [J].2006,36(2):162-165.
    [258]Brian C. Cooley. Collagen-induced thrombosis in murine arteries and veins. Thrombosis Research [J].2013,131(1):49-54.
    [259]Marie K. Schwinn, Jose M. Gonzalez Jr., B'Ann T. Gabelt, et al. Heparin Ⅱ domain of fibronectin mediates contractility through an a4β1 co-signaling pathway. Experimental Cell Research [J].2010,316(9):1500-1512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700