用户名: 密码: 验证码:
应用基因组改组选育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对本实验室自主筛选的琥珀酸产生菌Actinobacillus succinogenes CGMCC 1593进行了钠离子耐受性研究,将菌株分别进行X-射线诱变、紫外线诱变和EMS化学诱变,筛选得到3株发酵性能有改良的菌株(X-8、UV-17及SE-6),将其与实验室保存的经NTG诱变的高产菌株(SF-9)进行基因组改组方法选育高产耐钠菌株,获得4株稳定性较好的耐高浓度钠离子高产突变株,并对其中一株(F3-10)进行了初步发酵性能研究。
     通过菌种特性研究,确定采用菌龄5 h的菌体进行诱变处理,并确定了筛选平板中NaCl临界浓度为0.8 mol/L;通过致死曲线的测定,确定了X-射线诱变照射时间40 min,紫外诱变照射时间20 s,EMS诱变处理浓度为2.0%,处理时间为20 min。出发菌株分别经X-射线诱变、紫外线诱变和EMS诱变,采用高浓度钠离子平板进行初筛,然后进行厌氧瓶发酵HPLC复筛获得3株钠离子耐受性较好、琥珀酸产量较高的菌株X-8、UV-17及SE-6。
     对菌种原生质体制备及再生的影响因素进行了考察,确定采用菌龄为5 h的菌体,酶解时溶菌酶浓度为0.1 mg/mL,37℃酶解30 min,渗透压稳定剂为0.3 mol/L的蔗糖,再生培养方式采用双层平板再生。对原生质体灭活标记条件进行了研究,确定紫外灭活5 min,55℃热灭活25 min后原生质体灭活率达100%。对原生质体融合条件进行了研究,确定融合条件为采用浓度为40%的PEG6000为助融剂,融合温度为37℃,融合时间2 min,此时融合率达2.78×10-5。
     采用多母本原生质体递近融合技术,经过三轮改组后筛选得到4株稳定性较好的高产突变株F3-2、F3-10、F3-13、F3-15,其中一株F3-10在厌氧瓶发酵培养基中发酵48 h,琥珀酸积累39.7 g/L,较原始菌株SW0580提高了36.0%,而在含0.2 mol/LNaCl培养基中发酵时琥珀酸产量为30.3 g/L,较原始菌株SW0580的17.6 g/L提高了72.1%;以甘蔗糖蜜为原料在5 L发酵罐中采用Na2CO3控制发酵pH厌氧发酵48 h,琥珀酸积累40.6 g/L,较出发菌SW0580(26.8 g/L)提高56.2%。F3-10菌株的耐钠和发酵产酸性能较原菌株有明显改善。
     初步考察了突变株的发酵性能,在5 L发酵罐中分别以甘蔗糖蜜、麦芽糖糖浆及葡萄糖为碳源进行琥珀酸发酵,发现利用甘蔗糖蜜作碳源时发酵产琥珀酸效果最好;分别考察了酵母膏、玉米浆浓度对发酵罐中发酵产琥珀酸的影响,发现培养基中不添加酵母膏时,琥珀酸产量明显降低,增大培养基中玉米浆浓度时,琥珀酸产量相应提高。以麦芽糖浆为原料在25 L发酵罐中对琥珀酸发酵进行了放大试验,发酵48 h,琥珀酸积累33.2 g/L,基本能维持5 L发酵罐中以麦芽糖浆为原料时的产酸水平。
In this thesis, Na+-tolerance characteristic of Actinobacillus succinogenes CGMCC 1593 isolated by our laboratory was studied. Three Na+-tolerance mutant strains (X-8, UV-17, SE-6), were obtained by X-ray, ultraviolet irradiation and EMS mutagenesis respectively. These mutant strains, as well as strain SF-9 which was obtained by NTG mutagenesis in previous work were used as a parent library in recursive fusion. Through there rounds of genome shuffling, four mutant strains with high yield and good Na+-tolerance were obtained, and the fermentation performance of one strain F3-10 was studied.
     After the characteristic study of strain SW0580, screening plate containing 0.8 mol/L NaCl and 5 h pre-cultured cells were used in the mutation study. The mutation conditions were as follows: X-ray treatment for 40 min, ultraviolet irradiation for 20 s, 2.0% EMS for 20 min. The mutant strains with high yield, namely X-8, UV-17 and SE-6, were obtained by X-ray, ultraviolet irradiation and EMS mutagenesis, respectively.
     The optimized conditions for protoplast preparation and regeneration were as follows: the cells being cultured for 5 h; lysozyme concentration of 0.1 mg/mL; incubation at 37℃for 30 min to allow cell wall lysis; 0.3 mol/L of sucrose as osmotic stabilizer; and double-lay plate for regeneration. The protoplast inactivation methods were determined to be ultraviolet irradiation for 5 min and heat treatments for 25 min. Under the optimized conditions for protoplast fusion, 40% PEG 6000, incubation at 37℃for 2 min, the fusion rate was 2.78×10-5.
     Four mutant strains namely F3-2, F3-10, F3-13 and F3-15 with high yield were obtained by three rounds of genome shuffling. Using strain F3-10, succinic acid concentration of 39.7 g/L and 30.3 g/L were obtained after 48 h of fermentation in medium containing 0 and 0.2 mol/L NaCl in anaerobic bottles respectively, this is an increase of 36.0% and 72.1% respectively. When batch fermentation was conducted using Na2CO3 for pH control in 5-L bioreactor using cane molasses, the production of succinic acid in 48 h(40.6 g/L)was increased by 56.2% compared with that of wild strain (26.8 g/L). The fermentation performance and Na+-tolerance of the mutant strain F3-10 were significantly improved, and F3-10 showed genetic stability.
     The primary study on fermentation performance of the strain F3-10 was carried out. Batch fermentation in 5-L bioreactor using cane molasses, maltose syrup and glucose as carbon sources was conducted, highest succinic acid yield was observed using cane molasses as carbon source. The effect of yeast extract and corn steep liquor on succinic acid fermentation was also investigated. The results showed that succinic acid yield decreased evidently without yeast extract, and the yield of succinic acid increased with the addition of corn steep liquor. Fermentation using maltose syrup in a 25 L bioreactor was also carried out, and the final succinic acid concentration of 33.2 g/L was achieved at 48 h, which was comparable with that in 5-L bioreactor.
引文
1.凌关庭主编.食品添加剂手册[M].第二版,北京:化学工业出版社,1991,638-639
    2.中国医药公司上海化学试剂采购供应站编写.试剂手册[M].上海:上海科学技术出版社,1985,1158
    3.邝生鲁,贡长生.琥珀酸的开发与应用前景[J].化工时刊,1991,1:24-26
    4.宋心琦.实用化学化工辞典[M].北京:宇航出版社,1995,92
    5.王庆昭,吴巍,赵学明.生物转化法制取琥珀酸及其衍生物的前景分析[J].化工进展, 2004,23(7):794-798
    6.王博彦,金其荣,发酵有机酸生产与应用手册[M].北京:中国轻工业出版社,2000,5
    7.沈菲.琥珀酸发酵条件的优化与菌种选育[D]:[硕士学位论文].天津:天津大学,2003
    8. Kinnersley A,Coleman R,Tolbert E.Method for Stimulating Plant Growth Using GABA and Succinic Acid[P].US Patent,5604177,1997
    9. Zeikus J G,Jain M K,Elankovan P.Biotechnology of succinic acid production and markets for derived industrial products[J].Appl Microbiol Biotechnol,1999,51:45-552
    10. Song H,Lee S Y.Production of succinic acid by bacterial fermentation[J].Enzyme Microb Technol,2006,39:352-361
    11. Baum P,Engelmann J.Applied macromolecular chemistry[J].Nachr Chemie,2001,49: 368-373
    12.司航主编,化工产品手册,有机化工原料[M].化学工业出版社,1985,230-232
    13.李春丽,陈志新,赵新丽.丁二酸的制备及用途[J].青海大学学报,17(6):22-24
    14. Ikuta M.Production of succinic acid[P].Japanese Patent,5068576,1993
    15. Yamada S.Production of succinic acid[P].Japanese Patent,9031011,1997
    16.盛自华,王正发,琥珀酸发酵生产[J].发酵科技通讯,2006,35(4):20
    17. Ryu H W,Kang K H,Pan J G,et al.Characteristics and Glycerol Metabolismof Fumarate- Reducing Enterococcus faecalis RKY1[J].Biotechnol Bioeng,2001,72(1):199-124
    18. Davis C P,Cleven D,Brown J.Anaerobiospirillum,a new genus of spiral-shaped bacteria[J]. Int J Syst Bacteriol,1976,26:498-504
    19. Datta R.Process for the production of succinic acid by anaerobic fermentation[P].US Patent,5143833,1992
    20. Lee P C,Lee W G,Lee S Y,et al.Effect of medium components on the growth of Anaerobio- spirillum succiniciproducens and succinic acid production[J].Process Biochem,1999,35: 49-55
    21. Glassner D A,Datta R.Process for the production and purification of succinin acid[P].US patent,5521075,1992
    22. Samuelov N S,Lamed R, Lowe S, et al.Influence of CO2-HCO3 levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens[J]. Appl Environ Microbiol,1991,57:3013-3019
    23. Guettler M V,RumLer D,Jain M K.Actinobacillus succinogenes sp. nov. a novel succinic- acid-producing strain from the bovine rumen.International[J].J Syst Bacteriol,1999,49: 207-216
    24. Guettler M V,Jain M K.Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants[P].US Patent,5573931,1996
    25. Vander Werf M J,Guettler M V,Jain M K,et al.Environmental and physiological factors aff- ecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z[J].Arch Microbiol,1997,167:332-342
    26. Kim P,Laivenieks M,Vieille C,et al.Effect of overexpression of Actinobacillus succino- genes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli[J]. Appl Environ Microbiol,2004,70:1238-1241
    27. Millare C S,Chao Y P,Liao J,et al.Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli[J].Appl Environ Microbiol,1996, 62:1808-1810
    28. Stols L,Donnelly M I.Production of succinic acid through overexpression of NAD+-depe- ndent malic enzyme in an Escherichia coli mutant[J].Appl Environ Microbiol,1997, 63: 2695-2701
    29. Hong S H,Lee S Y.Metabolic flux analysis for succinic acid production of by recombinant Escherichia coli with amplified malic enzyme activity[J].Biotechnol Bioeng,2001,74: 89-95
    30. Chatterjee R,Millare C S,Donnelly M.Mutation of the ptsG Gene Results in Increased Production of Succinate in Fermentation of Glucose by Escherichia coli[J].Appl Environ Microbiol,2001,67(1):148-154
    31. Donnelly M I,Millard C S,Clark D P,et al.A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid and ethanol[J].Appl Biochem Biotechnol, 1998,70-72:187-198
    32. Vemuri G N,Eiteman M A, Altman E.Succinate production in dual phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions[J].J Ind Microbiol Biotechnol,2002,28:325-32
    33. Donnelly M I,Sanville-Millard Cynthia Y,et al.Method to produce succinic acid from raw hydrolysates[P].US Patent,6743610,2004
    34. Laivenieks M,Vieille C,Zeikus J G..Cloning, sequencing, and overexpression of the Anae- robiospirillum succiniciproducens phosphoenolpyruvate carboxykinase (pckA) gene.Appl Enviro Microbiol,1997,63:2273-2280
    35.吴婵媛.产琥珀酸大肠杆菌代谢工程的研究[D]:[硕士论文].天津:天津大学化工学院, 2006
    36.王庆昭.高产琥珀酸大肠杆菌的代谢工程[D].[博士学位论文].天津:天津大学化工学院, 2006
    37.姜岷,王倩楠,陈可泉,等.啤酒废酵母酶解液作为有机氮源厌氧发酵制备丁二酸的研究[J].食品科技,2007,10:238-242
    38.谢鑫,陈可泉,刘忠敏,等.产丁二酸工程菌的构建及其厌氧发酵[J].生物工程学报,2008, 24(1):101-105
    39.林剑,孙莹,刘晓艳,等.琥珀酸产生菌的诱变与选育[J].食品科技.2007,28(12)
    40.李兴江,潘丽军,姜绍通.牛瘤胃中琥珀酸产生菌的分离鉴定研究[J],合肥工业大学学报(自然科学版),2007,30(10):1327-1330
    41.孙志浩,郑璞,刘宇鹏,等.一种微生物发酵生产丁二酸的菌种和方法[P].中国专利, 200610038113,2006
    42.郑璞,朱蕾蕾,刘宇鹏,等.琥珀酸放线杆菌发酵培养基的优化[J].工业微生物,2007,37(5): 1-5
    43.刘宇鹏,朱蕾蕾,郑璞,等.琥珀酸发酵高产菌株的选育[J].工业微生物,2007,37(2):1 - 6
    44. Liu Y P,Zheng P, Sun Z H,et al.Economical succinic acid production from cane molasses by Actinobacillus succinogenes[J].Bioresource Technology,2007,03:044
    45.张澎湃.微生物菌种选育技术的发展与研究进展[J].生物学教学,2005,30(9):3-5
    46.赵作棋,孙萍,宋友礼.青霉素高产菌株的推理选育[J].中国医药工业杂志,1999,30:437-441
    47.薛禹谷.我国链霉菌遗传学研究的回顾和展望[J].中国抗生素杂志,1990,15(3): 225-230
    48.王金盛,李春波,郝得阳,等.电诱导棘抱小单抱锈菌原生质体融合[J].生物技术,1998, 8(6):6-8
    49.戴四发,黎观红,吴石金.现代工业微生物育种技术研究进展[J].微生物学杂志,2000, 20(2):48-53
    50.史晓昆,王秀然,刘东波.Genome Shuffling技术在微生物遗传育种中的应用[J].农业与技术,2005,25(1):145-147
    51.陈涛,陈洵,王靖宇,等.DNA及基因组改组在代谢工程中的应用[J].化工学报.2004, 55(11):1753-1758
    52.刘洋.生防菌株HD-087高产菌株的选育与发酵条件的研究[D]:[硕士学位论文].黑龙江:黑龙江大学,2007
    53. Zhang Y X,Kim P,Victor A,et al.Genome shuffling leads to rapid phenotypic improvement in bacteria[J].Nature,2002,15:644-646
    54. Ranjan Patnaik,Susan Louie,Vesna Gavrilovic,et al.Genome shuffling of Lactobacillus for improved acid tolerance[J].Nat.Biotechnol,2002,20:707-712
    55. Dai M H,Shelley D C.Genome Shuffling Improves Degradation of the Anthropogenic Pesticide Pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723[J].Appl Enviro Microbiol,2004,70(4):2391-2397
    56. Hiroyuki H,Takashi Y,Yasuhiro Y.Genome shuffling of Streptomyces sp. U121for improved production of hydroxycitric acid[J].Appl Microbiol Biotechnol,2007, 73:1387-1393
    57. Wang Y H,Li Y,Pei X L.Genome-shuffling improved acid tolerance and l-lactic acid volu- metric productivity in Lactobacillus rhamnosus[J].Journal of Biotechnology,2007, 510-515
    58.陈涛,王靖宇,周世奇.基因组改组及代谢通量分析在产核黄素Bacillus subtilis性能改进中的应用[J].化工学报,2004,55(11):1842-1849
    59.徐波,王明蓉,夏永,等.应用基因组重排育种新方法筛选替考拉宁高产菌[J].中国抗生素杂志,2006,31(4):237-242
    60.高雯.抗肿瘤抗生素柔红霉素产生菌的基因组改组研究[D]:[硕士学位论文].上海:上海医药工业研究院,2005
    61.欧阳平凯,曹竹安,马宏建,等.发酵工程关键技术及其应用[M]].北京:化学工业出版社, 2005
    62.刘宇鹏.琥珀酸放线杆菌厌氧发酵代谢调控研究[D]:[博士学位论文].无锡:江南大学生物工程学院,2007
    63. Goodhead D T,Thacker J.Inactivation and Mutation of Cultured Mammalian Cells by Aluminium Characteristic Ultrasoft X-rays[J].Int J Radiat Biol,1977,31(6):541-559
    64. Goodhead D T,Thacker J,Cox R.Effects of Radiations of Different Qualities on Cells: Molecular Mechanisms of Damage and Repair[J].Int J Radiat Biol,1993,63(5):543-556
    65.诸葛健,王正祥.工业微生物实验技术手册[M].北京:中国轻工业出版社,1994,388-390
    66.岑沛霖.工业微生物[M].北京:化学工业出版社,2001,335-344
    67.郑重谊,谢达平,谭周进.影响微生物原生质体融合技术的因素[J].湖南农业科学,2006, (4):35-38
    68. Ferenczy L.Cell fusion-gene trasfer and transformation[M].New York:Raveb Oressam, 1984
    69.孙剑秋,周东坡,平文祥.灭活微生物原生质体融合的研究进展[J].中国医学生物技术应用杂志,2002,29-32
    70.周德庆.微生物教程[M].北京:高等教育出版社,1993,206
    71.罗文生,沈萍.盐生盐杆菌灭活原生质体融合的研究[J].武汉大学学报,1995,(41): 751-756
    72.李祥锴,安志东,朱非.林肯链霉菌双亲灭活原生质体融合的研究[J].氨基酸和生物资源,2001,23(4):24-27
    73.王玉华,李岩,裴晓林,等.基因组改组提高干酪乳杆菌耐酸性生产L-乳酸[J].中国生物工程杂志,2006,26(2):53-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700