用户名: 密码: 验证码:
纳他霉素对灰葡萄孢的活性及作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灰葡萄孢(Botrytis cinerea Pers.)是设施栽培和果蔬采后保鲜中的重要病原真菌,目前主要通过使用化学杀菌剂进行防治,由此产生的残留污染受到日益密切的关注,迫切需要寻找更加安全、高效的药剂。本研究以敏感灰葡萄孢菌株为对象,测定了纳他霉素(Natamycin)及多菌灵、乙霉威、腐霉利和嘧霉胺等药剂的抑制活性,同时,研究了纳他霉素对菌株生物学性状的影响、作用机理及不同试验条件对纳他霉素稳定性的影响,研究结果表明:
     1、采用菌丝生长速率法测定了25℃下供试灰葡萄孢对纳他霉素等药剂的敏感性。结果表明,纳他霉素对灰葡萄孢有较高的活性,其EC50值为37.4212 mg/L;多菌灵、异菌脲和腐霉利的抑制效果最佳,EC50值分别为0.6973 mg/L、0.5315 mg/L和0.4411 mg/L;咪鲜胺、噻菌灵和嘧霉胺次之,EC50值分别为1.7181 mg/L、1.8432 mg/L和3.2956 mg/L;乙霉威的活性最差,EC50值达151.2110 mg/L。
     2、研究了不同温度下纳他霉素等药剂对不同生育阶段灰葡萄孢的活性。结果表明,随温度下降药剂活性均有不同程度提高。其中纳他霉素在低温下对菌丝生长有很高的抑制活性,5℃时EC50值为0.9840 mg/L,活性较25℃提高了38倍。5℃时乙霉威活性较25℃提高了6倍,多菌灵活性提高了10.8倍,嘧霉胺、腐霉利、噻菌灵、异菌脲、咪鲜胺的活性分别提高了9.6倍、8.2倍、4.5倍、4.1倍和30.6倍;10℃时纳他霉素对分生孢子萌发的抑制活性是25℃时的2.5倍,对菌核萌发的抑制活性是25℃时的1.7倍。不同生育阶段菌体对药剂的敏感性差异显著,分生孢子对药剂最敏感,25℃时纳他霉素对分生孢子萌发的EC50是3.3239 mg/L,对菌丝生长的EC50是37.4212 mg/L,对菌核萌发的抑制活性极微弱,EC50大于2000 mg/L。
     3、研究了纳他霉素和多菌灵对灰葡萄孢生物学性状的影响。两种药剂对菌株产孢、产菌核时间无显著影响,但纳他霉素较多菌灵可显著抑制菌株产孢、产菌核,多菌灵对菌株产孢、产菌核有明显的刺激作用。
     4、研究了纳他霉素在不同试验条件下的稳定性。结果表明,紫外线照射可显著促进纳他霉素分解,照射0.5 h后,降解率达54.72%。低温能有效缓解纳他霉素的降解,25℃下放置24h后,纳他霉素浓度仅相当于初始配制浓度的51.2%,而5℃下放置24h后,是初始配制时的82.3%,降解率仅为17.7%。加入抗氧剂后,可显著抑制纳他霉素的降解,放置20d后,加入抗氧剂的处理中纳他霉素有效成分含量降解率为34.84%,而空白处理的降解率为68.16%。通过研究不同PH值下纳他霉素对灰葡萄孢菌丝生长和分生孢子萌发的影响发现,纳他霉素在弱酸性条件下有较好的作用效果。
     5、初步探讨了纳他霉素对灰葡萄孢的作用机理。研究表明,纳他霉素对菌丝体内含物渗漏的影响明显。25℃下经纳他霉素处理8 h后,单位重量菌丝体可溶性糖渗漏量达到4 mg/g,较初始时提高了9倍;可溶性蛋白渗漏量达到177μg/g,为初始时的2倍;电导率达到700μs/cm,为初始时的6倍,而其它药剂如多菌灵、乙霉威等处理的变化均不明显。不同温度处理之间,温度越低,菌丝体内含物的渗漏量越少,纳他霉素处理的变化最为明显,5℃处理8h后可溶性糖渗漏量仅为25℃处理8h后的31%。经纳他霉素处理后,可显著降低菌丝体麦角甾醇含量,25℃下20 mg/L纳他霉素处理菌丝体中麦角甾醇含量为46.78μg/g,是空白对照处理的55%,培养温度越低,菌丝体中麦角甾醇含量越少。纳他霉素对菌株胞外酶活性没有显著影响。
     6、在番茄活体叶片上接种了供试菌株。试验结果证明,供试药剂对灰葡萄孢病斑扩展的抑制作用与离体试验结果一致,经浸渍处理后,纳他霉素对灰葡萄孢病斑在叶片上扩展的抑制作用较多菌灵差,但显著好于乙霉威。
Botrytis cinerea Pers is an important pathogenic fungus of plant in greenhouse and postharvest storage. Now fungicide is the main prevent method. But people pay close attention to remaining problem. Search more safer and high-performance fungicide is an urgent task. Use sensitive strain as object, effects of natamycin, carbendazim, diethofencarb, procymidone and pyrimethani against B.cinerea were tested. The activity change of fungicides under different temperatures was also tested. We have also studied the effect of natamycin on biological characteristics of B. cinerea and action mechanism of natamycin. Stability of natamycin under different test conditions was also studied. The results showed that:
     1 The sensitivity of B. cinerea to fungicides under 25℃was tested through mycelial growth rate method. Natamycin has good effect, EC50 value was 37.4212 mg/L, efficacy of carbendazim, iprodione and procymidone were remarkable, EC50 value were 0.6973 mg/L, 0.5315 mg/L and 0.4411 mg/L. Prochloraz, thiabendazole and pyrimethanil take the second place, EC50 value were 1.7181mg/L, 1.8432mg/L and 3.2956mg/L. The activity of diethofencarb was the lowest, EC50 value was 151.2110 mg/L.
     2 The sensitivity of B. cinerea to fungicides under different temperatures was tested. With temperature decrease, the effect of fungicides to B. cinerea is increase. Natamycin have good effect on mycelial growth at low temperature, EC50 value at 5℃was 0.9840 mg/L, increased 38-folds compared with 25℃. The activity of diethofencarb, carbendazim, pyrimethanil, procymidone, thiabendazole, iprodione and prochloraz to B. cinerea increased 6-folds, 10.8-folds, 9.6-folds, 8.2-folds, 4.5-folds, 4.1-folds and 30.6-folds. The activity of natamycin to spore germination at 10℃increased 2.5-folds compared with 25℃, and to sclerote germination increased 1.7-folds. The distinction of activity to B. cinerea at different growth stages was significant. Conidium was most sensitive. EC50 value of natamycin to spore germination and mycelial growth were 3.3239mg/L and 37.4212 mg/L. Activity of natamycin to sclerote germination was very weak, EC50 value exceeded 2000 mg/L.
     3 The toxicity to B. cinerea at different growth stages was also studied. The two fungicides have no effect on the time of spore and sclerote formation, but natamycin can restrain sporulation and sclerotigenic significantly compared with carbendazim. Carbendazim can stimulate sporulation and sclerotigenic.
     4 The stability of natamycin under different conditions was studied. The result indicated that ultraviolet irradiation can promote decomposition. After irradiated half an hour, utility content degradation rate was 60%. Natamycin decompose slowly in low temperature. After twenty-four hours, utility content decreased to 51.2% compared with incipient under 25℃. While, under 5℃the utility content decreased to 82.3%, degradation rate was only 17.7%. Oxidation-resistant can restrain decomposition of natamycin. After twenty days, degradation rate of CK was 68.16%. While, the degradation rate of treatment which contain oxidation-resistant was 34.84%. The result of effect on mycelial growth and spore germination under different PH value indicated that, natamycin has better effect in weak acid condition.
     5 Studies on action mechanism indicated that, influence of natamycin to mycelial leakage was significant. 8 hours after treated by natamycin, sugar leakage was 4 mg/g, increased 9-folds compared with incipient. Albumen leakage was 177μg/g. Conductivity was 700μs/cm. Other fungicides did not have so significant change. Among treatments of different temperatures, mycelial leakage decreased as temperature decreased. The change of treatment by natamycin was most significant. Sugar leakage after 8 hours under 5℃was 31 percents of treatment under 25℃. After treated by natamycin, the content of ergostero1 decreased. Ergostero1 content of treatment by 20 mg/L natamycin was 46.78μg/g, 55 percents of CK. Ergostero1 content decrease with temperature drop. But exocellular enzyme activity has no change.
     6 The result of live leaf test was identical to the toxicity of mycelium growth. The inhibitory effect of natamycin on spot expand was worse than carbendazim, but better than diethofencarb remarkably.
引文
1.陈利锋,徐敬友.农业植物病理学[M].北京:中国农业出版社,2001.
    2.陈冠群,季波.纳他霉素的特性及应用[J].中国乳品工业,2002,30(4): 26-28.
    3.陈晓丽,吕振岳,黄东东.新型天然食品防腐剂纳他霉素的研究进展[J].食品研究与开发,2002,23(4):23-25.
    4.陈琪.灰葡萄孢对速克灵抗性遗传及病理生理学的研究[D].安徽农业大学硕士学位论文,2004.
    5.崔澎.木霉菌防治番茄灰霉病的研究[D].沈阳农业大学硕士学位论文, 2001.
    6.丁中,刘峰,王会利,等.番茄灰霉菌的多重抗药性研究[J].山东农业大学学报(自然科学版),2001,32(4):452-456.
    7.丁中,刘峰,慕立义.不同抗性型灰葡萄孢菌Botrytis cinerea对不同作用机制杀菌剂的敏感性研究[J].农药学学报,2001,3(4):59-63.
    8.董金皋.农业植物病理学[M],中国农业出版社,2001.
    9.董汉松.植物诱导抗病性原理和研究[M],科学出版社,1995.
    10.戴富明,周世明.上海郊区保护地主要蔬菜灰霉病抗药性的初步研究[J].上海农业学报,1996,12(4):73-76.
    11.樊慕贞,朱杰华,黄天成.草霉灰霉病的发生和防治研究[J].河北农业大学学报,1995,18(2):21-30.
    12.韩熹莱.新型内吸杀菌剂麦角甾醇生物合成抑制剂(EBIs)[J].植物保护, 1984,6:22-24.
    13.范悠然.纳他霉素-一种抗真菌生物防腐剂[J].中国食品添加剂,2006,(5):165-171.
    14.韩巨才,刘慧平,闫秀琴,等.灰霉病菌对三种杀菌剂的抗性表现型分布及稳定性测定[J].农药学学报,2004,6(3):43-47.
    15.呼玉侠,孙远功,鲁来政,等.纳他霉素在草毒防腐中的应用[J].食品研究与开发,2006,27(8):170-172.
    16.黄启良,李凤敏,王敏. 40%嘧霉胺悬浮剂防治黄瓜灰霉病药效试验[J].植物保护,2000,26(2):44-45.
    17.纪明山,程根武,张益先,等.灰霉病菌对多菌灵和乙霉威抗性研究[J].沈阳农业大学学报,1998,29(3):213-216.
    18.纪明山,祁之秋,赵平,等.番茄灰霉病菌对嘧霉胺抗药性的试验[J].沈阳农业大学学报,2002,33(5):345-347.
    19.纪明山,祁之秋,王英姿,等.番茄灰霉病菌对嘧霉胺的抗药性[J].植物保护学报,2003,30(4):396-400.
    20.鞠荣,徐汉虹,杨晓云.噻菌灵对荔枝贮藏保鲜的效果及残留量研究[J].华南农业大学学报,2005,26(1):110-114.
    21.贾晓华,番茄灰霉病菌和油菜菌核病菌对嘧霉胺的敏感性基线及番茄灰霉病菌抗药性研究[D].南京农业大学硕士学位论文,2004.
    22.姜爱丽,胡文忠,田密霞,等.纳他霉素在草莓保鲜中应用的研究[J].食品科学,2007,28(12):515-521.
    23.姜元荣,钱海峰,孟德奇.纳他霉素与乳酸链球菌素复合防腐剂在酱油防霉中的应用[J].食品与生物技术,2002,21(2):170-172.
    24.康立娟,张小风,王文桥,等.灰霉菌的抗药性与适合度测定[J].农药学学报,2000,2(3):39-42.
    25.李红叶,朱国念,朱金文.丝状真菌对甾醇生物合成抑制剂的抗性分子机制[J].菌物系统,2002,21(2):293-300.
    26.李妍,宁正祥.微生物对食品防腐剂的抗性研究进展[J].广州食品工业科技,2004,20(4):169-171.
    27.李宝聚,陈立芹,孟伟军,等.温湿度调控对番茄灰霉病菌产生的细胞壁降解酶的影响[J].植物病理学报,2003,33(3):209-212.
    28.李宝聚,陈立芹,孟伟军,等.湿度调控对番茄灰霉病菌侵染的影响[J].植物病理学报,2003,33(2):167-169.
    29.李宝聚,陈立芹,孟伟军,等.温度调控对番茄灰霉病菌侵染的影响[J].植物保护,2004,30(2):75-80.
    30.李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:184.
    31.刘树立,王春艳,邹忠义.纳他霉素的研究现状及其在肉类工业中的应用[J].肉类研究,2007,(11):8-12.
    32.刘德荣,谢丙炎.应用特异等位PCR快速鉴定灰霉病菌抗苯来特与乙霉威菌株[J].菌物系统,2001,20(2):238-243.
    33.刘波,刘经芬,叶钟音.药剂诱导灰霉病菌产生抗速克灵菌株的研究[J].莱阳农学院学报,1991,8(1):47-50.
    34.刘波,叶钟音,刘经芬.速克灵抗性灰霉病菌菌株性质的研究[J],植物保护学报,1992(4):297-301.
    35.刘波.对多菌灵、速克灵具有多重抗性的灰霉病菌菌株性质的研究[J],南京农业大学学报,1993,16(3):50-54.
    36.刘美玲,孔慧清,朱媛,等.新型生物防腐剂—纳他霉素在食品研究中的应用[J].保鲜与加工,2007,7(5):1-4.
    37.刘英华.小麦纹枯病菌抗戊唑醇系生物学特性及其抗性机理研究[D].山东农业大学硕士学位论文,2003.
    38.刘宁.纳他霉素菌种选育与发酵工艺研究[D].浙江大学硕士学位论文,2005.
    39.刘德蓉,谢丙炎,朱国仁,等.灰霉病菌(Botrytis cinerea)对杀菌剂抗药性研究进展.植物保护,21世纪展望暨第一届全国青年植物保护科技工作学术研讨会论文集,172-178.
    40.骆健美.纳他霉素高产菌株选育、发酵条件优化、发酵动力学及溶解度的研究[D].浙江大学博士学位论文,2005.
    41.陆仕华,周正来.灰葡萄孢霉对碳源的利用[J].上海农业学报,2000,16:21-24.
    42.慕立义.植物化学保护研究方法[M].中国农业出版社,1994:76.
    43.孟祥东,傅俊范,严雪瑞,等.灰霉病菌(Botrytis cinerea)生物防治研究进展[J].沈阳农业大学学报,2003,34(6):472-475.
    44.孟祥东,傅俊范,周如军,等.保护地主要园艺作物灰霉病菌生物学特性比较研究[J].沈阳农业大学学报,2007,38(3):322-326.
    45.马辉刚,李瑞明,胡水秀.番茄灰霉病菌生物学特性研究[J].江西农业大学学报,1998,20(2):207-209.
    46.农药室内生物测定试验准则[S].北京:中国农业出版社,2006:1-3.
    47.潘金菊,刘峰,慕卫,等.不同生育阶段黄瓜菌核病菌对几种三唑类杀菌剂的敏感性[J].农药学学报,2006,8(2):125-128.
    48.孙远功,呼玉侠,冯昕.纳他霉素在柑桔防腐保鲜中的应用[J].食品研究与开发,2006,27(7):190-191.
    49.孙延忠,曾洪梅,石义萍,等.武夷菌素对番茄灰霉菌(Botrytis cinerea)的作用方式[J].植物病理学报,2003,33(5):434-438.
    50.孙延忠,曾洪梅,石义萍,等.武夷菌素对番茄灰霉菌的抑制作用及对番茄抗病性相关酶活性的影响[J].植物保护,2004,30(6):45-48.
    51.田世平.低温对葡萄孢菌(Botrytis cinerea)菌丝生长和孢子萌发以及对贮藏菊苣侵染力的影响[J].植物病理学报,2001,31(1):155-159.
    52.王建国,姜兴印,张鹏.纳他霉素对冬枣浆胞病菌的毒力及保鲜生理效应研究[J].农药学学报,2006,8(4):313-318.
    53.王建国.纳他霉素对冬枣的保鲜效应及低温贮藏残留动态[D].山东农业大学硕士学位论文,2007.
    54.王春艳.草莓灰霉病发生为害及防治研究初报[J].植物保护,1997,23(3):32-33.
    55.王英姿,纪明山,祁之秋,等.嘧霉胺对灰霉病菌抗性菌株胞外酶活性及芽管长度的影响[J].现代农药,2005,4(4):39-40.
    56.王艳.灰葡萄孢对腐霉利的抗性及其机制研究[D].扬州大学硕士学位论文,2007.
    57.邬建国,王敏,杨东靖,等.高产纳他霉素的褐黄袍链霉菌选育[J].中国抗生素杂志,2004,29(6):332-334.
    58.吴洁云.灰葡萄孢胞壁降解酶、角质酶及其对番茄植株的致病作用[D].扬州大学硕士学位论文,2007.
    59.童蕴慧,陈夕军,徐敬友.江苏省蔬菜灰葡萄孢生物学性状及致病力研究初报[J].中国蔬菜,2003,(1):33-34
    60.魏宝东,孟宪军.天然生物食品防腐剂纳他霉素的特性及其应用[J].辽宁农业科学,2004,(2):24-25.
    61.魏宝东,车芙蓉,马岩松.芽抱杆菌(Bacillus)发酵滤液对灰霉葡萄孢菌的作用[J].辽宁农业科学,2004,3:5-7.
    62.魏景超.真菌鉴定手册[M].上海科学技术出版社,1979:515.
    63.肖媛媛.防腐、抗氧、保鲜剂—食品工业保驾护航的使者[J].中外食品,2005,(12):46-47.
    64.夏晓明.禾谷丝核菌对戊唑醇的抗性机制研究[D].山东农业大学博士学位论文,2006.
    65.许玲,张晟瑜,王奕文,等.灰霉菌(Botrytis cinerea)采后致病性研究[J].植物病理学报,2006,36(1):74-79.
    66.于昕,邓婷婷,雷高鹏.草莓灰霉孢子萌发条件研究[J].应用与环境生物学报,2006,12(1):9-12.
    67.殷昊,吴兆亮,赵艳丽.纳他霉素效价检测和活性研究[J].食品研究与开发,2007,28(5):33-36.
    68.印利梅.茄科蔬菜灰霉菌对嘧霉胺抗药性研究[D].浙江大学硕士学位论文,2006.
    69.袁章虎,张小凤,韩秀英.灰霉菌抗药性研究进展[J].河北农业大学学报,1996,19(3):107-109.
    70.叶钟音,周明国,刘经芬,等.紫外光诱导灰葡萄孢产生抗多菌灵菌株的研究[J].植物保护,1987,14(4):235-239.
    71.杨德山,骆健美,徐广宇,等.纳他霉素防治苹果贮运期病害的初步研究[J].中国植保导刊,2006,26(10):11-13.
    72.杨光富,杨华铮.麦角甾醇生物合成抑制剂分子设计的研究进展[J].世界农药,1996,18(1):81-91.
    73.岳昊博,岳喜庆,李靖,等.纳他霉素(Natamycin)的特性、应用及生产和研究状况[J].食品科技,2007,3:162-166.
    74.张从宇,高智谋,岳永德.番茄灰霉病菌生物学性状研究[J]安徽技术师范学院学报,2002.16(3):10-14.
    75.张建军,纪兆林,徐敬友,等.灰葡萄孢对腐霉利的抗性诱导及抗药性变异[J],扬州大学学报(农业与生命科学版),2005,26(4):87-90.
    76.张建军.灰葡萄孢对腐霉利的抗性变异及抗性菌株自然适合度研究[D].扬州大学硕士学位论文,2004.
    77.张传清,张雅,魏方林,等.设施蔬菜灰霉病菌对不同类型杀菌剂的抗性检测[J].农药学学报,2006,8(3):245-249.
    78.张鹏,姜兴印,房锋,等.不同温度下纳他霉素对灰葡萄孢的抑制活性和作用机理初探[J].农药学学报,2007,9(4):351-356.
    79.张海予,李婉,马磊,等.纳他霉素、脱氢醋酸钠、碳酸氢钠与大蒜对采后病原真菌的抑制作用[J].北京农学院学报,2007,22(2):43-47.
    80.张雅,张传清,刘少颖,等.灰霉病菌对甾醇脱甲基抑制剂(DMIs)的敏感性[J].农药,2006,45(12):858-858.
    81.张玉勋,张光明,李光,等.外源营养物质对番茄灰霉病菌分生孢子萌发及其侵染的研究[J].莱阳农学院学报,1999,16(3):199-202.
    82.章元寿,陈绍江.大豆紫斑病菌毒素研究[J].植物病理学报,1996,26(1):45-48.
    83.赵淑艳,李喜宏,陈丽.蒜薹采后致病菌种类及侵染规律研究[J].中国农学通报,2005,21(9):74-78.
    84.赵蕾,杨合同.蔬菜灰霉病生防菌的筛选与防效试验初报[J].应用与环境生物学报,1999,5(1):85-88.
    85.周明国.南京市郊灰霉菌对苯并咪唑类杀菌剂田间抗性的检测[J],南京农业大学学报,1987,(2):53-57.
    86.郑鹏然,陈森.霉克(NatamaxTM)的防霉效果及安全性评价[J] .中国食品添加剂,1997,(4):44-48.
    87.郑超.温室番茄灰霉病流行动态预测[D].东北农业大学农业推广硕士学位论文,2003.
    88.朱桂宁,黄福新,蔡健和,等.广西番茄灰霉病菌的多重抗药性检测[J].中国蔬菜,2003,(4):14-16.
    89.朱建兰.番茄灰霉病菌的生物学特性研究[J].甘肃农业大学学报,1995,30 (1):73-78.
    90. Brik H. Natamycin[A]. Analytical Profiles of Drug Substances[C]. New York: Academic Press. 1994:514-557.
    91. Broodbent P. Effect of Bacillus sp. on increases[M]. Beijing: China Agricultural University Press,1977:47-53.
    92. Bellen G. J. and Scholten. G. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerca in cyclamenNeth[J]. Plant Pathology. 1971,77:83-90.
    93. De Boer, E., Stolk-Horsthuis, M. Sensitivity to natamycin (pimaricin) of fungi isolated in cheese warehouses[J]. Food Protect. 1977,40:533-536.
    94. Davides L C. Benzimidazole fungicides mechanism of action and biological impact. Ann. Rev. Phytopathol.,1985,24:43-45.
    95. Davis.R.P.,Dennis.C. Studies on the survival and infective ability of dicarboximide resistant of Botrytis cinerea[J]. Ann.Appl.Biol.1981,48:395-402.
    96. Elad Y, Yunis H, Katan T. Multiple fungicide resistance to benzimidazoles, dicarboximedes and diethofencarb in field isolates of Botrytis cinerea in Isnae[J]. Plant Pathology,1992,41:41-46.
    97. Gill J,Martin J. F. Po1yene antibiotics. Biotechnology of antibiotics [M], Marcel Dekker , New York ,1997:551-576.
    98. Harry B. Natamycin[J]. Analytical Profiles of Drug Substances. 1994,(10):514-557.
    99. Hilber U W, Hilber-Bodmer M. Genetic basis and monitoring of resistance of Botryotinia fuckeliana to anilinopyrimidines[J]. Plant Dis. 1998,82(5) :496-500.
    100.John L, Koont Z, Joseph E, et al. Formation of natamycin: cyclodex trin inclusion complexes and their characterization[J]. Journal of Agricultural and Food Chemistry,2003,51:7106-7110.
    101.Kato Y. Eald Y, Yunis. H. Resistance to diethofencarb(NPC) in benomyl-resistant field isolates of Botrytis cinerea[J]. Plant Pathol. 1989, 38: 86-92.
    102.Latorre,B.A., Spadaro.L.; Rloja.A.M.E. Occurrence of resistant strain of Botrytis cinerea anilinopyrimidine fungicides in table grapes in Chile[J]. Crop Protection,2002,21(10):957-961.
    103.Morgen W M . Influence of enery-saving night temperaure regimes on Botrytis cinerea in an early season glasshouse tomato crop[J].Crop Protection,1985,(4):99-110.
    104.Mohamed A F, Hesham A E, et al. Optimization of the cultivation medium of natamycin production by Streptomyces natalensis[J]. Bacis.Microbiol,2000,40(3):1576.
    105.Natamycin. Code of Federal Regulations, Part 172.155, Title 21,2001. Fed. Regist.2001, 66(46):13846-13847.
    106.Stehmann C, deWard M A. Factors influencing activity of triazole fungicides towards Botrytis cinerea[J]. Crop Protection,1996,15:39-47.
    107.Wyatt R. D , Brothers A. M. The antifungal activity of natamycin toward molds isolated from commercially manufactured poultry feed[J]. Avian Dis,2000,44(3):490-497.
    108.Yardes O, katan T. Mutations in the beta-tublin gene of benomyl-resistant phenotypes of Botrytis cinerea. BCPC Monograph fungicide resistance 1994:60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700