用户名: 密码: 验证码:
酿酒酵母1450产孢培养基的筛选及单倍体的分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
诱导酵母产孢进而获得单倍体是进行酵母遗传学和育种工作极为关键的一步,它既是性状遗传分析所必需,又可为杂交作好亲本的准备。孢子的获得必需要提供适当的产孢条件,酿酒酵母营养体在营养缺乏等饥饿条件下,经过减数分裂由二倍体变为单倍体,形成子囊。在常用的酵母产孢培养基中没有一种产孢培养基能够适用于所有的酵母产孢。为此,本文在几种不同生孢培养基的条件下进行酿酒酵母1450的生孢实验,选择一种最适培养基进行酿酒酵母1450单倍体的分离,并采用发酵法筛选出一株性能良好的单倍体,供随后的育种实验使用。
     主要研究结果如下:
     1.通过对四种常用于酵母产孢的培养基的优选,确认Mcclary培养基为适宜的酿酒酵母1450的生孢培养基。
     2.用Mcclary培养基对1450进行产孢培养的最适温度为25℃-28℃,培养时间为5-7d。温度对酵母生孢能力的影响与相关酶的活性有关。
     3.在测定菌株的发酵力试验中,发现单倍体菌株的酒精发酵力差异较大,推测原因是酒酵母的发酵能力由多个基因控制。并且通过对酒精发酵力和酒精发酵性能的综合分析,得到一株性能良好的单倍体S-3,可以作为以后杂交实验的亲本。
     4.对单倍体S-3进行了生长曲线的测定,结果表明在进行育种工作时选取9h左右的菌体较好。
The process of inducing yeast to produce spores and then obtaining its haploid is crucial in Yeast Genetics and Breeding. This is indispensable for analyzing the inheritance of acquired characters and preparing the parent strains for hybridization. The spores can be obtained only in fitting sporulation condition. On the barren condition of nutrition, the trophosome of S.Cerevisiae transits into haploid from the former diploid through the process of meiosis, forming sporangium. None of the present common yeast spores-breeding culture media was suitable for all the yeasts to produce their spores. Therefore, the spores-breeding experiment of S.Cerevisiae 1450 was undertaken under different spores-breeding conditions in this essay. Then, the optimum culture medium was selected for the separation of the haploid of S.Cerevisiae 1450. Next, a haploid strain with good biological function was screened out through zymotechnics method so as to be applied in the next breeding experiment.
     The main research results are as follows.
     1. After the selective preference of four common yeast spores-breeding culture media, Mcclary culture medium was confirmed as the optimum one for S.Cerevisiae 1450.
     2. The optimum temperature and time for S.Cerevisiae 1450 in the Mcclary culture medium were 25℃-28℃and 5-7d, separately. The influence of temperature over the spores-breeding capability of S.Cerevisiae 1450 was connected with the activity of concerning enzymes.
     3. In the experiment of identifying the ferment capability of strains, the ferment capability varies largely among different haploid strains. The supposed reason was speculated that the ferment capability of S.Cerevisiae was controlled by multiple genes. And through the comprehensive analysis of the fermentation capability and performance, a haploid strain S-3 with good biological function was obtained and could be used as the parent strains in the future hybridization experiment.
     4. The growth curve of the haploid S-3 was determined, and the results showed that it’s better to choose the strains around 9h in the breeding job.
引文
[1] Amerine MA, Berg HW, Kunkee RE, Ough CS, Singleton VLUL & Webb AD The Technology of Wine Making, 4th edn[M]. AVI Publishing Company,Westport, Connand Microbial Technology ,1994 ,16(10) :870-882
    [2] Cocolin L, Hersey A, Mills DA. Direct identification of the indigenous yeasts in commercial wine fermentations[J]. Am. J. Enol. Vitic. 2001. 52, 49-53.
    [3] Crouigneau AA, Feuillat M, Guilloux-Benatier, M. Influence of some factors on autolysis of Oenococcus oeni[J]. Vitis, 2000, 39:167-171.
    [4] Naumova E. S., Zholudeva M. V., N. N. Martynenko, The Molecular Genetic Differentiation of Cultured Saccharomyces Strains[J]. Microbiology, 2005,74(2):179-187.
    [5] Erten H. Relations between elevated temperatures and fermentation behaviour of Kloeckera apiculata and Saccharomyces cerevisiae associated with winemaking in mixed cultures [J]. World J. Microbiol. Biotechnol. 2002. 18, 373-378.
    [6] Fleet GH. Spoilage yeasts[J]. Crit. Rev. Biotechnol. 1992. 12, 1-44.
    [7] Fleet GH. Microbiology of alcoholic beverages. In: Wood, B.J. (Ed.), Microbiology of Fermented Foods, 2nd ed.[M] Blackie Academic & Professional, London, 1998.pp. 217-262. Volume 1.
    [8] Fleet GH. Wine. In: Doyle, M.P., Beuchat, L.R., Montville, T.J. (Eds.), Food Microbiology Fundamentals and Frontiers, 2nd ed.[M] ASM Press, Washington, DC, 2001.pp. 747-772.
    [9] Fornachon JCM. Influence of different yeasts on growth of lactic acid bacteria in wine [J]. J. Sci. Food Agric. 1968, 19, 374-378.
    [10] Frezier V & Dubourdieu D. Ecology of yeast strain Saccharomyces cerevisiae during spontaneous fermentation in a Bordeaux winery. [J] Am. J. Enol. Vitic. 1992. 43: 375-380
    [11] Galitski T, Saldanha A J, Styles C A, et al. Ploidy regulation of gene expression [J]. Science, 1999, 285(5425): 251-254
    [12] Guillamon J M, Barrio E. & Querol A. (1996). Characterization of wine yeast strains of the Saccharomyces genus on the basis of molecular markers. Relationships between genetic distance and geographic origin. [J] Syst Appl Microbiol 19, 122-132
    [13] Guthrie C, Fink G R. Guide to yeast genetics and molecular biology [M].New York: Academic Press, Inc, 1991, 17.
    [14] Heard G.M, Fleet G.H, The effects of temperature and pH on the growth of yeasts during the fermentation of grape juice. [J] J. Appl. Bacteriol. 1988. 65.23-28.
    [15] Henick-Kling T, Edinger W, Daniel P, Monk P, 1998. Selective effects of sulfur dioxide and yeast starter culture addition on indigenous yeast populations and sensory characteristics of wine. [J]. Appl. Microbiol. 84, 865-876.
    [16] Henschke P. Wine yeast. In: Zimmerman, F.K., Entian, K.D.(Eds.) [M], Yeast Sugar Metabolism, Biochemistry, Genetics, Biotechnology and Applications. Technomic Publishing, Lancaster, UK, 1997, pp. 527-560
    [17] Isak S. Pretorius. Gene technology in winemaking:new approaches to an ancient art[J]. Agriculturae Conspectus Scientificus,2001,66(1):27-47
    [18] Jianxiu Y, Pang Y,Mujin T ,et al . Highly Toxic and Broad2Spectrum Insecticidal Bacillus thuringiensis Engineered by Using the Transposon Tn917 and Protoplast Fusion. Current Microbiology ,2001 , 43 (2) :112-119
    [19] Johnston J R. J Inst Brew, 1965,71:130-135.
    [20] Kumari J ,Panda T. Intergeneric hybridization of trichoderma reesei QM9414 and saccharomyces cerevisiae NCIM3288 by protoplast fusion. Enzyme
    [21] Leroy MJ, Charpentier M, Duteurtre B, Feuillat M, Charpentier C. Yeast autolysis during champagne aging[J]. Am. J.Enol. Vitic. 1990, 41: 21-28.
    [22] Maclaughlin RJ, Wilson CL, Droby S, Ben-Arie R and Chalutz E. Biological control of poatharvest diseases of grape, peach, and apple with yeasts Kloeckera apiculata and Candida guilliermondii[J]. Plant Dis., 1992, 76:470-473.
    [23] Mannazzu I, Clementi F, Ciani M, Strategies and criteria for the isolation and selection of autochthonous starters. In: Ciani, M. (Ed.) [M], Biodiversity and Biotechnology of Wine Yeasts. Research Signpost, Kerala, India, 2002.pp. 19–33.
    [24] Mart?′nez-Rodr?′guez AJ, Carrascosa AV, Polo MC. Release of nitrogen compounds to the extracellular medium by three strains of Saccharomyces cerevisiae during induced autolysis in a model wine system[J]. Int. J. Food Microbiol, 2001b, 68: 155-160.
    [25] Mart?′nez-Rodr?′guez AJ, Polo MC. Characterization of the nitrogen compounds released during yeast autolysis in a model wine system[J]. J. Agric. Food Chem. , 2000, 48:1081-1085.
    [26] Martini A, Ciani M, Scorzetti G. Direct enumeration and isolation of wine yeasts from grape surfaces.[J] Am. J. Enol. Vitic.47, 1996. 435- 440
    [27] Martini A, Ciani M, Scorzetti G. Direct enumeration and isolation of wine yeasts from grape surfaces[J]. Am. J. Enol. Vitic. 1996. 47: 435- 440.
    [28] Mortimer R and Polsinelli M. On the origins of wine yeast[J]. Res. Microbiol., 1999, 150: 199-204.
    [29] Patynowski RJ, Jiranek V, Markides A. Yeast viability during fermentation and sur lie ageing of a defined medium and subsequent growth of Oenococcus oeni[J]. Aust. J. Grape Wine Res. 2002, 8: 62-69.
    [30] Pretorius I S. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking.[J] Yeast, 2000. 16,675-729.
    [31] RICHARD H. BALT Z. Genetic Recombination by Protoplast Fusion in Streptomyces. Journal of Industrial Microbiology &Biotechnology. 2001,22(4-5):460-471
    [32] Gundllapalli Moses S. B., Cordero Otero R. R., La Grange D. C.. Different genetic backgrounds influence the secretory expression of the LKA1-encoded Lipomyces kononenkoae α-amylase in industrial strains of Saccharomyces cerevisiae[J]. Biotechnology Letters, 2002, 651-656.
    [33] Dequin S. The potential of genetic engineering for improving brewing,wine-making and baking yeasts[J]. Appl Microbiol Biotechnol, 2001, 56: 577–588
    [34] Sabaté J, Cano J, Querol A et al Diversity of Saccharomyces strains in wine fermentations: analysis for two consecutive years. [J] Lett. Appl. Microbiol. 1998. 26: 452–455
    [35] Schulz M, Gaffner J, Analysis of yeast diversity during spontaneous and induced alcoholic fermentations.[J] J. Appl. Bacteriol. 1993. 75, 551–558.
    [36] Soden A, Francis IL, Oakey H, Henschke PA. Effects of co-fermentation with Candida stellata and Saccharomyces cerevisiae on the aroma and composition of Chardonnay wine. [J] Aust. J. Grape Wine Res. 2000. 6, 21-30.
    [37] Sponholz W. Wine spoilage by microorganisms. In: Fleet, G.H. (Ed.) [M], Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland, 1993:395-420.
    [38] Storchova Z, Breneman A, Cande J, et al. Genome-wide genetic analysis of polyploidy in yeast. Nature, 2006, 443(7111): 541-547
    [39] Versavaud A, Courcoux P, Roulland C, et al. Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. [J] Appl. Environ. Microbiol. 1995,61: 3521–3529
    [40] Zahavi T, Cohen L, Weiss B. Biological control of Botrytis, Aspergillus and Rhizopus rots on table and wine grapes in Israel [J]. Postharvest Biology and Technology, 2000, 20: 115-124.
    [41] 曹军,宋志文.非营养缺陷型原生质体融合选育角蛋白酶生产菌应用与环境[J]. 生物学报, 2001,7(4) :388-391
    [42] 陈五岭,张芳琳. 双亲灭活原生质体融合技术在苏云金杆菌菌种选育上的应用研究[J]. 西北大学学报: (自然科学版), 1998 , 28 (5): 419-422
    [43] 程丽娟,薛泉宏. 微生物学实验技术[M]. 北京:世界图书出版公司, 2000, 35-37:54-793.
    [44] 程树培,崔益斌. 酿酒酵母与热带假丝酵母融合子多功能性研究[J]. 环境污染与防治, 1995, 17(1) :9-12
    [45] 程树培,邓良伟. 光合细菌与酵母原生质体融合子连续发酵豆制品废水研究[J]. 环境科学学报, 1997, 17(3) :372-377
    [46] 杜连祥,姜悦. 糖化酵母在干啤酒生产中应用的研究(Ⅱ) [J]. 食品与发酵工业, 1995, (4) :1-5
    [47] 高年发,王淑豪,李小刚. 酿酒酵母与粟酒裂殖酵母属间原生质体融合选育降解苹果酸强的葡萄酒酵母[J]. 生物工程学报, 2000, 16:718-722
    [48] 高玉荣. 原生质体融合葡萄酒酵母用于葡萄酒降酸[J]. 酿酒科技.2001, (3) :59-60
    [49] 郝林. 食品微生物学实验技术[M]. 北京:中国农业出版社, 2001, 56-89
    [50] 贺敏霞,史济平,褚志文. 诺卡氏菌原生质体融合重组研究[J]. 生物工程学报, 1989, 5(4): 303—308
    [51] 赫尔姆特 汉斯 迪特里希. 葡萄酒微生物学[M]. 北京: 轻工业出版社, 1989
    [52] 李华. 葡萄酒工艺学[M]. 西安:陕西人民出版社. 2000, 4
    [53] 林荣团,杨毓芬.天然无抗菌活性链霉菌种间原生质体融合与活性重组体的分离[J]. 生物工程学报, 1990, 6(2): 134-139
    [54] 刘晓晴. 降酸葡萄酒酵母选育研究[D]. 西北农林科技大学 2006 届硕士学位论文
    [55] 刘延琳. 酒酒球菌 mleA 和 mleP 基因的克隆及其在酿酒酵母中的转化与表达[D]. 西北农林科技大学 2004 届博士学位论文.
    [56] 柳岛直彦.酵母解剖[M]. 天津:南开大学出版社.1990, 169-194
    [57] 庞小燕,王吉瑛. 构建直接发酵淀粉产生酒精的酵母融合菌株的研究[J]. 生物工程学报, 2001 , 17(2) :165-169
    [58] 彭帮柱,岳田利,袁亚宏等.优良苹果酒酵母的选育[J]. 西北农林科技大学学报:自然科学版, 2004, 32(5):81-84.
    [59] 彭海,张静,吴先军. 植物基因表达中的倍性效应:研究进展、问题与展望[J]. 中国科学 C 辑:生命科学, 2008,38(1): 1-7
    [60] 唐宝英,朱晓慧. 硅酸盐细菌和苏云金芽孢杆菌原生质体融合[J]. 生物技术, 1998, 8 (5): 19-21 ,31
    [61] 王昌禄,杜连祥. 利用紫外线致死原生质体融合技术选育嗜杀啤酒酵母[J]. 食品与发酵工业, 1993, (6) :1-7 , 48
    [62] 王华. 葡萄与葡萄酒实验技术操作规范[M]. 西安:西安地图出版社, 1999
    [63] 王金盛,郝德阳. 棘孢小单胞菌原生质体的融合育种[J]. 山东大学学报(自科版), 1999, 34 (2) :219-223
    [64] 王雅平,刘伊强. 利用原生质体融合技术选育防治植物病虫害的基因重组菌株[J]. 遗传学报, 1993, 20(6) :524-530
    [65] 韦革宏,陈文新. 豌豆根瘤菌与新疆中华银瘤菌原生质体的属间隔合研究[J]. 生物工程学报, 2001, 17(5) :534-538
    [66] 文铁桥,赵学慧. 克鲁维酵母与酿酒酵母属间原生质体融合构建高温酵母菌株[J]. 菌物系统, 1999, 18(1) :89-93
    [67] 吴伟, 余晓丽. 诺卡氏菌与假丝酵母的跨界融合及其对退化养殖生态的修复[J]. 水产学报, 2002, 26(1): 35-41.
    [68] 肖冬光,刘青,李静等. 酿酒酵母单倍体制备方法的优化[J]. 酿酒科技, 2004, 4:21-22
    [69] 徐志彦,王敏. 啤酒酵母孢子形成研究的新进展[J]. 遗传, 1989, 11(3):43-45.
    [70] 许燕滨 ,江霞 . 高效含氯有机化合物降解工程菌的构建研究 [J]. 重庆环境科学 , 2001, 23(2):46-48 ,51
    [71] 杨革. 微生物学实验教程[M]. 北京:科学出版社, 2004. 184-185
    [72] 杨瑞娟. 高产酒率酿酒酵母单倍体的分离与杂交育种[D]. 浙江大学 2007 学位论文.
    [73] 叶选怡,钟仙龙,傅衍. 一株高生物量酵母菌对不同碳源和氮源的利用[J]. 丽水师范专科学校学报, 2003, 25 (2) : 51-53
    [74] 曾洪梅,等. 酿酒酵母子囊孢子的形成条件及细胞学研究[J] . 微生物学报, 1993, 33(2):92-97.
    [75] 曾洪梅,张震霖. 原生质体融合提高农抗武夷菌素的效价[J]. 微生物学报, 1995, 35(5):375-380
    [76] 曾云中,张冬妮,吴雪昌. 有淀粉糖化酶活性的耐高温酿酒酵母的构建研究[J]. 生物工程学报. 1992, 8(4)363-370
    [77] 张春晖,李华. 葡萄酒微生物学[M]. 西安:陕西人民出版社, 2003
    [78] 张纪忠. 微生物分类学[M]. 上海:复旦大学出版社, 1990 年
    [79] 张清文,张素琴. 多糖产生菌 T 与 β-胡萝卜素产生菌 C12B 的融合研究[J]. 应用与环境生物学报, 1999, 5(2) :195-198
    [80] 张修军,周启. 利用同源菌株融合改良农抗 5102 产生菌:融合子的检出筛选[J]. 中国抗生素杂志, 1999, 24(2) :93-95 ,125
    [81] 章树政,王修垣. 工业微生物学成就[M]. 北京:科学出版社, 1988
    [82] 赵华,赵树欣. 运用紫外线灭活原生质体融合技术选育高产酯酒精酵母的研究[J]. 酿酒科技, 1996 , (5) :13-16
    [83] 周德明. 原生原体融合构建高效降解工程菌的研究[J]. 中南林学院学报, 2001, 21(2) :42-46
    [84] 朱宝镛主编. 葡萄酒工业手册[M]. 北京: 中国轻工业出版社, 1995.
    [85] 朱昌雄,李永慧. 中生菌素高产菌株的选育[J]. 中国生物防治, 1996 , 12(1) :15-19
    [86] 朱旭芬,等. 耐高温酿酒酵母单倍体的 RAPD 分析[J]. 生物工程学报, 2000, 17(5):557-571.
    [87] 朱旭芬,等. 酿酒酵母产孢条件及核倍性分析[J]. 科技通报, 2002. 18(5):393-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700