用户名: 密码: 验证码:
醋酸纤维素基超细复合纤维的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超细复合纤维凭借其尺寸效应在光、电、磁等许多领域受到人们的青睐。目前制备超细复合纤维的方法有很多,其中成本较低、行之有效的方法就是静电纺丝法。通过静电纺丝法制得的超细复合纤维不仅同时具备基体和填加剂的性能,而且将二者的功能很好地融合到一起,为聚合物基复合材料的使用拓展了广阔的空间。
     本文以醋酸纤维素(CA)为基体材料,采用静电纺丝法制备了担载农药阿维菌素(AVM)的CA超细缓释复合纤维,并研究了AVM在缓释纤维中的释放行为。又以同样的方法将所制备的金纳米粒子(Au NPs)、银纳米粒子(Ag NPs)和碲化镉量子点(CdTe QDs)复合到CA中制成了纳米复合纤维,通过扫描电镜、透射电镜、X射线衍射仪、红外光谱仪、紫外分光光度计、荧光光谱仪等仪器对粒子和纤维进行表征。最后又将取向纤维通过浇注的方法制成复合膜,并对膜的透明性和拉曼散射效应进行了研究。具体研究内容和结果如下:
     1.首先确定纯CA的纺丝液浓度,以保证细流在喷射过程中的连续性,为制备复合纤维时确定纺丝液的浓度提供参考。本研究选择丙酮与二甲基甲酰胺(DMF)按体积比为2:1组成的混合物作为溶剂来溶解CA,浓度分别为9wt%、11wt%、13wt%、15wt%、17wt%,对这几种纺丝液进行电纺,从纤维的形貌看,当CA溶液浓度为9wt%时,串珠的形态是多种多样的;当CA浓度增至13wt%时,椭圆形串珠被沿着纤维轴向拉伸;当CA浓度达到15wt%时,被拉长的串珠的数量减少,因此15wt%被确定为电纺复合纤维时CA的最佳浓度。
     2.制备担载AVM的CA缓释复合纤维,并研究了AVM的释放行为。CA的质量占丙酮与DMF总质量的15%,AVM的量分别占CA质量的0%、5%、10%、20%、30%,通过静电纺丝法对含有不同量AVM的CA混合溶液进行电纺,制备了不同形貌的复合纤维。并对复合纤维进行了表征,X射线衍射(XRD)分析表明纤维表面有少量AVM,大部分在纤维内部形成了结晶,说明AVM受到CA分子链定向排列的影响而产生结晶。热重分析(TGA)和红外(FT-IR)分析表明我们所制备的复合纤维中AVM和CA之间的复合不是通过化学作用而是物理作用实现的。AVM从复合纤维中的释放量由高效液相色谱(HPLC)来确定,由于AVM担载在纤维上的具体位置不同,释放过程分为两步:第一步爆释阶段(纤维外表面上的AVM引起的)和第二步缓释阶段(纤维内部的AVM引起的),这两步释放确保了AVM的稳定释放和有效利用。
     3.通过柠檬酸钠还原氯金酸(HAuCl4)的方法制备Au NPs,数码照片和紫外及可见光谱(UV-vis)分析证明了Au NPs的合成且粒径均匀,尺寸大约20nm,透射电镜(TEM)分析结果表明Au NPs呈近球形,没有明显的团聚。将Au NPs混入CA溶液中,形成纺丝液,经电纺制备纳米纤维,并对所制备的Au NPs/CA复合纤维的形貌、结晶变化等进行SEM、TEM和XRD表征,结果表明所纺纤维的直径在200-300nm之间,随着Au NPs的加入,纤维的直径变细,结晶度和稳定性均有所提高,且高压并没有对Au NPs产生影响。
     4.合成了Ag NPs,并通过TEM、UV-vis. XRD对Ag NPs进行了表征,结果表明合成的Ag NPs直径在5-15nm之间且为面心立方结构。然后将Ag NPs混入到CA溶液中,形成纺丝液,经电纺制成纳米纤维。并通过SEM、TEM、FT-IR和TGA对纤维的形貌、结晶变化等进行表征,结果表明所纺纤维的直径在250-750nm之间,Ag NPs在纤维中的分布是均匀的,且Ag NPs改变了纤维的降解机理,降低了CA的结晶度。
     5.合成了不同颜色的水相CdTe QDs溶液,经荧光光谱和TEM分析表明所合成的CdTe QDs的尺寸约为4nm,荧光效果较好且尺寸分布较窄。CdTe QDs与CA溶液混合通过电纺制备荧光纤维,电镜照片表明纤维的直径在300-700nm之间,QDs被分散到基体CA纤维中。荧光显微镜照片说明QDs被复合到纤维后没有发生明显的尺寸变化和荧光颜色与亮度的改变。FT-IR表明QDs复合到纤维以后其结构没有发生变化,XRD观察到QDs是多晶的,QDs的加入致使复合纤维的结晶度提高,TGA分析表明复合纤维的耐热能力增强。
     6.制备了直径在250-500nm之间的取向Ag NPs/CA纤维,通过SEM表征了纤维的取向程度。然后用PVA水溶液将纤维浇注成膜,研究了膜的透明性和拉曼效应,纤维成膜后由于PVA填充了松散纤维的空隙,增强了透光率,使纤维由原来的不透明变得透明。而且由于纤维取向,导致纤维沿某方向的偏振效应增大,拉曼效应增强。
     综上所述,利用静电纺丝法成功地制备了超细缓释复合纤维和纳米复合纤维,实现了缓释纤维中药物的有效释放,并研究了取向纤维成膜后的透明性和拉曼效应。
     本研究的创新之处体现在以下几方面:
     1.将醋酸纤维素(CA)和阿维菌素(AVM)的稳定溶液通过静电纺丝的方法制备成CA基药物缓释纤维。AVM在纤维中分散良好,释放稳定,形成的缓释纤维是一种环境友好的新型农药体系,为AVM和CA的应用开辟了新的路径。
     2.找到了纳米粒子与CA的共溶剂,形成稳定的纺丝液,将金、银纳米粒子(Au NPs、Ag NPs)与CA通过静电纺丝的方法直接复合制备纳米纤维,纳米粒子在纤维中分散良好,性质稳定,为制备功能性纳米纤维提供了新的方法。
     3.将合成的碲化镉量子点(CdTe QDs)与CA通过静电纺丝的方法复合制备荧光纤维,荧光纤维和荧光纤维膜的颜色与所合成的量子点的粒径尺寸一致,可做为荧光显示、防伪和标识等应用。
     4.将Ag NPs/CA复合制备取向纤维,纤维取向后又通过浇注成膜的方式,制备了Ag NPs/CA/PVA复合膜,复合膜不仅具有透明性而且拉曼效应增强,为制备光学器件和通信器件等具有拉曼效应的基体材料奠定了基础。
Ultrafine fibers with size effect are favored in the optical, electrical, magnetic and many other areas. Electrostatic spinning is cheaper and effective method to prepare ultrafine composite fibers. Electrospinning composite fibers possesses simultaneously performance of matrix and additives, and the performance will also well accommodated, which expands the applications of the polymer composite.
     In this paper, cellulose acetate (CA) loading of pesticide avermectin (AVM) was electrospun into release composite fibers. The release behavior of AVM from fiber was studied. Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs) and cadmium telluride quantum dots (CdTe QDs) were compounded into CA to prepare nanofibers by the same method. The particles and fibers are characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, infrared spectroscopy, UV spectrophotometer, fluorescence spectrometer, etc. Finally, the transparency and SERS effect of casting membranes from the aligned fiber were studied. Specific content and research results are as follows:
     1. Determine the concentration of the spinning solution to provide a reference for the preparation of composite fibers. CA was dissolved in acetone and dimethyl formamide (DMF) with the volume ratio of2:1. The solution with concentration9wt%,11wt%,13wt%,15wt%and17wt%were electrospun, respectively. When the concentration9wt%, the bead shape is varied; when the concentration increased to13wt%, the ellipse is stretched along the fiber axis; when the CA concentration as high as15wt%, the number of beads stretched are reduced. So15wt%was identified as the optimal concentration.
     2. Preparation of sustained-release fiber and release behavior of AVM were studied. AVM accounted for0%,5%,10%,20%and30%for the amount of CA. Composite fibers with different morphologies were prepared and characterized. X-ray diffraction (XRD) analysis indicated that AVM crystallized by the influence of alignment of CA molecular chain in electrospinning. Thermal gravimetric analysis (TGA) and infrared (FT-IR) analysis showed the interaction between AVM and CA was not chemical but physical. The release process determined by the high-performance liquid chromatography (HPLC) was divided into two steps:first burst release and later slow release.
     3. Au NPs was prepared by sodium citrate reduction HAuCl4. Digital photos and ultraviolet and visible spectroscopy (UV-vis) analysis confirmed the synthesis and uniform particle size about20nm of Au NPs. Transmission electron microscopy (TEM) results showed that Au NPs were nearly spherical and there is no obvious aggregation. The crystallinity and stability of fibers are improved. The diameters of spun fibers are between200-300nm and become thinner with the Au NPs increasing.
     4. Synthesized Ag NPs were characterized by TEM, UV-vis and XRD and results showed that the diameters of Ag NPs with face-centered cubic structure were between5-15nm. Nanofibers were prepared by electrospinning solution and characterized by SEM, TEM, FT-IR and TGA. The diameters of Ag NPs uniformly distributing in fibers are between250-750nm. The degradation mechanism of fibers was changed by Ag NPs.
     5. CdTe QDs solution with different color was synthesized and characterized by fluorescence spectroscopy and TEM. The diameters of CdTe QDs with good fluorescence and narrow size distribution are about4nm. Fluorescent fibers with uneven diameter between200nm-1μm were prepared by electrospinning mixed solution. QDs are uniformly dispersed in the matrix and there were no significant changes in particle size and fluorescent color and brightness. With the QDs increasing, the crystallinity of the fibers was improved.
     6. The aligned Ag NPs/CA fibers with diameter between250-500nm were prepared and characterized. The fibers were casted into membrane by PVA solution. The membrane become from opaque to transparent because PVA filled with gap of loose fibers leading to increasing of light transmittance. Raman scattering effect of membrane enhanced because the polarization effects of aligned fibers increased along certain direction.
     In summary, sustained-release fibers and nanofibers have been successfully prepared by the method of electrospinning in this paper. The innovations in this research were as follows:
     1. The drug-release fibers were prepared by electrospinning stable solution of cellulose acetate (CA) and avermectin (AVM). AVM was dispersed well in the fibers and the release was stable, which opened a new path for the application of AVM and CA.
     2. Found the co-solvent of the nanoparticles and CA. Nanoparticles and CA were directly electrospun into nanofibers. The nanoparticles were steadily dispersed in fibers. A new method for preparing functional nano-fibers was provided.
     3. The fluorescent fibers were prepared by electrospinning the synthesized cadmium telluride quantum dots (CdTe QDs) and CA. The color of the fluorescent fibers and membrane proved the particle size of the synthesized QDs was consistent.
     4. Ag NPs and CA were spun into the alligned fibers, followed by casting film. The formed composite film was not only transparent but also enhanced for Raman effect, which laid the foundation for the preparation of such matrix material with the raman effect as optical and communications devices.
引文
[1]周春江,李松林,恽友兰等.农药缓释技术研究及应用[J].作物杂志,2005:32-33
    [2]沈寅初,杨慧心.杀虫抗生素Avermectin的开发及特性[J].农药译丛,1994,16(3):1-13
    [3]王广成,张忠明,高立明等.阿维菌素的作用机理及其应用现状[J].植物医生,2006,19(1):4-5
    [4]http://baike.baidu.com/view/1315079.htm
    [5]顾利霞,王栋,林耀等.纳米微粒改性的聚丙烯腈抗静电纤维的制备方法[P].中国发明专利,2004,CN1478928
    [6]居法银,杭祖圣,曹晓苗等.气相纳米SiO2改性三聚氰胺纤维[J].合成纤维工业,2010,33(6):11-14
    [7]高鹏,陈晔.纳米改性对短纤维橡胶基密封复合材料性能的影响[J].润滑与密封,2009,34(8):66-69
    [8]朱元超,温世鹏,徐日炜等.静电纺丝制备SiO2短纤维对聚丙烯冲击性能的影响[J].高等学校化学学报,2010,31:2088-2092
    [9]王二兰,陶庭先,辛后群等.纳米纤维的制备及其研究进展[J].纺织科技进展,2006,3:13-16
    [10]Z. Xu, Y.H. Ni. Preparation, structure and applications of noble metal nanoparticles[J]. Journal of jiangsu teachers university of technology,2003,9(4):1-11
    [11]姚素薇,邹毅,张卫国.金纳米粒子的特性、制备及应用研究进展[J].化工进展,2007,26(3):310-314
    [12]李小婷.银纳米粒子及其复合材料简介[J]. http;//wenku.baidu.com/view/bf51zdba7e21 af 45b307a81d.html
    [13]邹明强,杨蕊,李锦丰等.量子点的光学特征及其在生命科学中的应用[J].分析测试学报,2005,24(6):133-137
    [14]Z. Yang, H.T. Chang. CdHgTe and CdTe quantum dot solar cells displaying an energy conversion efficiency exceeding 2%[J]. Solar Energy Materials & Solar Cells,2010,94: 2046-2051
    [15]R.D. Sehaller, V. Klimov. High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion[J], J. phys. Rev. Lett.,2004,92(18):6601-6607
    [16]A. Gupta, V. Parikh, A.D. Compaan. High efficiency ultra-thin sputtered CdTe solar cells[J]. Solar Energy Materials & Solar Cells,2006,90:2263-2271
    [17]J.D. Major, K. Durose. Study of buried junction and uniformity effects in CdTe/CdS solar cells using a combined OBIC and EQE apparatus [J]. Thin Solid Films,2009,517:2419- 2422
    [18]G.Y. Lan, Z. Yang, Y.W. Lin, et al. A simple strategy for improving the energy conversion of multilayered CdTe quantum dot-sensitized solar cells[J], J. Mater. Chem., 2009,19:2349-2355
    [19]A. Ruland, S.D. Christian, V. Sgobba, et al. Enhancing Photocurrent Efficiencies by Resonance Energy Transfer in CdTe Quantum Dot Multilayers:Towards Rainbow Solar Cells[J], Adv. Mater..2011,23(39):4573-4577
    [20]J.H. Bang, P.V. Kamat. A Tale of Two Semiconductor Nanocrystals:CdSe and CdTe[J]. ACS Nano,2009,3(6):1467-1476
    [21]Y. Zhang, Z.T. Deng, J.C. Yue, et al. Using cadmium telluride quantum dots as a proton flux sensor and applying to detect H9 avian influenza virus[J]. Analytical Biochemistry, 2007,364:122-127
    [22]R.J. Cui, H.C. Pan, J.J. Zhu, et al. Versatile Immunosensor Using CdTe Quantum Dots as Electrochemical and Fluorescent Labels[J], Anal. Chem.,2007,79:8494-8501
    [23]J.G. Winiarz. Enhancement of the Photorefractive Response Time in a Polymeric Composite Photosensitized with CdTe Nanoparticles[J]. J. Phys. Chem. C,2007,111:1904-1911
    [24]Q. Ma, H.L. Cui, X.G. Su. Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films[J]. Biosensors and Bioelectronics,2009,25:839-844
    [25]W. Zhang, X.W. He, Y. Chen, et al. Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochromec[J]. Biosensors and Bioelectronics, 2011,26:2553-2558
    [26]孙捷.自组装半导体量子点在纳米电子器件中的应用[J].半导体技术,2005,30(1):61-65
    [27]Y.F. Wang, M.J. Li, H.Y. Jia, et al. Optical properties of Ag/CdTe nanocomposite self-organized by electrostatic interaction[J]. Spectrochimica Acta Part A,2006,64:101-105
    [28]N. Romcevic, M. Romcevic, R. Kostic, et al. Far-infrared spectroscopy of CdTe/ZnTe self-assembled quantum dots[J]. Journal of Alloys and Compounds,2009,481:6-9
    [29]J. Yang, Y.L. Zhou, S.L. Zheng, et al. Self-Reorganization of CdTe Nanoparticles into Near-Infrared Hg1-xCdxTe Nanowire Networks[J]. Chem. Mater.,2009,21:3177-3182
    [30]M.X. Liu, L.H. Gan, Y.L. Zeng, et al. Self-Assembly of CdTe Nanocrystals into Two-Dimensional Nanoarchitectures at the Air Liquid Interface Induced by Gemini Surfactant of 1,3-Bis(hexadecyldimethylammonium) Propane Dibromide[J]. J. Phys. Chem. C,2008, 112:6689-6694
    [31]Z.L. Zhang, Z.Y. Tang, N.A. Kotov, et al. Simulations and Analysis of Self-Assembly of CdTe Nanoparticles into Wires and Sheets[J]. Nanoletters,2007,7(6):1670-1675
    [32]L.H Jin, L. Shang, J.F. Zhai, et al. Fluorescence Spectroelectrochemistry of Multilayer Film Assembled CdTe Quantum Dots Controlled by Applied Potential in Aqueous Solution[J]. J. Phys. Chem. C,2010,114:803-807
    [33]H.J. Chen, V. Lesnyak, N.C Bigall, et al. Self-Assembly of TGA-Capped CdTe Nanocrystals into Three-Dimensional Luminescent Nanostructures[J]. Chem. Mater., 2010,22:2309-2314
    [34]N.N. Hewa-Kasakarage, N.P. Gurusinghe, M. Zamkov. Blue-Shifted Emission in CdTe/ZnSe Heterostructured Nanocrystals[J]. J. Phys. Chem. C,2009,113:4362-4368
    [35]Liu J J, Shi Z X, Yu Y C, Yang R Q, Zuo S L. Water-soluble multicolored fluorescent CdTe quantum dots:Synthesis and application for fingerprint developing, Journal of Colloid and Interface Science,2010,342:278-282
    [36]H.Z. Zhong, G.D. Scholes. Shape Tuning of Type II CdTe-CdSe Colloidal Nanocrystal Heterostructures through Seeded Growth[J]. J. Am. Chem. Soc.,2009,131:9170-9171
    [37]Q. Ma, W. Yu, X.G. Su. Detection of Newcastle disease virus with quantum dots-resonance light scattering system[J]. Talanta,2010,82:51-55
    [38]L.L. Wang, H.Z. Zheng. Y.J. Long, et al. Rapid determination of the toxicity of quantum dots with luminous bacteria[J]. Journal of Hazardous Materials,2010,177:1134-1137
    [39]J.B. Xiao, Y.L. Bai, Y.F. Wang, et al. Systematic investigation of the influence of CdTe QDs size on the toxic interaction with human serum albumin by fluorescence quenching method[J]. Spectrochimica Acta Part A,2010,76:93-97
    [40]Y.Y. Su, M. Hu, C.H. Fan, et al. The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties[J]. Biomaterials, 2010,31:4829-4834
    [41]Y.Q. Li, L.Y. Guan, J.H. Wang, et al. Simultaneous detection of dual single-base mutations by capillary electrophoresis using quantum dot-molecular beacon probe[J]. Biosensors and Bioelectronics,2011,26(5):2317-2339
    [42]L. Wang, J.J. Peng, Z.W. Liu, et al. Resonance Rayleigh-scattering spectral method for the determination of some aminoglycoside antibiotics using CdTe quantum dots as a probe[J]. Luminescence,2010,25:424-430
    [43]Y.F. Liu, B. Xie, Z.G. Yin, et al. Synthesis of Highly Stable CdTe/CdS Quantum Dots with Biocompatibility[J]. Eur. J. Inorg. Chem.,2010,10:1501-1506
    [44]M.X. Zhao, Q. Xia, X.D. Feng, et al. Synthesis, biocompatibility and cell labeling of L-arginine-functional b-cyclodextrin-modified quantum dot probes[J]. Biomaterials,2010, 31:4401-4408
    [45]P. Yang, A.Y. Zhang, H.S. Sun, et al. Highly luminescent quantum dots functionalized and their conjugation with IgG[J]. Journal of Colloid and Interface Science,2010,345: 222-227
    [46]M. Xie, K. Luo, B.H. Huang, et al. PEG-interspersed nitrilotriacetic acid-functionalized quantum dots for site-specific labeling of prion proteins expressed on cell surfaces[J]. Biomaterials,2010,31:8362-8370
    [47]K.T. Yong, I. Roy, W.C. Law, et al. Synthesis of cRGD-peptide conjugated near-infrared CdTe/ZnSe core-shell quantum dots for in vivo cancer targeting and imaging[J]. Chem. Commun.,2010,46:7136-7138
    [48]C.H. Wu, L.X. Shi, Q.N. Li, et al. Probing the Dynamic Effect of Cys-CdTe Quantum Dots toward Cancer Cells in Vitro[J]. Chem. Res. Toxicol,2010,23:82-88
    [49]A. Formhals. Process and apparatus for preparing artificial threads[P]. US Patent,1934, 1975504
    [50]王兴雪,王海涛,钟伟等.静电纺丝纳米纤维的方法与应用现状.非织造布[J],2007,15(2):14-20
    [51]王磊,张立群,田明.静电纺丝聚合物纤维的研究进展[J].现代化工,2009,29(2):28-33
    [52]李新松,姚琛.静电纺丝—从无规纳米纤维膜到取向连续长纱[J].化学通报,2009,7:579-586
    [53]董晓英,董鑫.静电纺丝纳米纤维的制备工艺及其应用[J].合成纤维工业,2009,32(4):48-50
    [54]卢正险,延卫.电纺法及其在制备聚合物纳米纤维中的应用[J].高分子通报,2005,2:35-40
    [55]霍丹群,罗伟,侯长军等.静电纺丝纳米纤维在传感器领域的研究进展[J].传感器与微系统,2009,28(2):4-7
    [56]X. Wu, L. Wang, H.Yu, et al. Effect of Solvent on Morphology of Electrospinning EthylCellulose Fibers[J]. Journal of Applied Polymer Science,2005,97:1292-1297
    [57]S. Han, J. Youk, K. Min et al. Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water:Effects of solvent composition on the fiber diameter[J]. Materials Letters,2008,62:759-762
    [58]S. Xu, J.Zhang, A.He, et al. Electrospinning of native cellulose from nonvolatile solvent system[J]. Polymer,2008,49:291-2917
    [59]A. Frenot, M. Walenius. Electrospinning of Cellulose-Based Nanofibers[J]. Journal of Applied Polymer Science,2007,103:1473-1482
    [60]J. Park, S. Han, I.H. Lee. Preparation of Electrospun Porous Ethyl Cellulose Fiber by THF/DMAc Binary Solvent System[J]. J. Ind. Eng. Chem.,2007,13 (6):1002-1008
    [61]W.K. Son, W.H. Park. Electrospinning of Ultrafine Cellulose Acetate Fibers:Studies of a New Solvent System and Deacetylation ofUltrafine Cellulose Acetate Fibers[J]. Journal of Polymer Science:Part B:Polymer Physics,2004,42:5-11
    [62]李山山,何素文,胡祖明等.静电纺丝的研究进展[J].合成纤维工业,2009,32(4):44-47
    [63]C.Z. Chen, L. Wang, Y. Huang. Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials [J]. Materials Letters.2009,63:569-571
    [64]Y. Yoon, H.S. Moon, W.S. Lyoo, et al. Superhydrophobicity of cellulose triacetate fibrous mats produced by electrospinning and plasma treatment[J]. Carbohydrate Polymers,2009, 75:246-250
    [65]W. Ritcharoen, P. Supaphol, P. Pavasant. Development of polyelectrolyte multilayer-coated electrospun cellulose acetate fiber mat as composite membranes[J]. European Polymer Journal,2008,44:3963-3968
    [66]O. Suwantong, U. Ruktanonchai, P. Supaphol. Electrospun cellulose acetate fiber mats containing asiaticoside or Centella asiatica crude extract and the release characteristics of asiaticoside[J]. Polymer,2008,49:4239-4247
    [67]L.F. Zhang, T.J. Menkhausb, H.Fong. Fabrication and bioseparation studies of adsorptive membranes/felts made from electrospun cellulose acetate nanofibers[J]. Journal of Membrane Science,2008,319:176-184
    [68]L. Chen, L. Bromberg, T. A. Hatton, et al. Electrospun cellulose acetate fibers containing chlorhexidine as a bactericide[J]. Polymer,2008,49:1266-1275
    [69]S.O. Han, J.H. Youk, K.D. Min, et al. Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: Effects of solvent composition on the fiber diameter[J]. Materials Letters,2008,62:759-762
    [70]S.O. Han, W.K. Son, J.H. Youk, et al. Ultrafine porous fibers electrospun from cellulose triacetate[J]. Materials Letters,2005,59:2998-3001
    [71]L.F. Zhang, Y.L. Hsieh. Ultra-fine cellulose acetate/poly(ethylene oxide) bicomponent fibers[J]. Carbohydrate Polymers,2008,71:196-207
    [72]O. uwantong, P. Opanasopit, U. Ruktanonchai, et al. Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance[J]. Polymer,2007,48:7546-7557
    [73]P. Taepaiboon, U. Rungsardthong, P. Supaphol. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E[J]. European Journal of Pharmaceutics and Biopharmaceutics,2007,67:387-397
    [74]W.K. Son, J.H. Youk, W.H. Park. Antimicrobial cellulose acetate nanofibers containing silver nanoparticles[J]. Carbohydrate Polymers,2006,65:430-434
    [75]W.K. Son, J.H. Youk, T.S. Lee, et al. Electrospinning of Ultrafine Cellulose Acetate Fibers:Studies of a New Solvent System and Deacetylation of Ultrafine Cellulose Acetate Fibers[J]. Journal of Polymer Science:Part B:Polymer Physics,2004,42:5-11
    [76]H.Q. Liu, Y.L. Hsieh. Ultrafine Fibrous Cellulose Membranes from Electrospinning of Cellulose Acetate[J]. Journal of Polymer Science:Part B:Polymer Physics,2002,40: 2119-2129
    [77]C.Y. Tang, P.P. Chen, H.Q. Liu. Cocontinuous Cellulose Acetate/Polyurethane Composite Nanofiber Fabricated Through Electrospinning[J]. Polymer Engineering and Science,2008, 48:1296-1303
    [78]S. Tungprapa, T. Puangparn, M. Weerasombut, et al. Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter[J]. Cellulose,2007,14:563-575
    [79]T. Abitbol, J.T. Wilson, D.G. Gray. Electrospinning of Fluorescent Fibers from CdSe/ZnS Quantum Dots in Cellulose Triacetate[J]. Journal of Applied Polymer Science,2011,119: 803-810
    [80]S. Wongsasulak, M. Patapeejumruswong, J. Weiss, et al. Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends[J]. Journal of Food Engineering, 2010,98:370-376
    [81]W. Baek, H.R. Pant, K.T. Nam, et al. Effect of adhesive on the morphology and mechanical properties of electrospun fibrous mat of cellulose acetate[J]. Carbohydrate Research,2011,346(13):1956-1961
    [82]Y. Tian, M. Wu, R. Liu, et al. Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment[J]. Carbohydrate Polymers,2011,83:743-748
    [83]A. Celebioglu, T. Uyar. Electrospun porous cellulose acetate fibers from volatile solvent mixture[J]. Materials Letters,2011,65:2291-2294
    [84]李增富.静电纺丝法制备醋酸纤维素纳米纤维[J].吉林化工学院学报,2008,25(4):19-22
    [85]G. Chen, H.Q. Liu. Electrospun Cellulose Nanofiber Reinforced Soybean Protein Isolate Composite Film[J]. Journal of Applied Polymer Science,2008,110:641-646
    [86]H.Q. Liu, Y.L. Hsieh. Surface Methacrylation and Graft Copolymerization of Ultrafine Cellulose Fibers[J]. Journal of Polymer Science:Part B:Polymer Physics,2003,41:953-964
    [87]P. Lu, Y.L. Hsieh. Lipase bound cellulose nanofibrous membrane via Cibacron Blue F3GA affinity ligand[J]. Journal of Membrane Science,2009,330:288-296
    [88]Z.W. Ma, S. Ramakrishna. Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification[J]. Journal of Membrane Science, 2008,319:23-28
    [89]M.J. Li, J.H. Zhang, H. Zhang, et al. Electrospinning:A Facile Method to Disperse Fluorescent Quantum Dots in Nanofibers without Forster Resonance Energy Transfer[J]. Adv. Funct. Mater.,2007,17:3650-3656
    [90]C. Wang, E.Y. Yan, Z.H. Huang, et al. Fabrication of Highly Photoluminescent TiO2/PPV Hybrid Nanoparticle-Polymer Fibers by Electrospinning[J]. Macromol. Rapid Commun., 2007,28:205-209
    [91]H. Kong, J. Jang. Antibacterial Properties of Novel Poly(methyl methacrylate) Nanofiber Containing Silver Nanoparticles[J]. Langmuir,2008,24:2051-2056
    [92]S.Z. Zhang, W.H. Ni, X.S. Kou, et al. Formation of Gold and Silver Nanoparticle Arrays and Thin Shells on Mesostructured Silica Nanofibers[J]. Adv. Funct. Mater.,2007,17: 3258-3266
    [93]S. Huang, W.A. Yee, W.C. Tjiu, et al. Electrospinning of Polyvinylidene Difluoride with Carbon Nanotubes:Synergistic Effects of Extensional Force and Interfacial Interaction on Crystalline Structures [J]. Langmuir,2008,24:13621-13626
    [94]L.W. Ji, K.H. Jung, A.J. Medford, et al. Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization[J]. J. Mater. Chem., 2009,19:4992-4997
    [95]X.F. Lu, C. Wang, Y. Wei. One-Dimensional Composite Nanomaterials:Synthesis by Electrospinning and Their Applications[J]. Small,2009,21:2349-2370
    [96]O. Suwantong, U. Ruktanonchai, P. Supaphol. Electrospun cellulose acetate fiber mats containing asiaticoside or Centella asiatica crude extract and the release characteristics of asiaticoside[J]. Polymer,2008,49:4239-4247
    [97]O. Suwantong, P. Opanasopit, U. Ruktanonchai, et al. Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance[J]. Polymer, 2007,48:7546-7557
    [98]P. Taepaiboon, U. Rungsardthong, P. Supaphol. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E[J]. European Journal of Pharmaceutics and Biopharmaceutics,2007,67:387-397
    [99]刘芸,戴礼兴.静电纺丝纤维形态及其主要影响因素.合成技术及应用,2005,20(1):25-29
    [100]S.S. Xu, J. Zhan, A.H. He, et al. Electrospinning of native cellulose from nonvolatile solvent system[J]. Polymer,2008,49:2911-2917
    [101]M.M. Castillo-Ortega, A. Najera-Luna, D.E. Rodriguez-Felix, et al. Preparation, characterization and release of amoxicillin from cellulose acetate and poly(vinyl pyrrolidone) coaxial electrospun fibrous membranes[J]. Materials Science and Engineering C,2011,31 (8):1772-1777
    [102]Z.Z. Li, J.F. Chen, F. Liu, et al. Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin[J]. Pest Manag. Sci.,2007,63:241-246
    [103]L.X. Wen, Z.Z. Li, H.K. Zou, et al. Controlled release of avermectin from porous hollow silica nanoparticles[J]. Pest Manag. Sci.,2005,61:583-590
    [104]Z.Z. Li, S.A. Xu, L.X. Wen, et al. Controlled release of avermectin from porous hollow silica nanoparticles:Influence of shell thickness on loading efficiency, UV-shielding property and release[J]. Journal of Controlled Release,2006,111:81-88
    [105]I.K. Hotson. The avermectins:A new family of antiparasitic agents[J]. J.S.Afr.Vet.Assoc., 1982,53(2):87-90
    [106]J.C. Cayrol, C. Djian, J.P. Frankowski. Efficacy of Abamectin B1 for the control of Meloidogyne arenaria[J]. Fundam.Appl.Nematol.,1993,16(3):239-246
    [107]J.R. Babu. Avermectins:Biological and Pesticidal Activities[M]. American Chemical Society,1988
    [108]S. Z. Zhao, B. Guo, G.Y. Han, et al. Metallization of electrospun polyacrylonitrile fibers by gold[J]. Materials Letters,2008,62:3751-3753
    [109]T.J. Zhang, W. Wang, D.Y. Zhang, et al. Biotemplated Synthesis of Gold Nanoparticle-Bacteria Cellulose Nanofiber Nanocomposites and Their Application in Biosensing[J]. Adv. Funct. Mater.,2010,20:1-9
    [110]J. Li, H.Q. Xie, L.F. Chen. A sensitive hydrazine electrochemical sensor based on electrodeposition of gold nanoparticles on choline film modified glassy carbon electrode[J]. Sensors and Actuators B:Chemical,2011,153:239-245
    [111]X.P. Dang, C.G. Hu, Y.K. Wang, et al. Gold nanoparticle film grown on quartz fiber and its application as a microsensor of nitric oxide Sensors and Actuators B:Chemical.2011, 160:260-265.
    [112]B. Guo, G.Y. Han, M.Y. Li, et al. Deposition of the fractal-like gold particles onto electrospun polymethylmethacrylate fibrous mats and their application in surface-enhanced Raman scattering[J]. Thin Solid Films,2010,518:3228-3233
    [113]Z.G. Xie, J. Tao, Y.H. Lu, et al. Polymer optical fiber SERS sensor with gold nanorods[J]. Optics Communications,2009,282:439-442
    [114]N.D. Luong, J. Oh, Y. Lee, et al. Immobilization of gold nanoparticles on poly(methylmethacrylate) electrospun fibers exhibiting solid-state surface plasmon effect[J]. Surf. Interface Anal.,2011, in press
    [115]J.L. Tang, S.F. Cheng, W.T. Hsu, et al. Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating[J]. Sensors and Actuators B,2006,119:105-109
    [116]J. Turkevich, P.C. Stevenson, J. Hillier. A study of the nucleation and growth processes in the synthesis of colloidal gold[J]. Discuss. Faraday Soc.1951,11:55-75
    [117]H.B. Xia, S. Bai, J. Hartmann, et al. Synthesis of Monodisperse Quasi-Spherical Gold Nanoparticles in Water via Silver(I)-Assisted Citrate Reduction[J]. Langmuir,2010,26(5): 3585-3589
    [118]Y. Dzenis. Spinning continuous fibers for nanotechnology[J]. Science,2004,304:1917-1919
    [119]Y.Z. Wang, Y.X. Li, G.E. Sun, et al. Fabrication of Au/PVP Nanofiber Composites by Electrospinning[J]. Journal of Applied Polymer Science,2007,105:3618-3622
    [120]S.Z. Zhao, B. Guo, G.Y. Han, et al. Metallization of electrospun polyacrylonitrile fibers by gold[J]. Materials Letters,2008,62:3751-3753
    [121]G.M. Kim, A. Wutzler, H.J. Radusch, et al. One-Dimensional Arrangement of Gold Nanoparticles by Electrospinning[J].Chem. Mater.,2005,17:4949-4957
    [122]Y.Z. Wang, Y.X. Li, G.E. Sun, et al. Fabrication of Au/PVP Nanofiber Composites by Electrospinning[J]. J Appl. Polym. Sci.,2007,105:3618-3622
    [123]G.Y. Han, B. Guo, L.W. Zhang, et al. Conductive Gold Films Assembled on Electrospun Poly(methylmethacrylate) Fibrous Mats[J]. Adv. Mater.,2006,18:1709-1712
    [124]J. Bai, Q.B. Yang, M.Y. Li, et al. Preparation of composite nanofibers containing gold nanoparticles by using poly(N-vinylpyrrolidone) and cyclodextrin[J]. Mater. Chem. and Phys.,2008,111:205-208
    [125]S. Ramakrishna. An Introduction to Electrospinning and Nanofibers[M], World Scientific Publishing Company,River Edge NJ,2005
    [126]L. Bois, F. Chassagneux, C. Desroches, et al. Electroless Growth of Silver Nanoparticles into Mesostructured Silica Block Copolymer Films[J]. Langmuir.2010,26(11),8729-8736
    [127]D.A. Safin, P.S. Mdluli, N. Revaprasadu, et al. Nanoparticles and Thin Films of Silver from Complexes of Derivatives of N-(Diisopropylthiophosphoryl) thioureas[J]. chem.Mater.,2009,21:4233-4240
    [128]J. Li, K. Kamata, S. Watanabe, et al. Template-and Vacuum-Ultraviolet-Assisted Fabrication of a Ag-Nanoparticle Array on Flexible and Rigid Substrates[J]. Adv.Mater., 2007,19:1267-1271
    [129]D.D. Lin, H. Wu, R. Zhang, et al. Enhanced Photocatalysis of Electrospun Ag-ZnO Heterostructured Nanofibers[J]. Chem.Mater.,2009,21:3479-3484
    [130]D. Aherne, D.M. Ledwith, M. Gara, et al. Optical Properties and Growth Aspects of Silver Nanoprisms Produced by a Highly Reproducible and Rapid Synthesis at Room Temperature[J]. Adv. Funct. Mater.,2008,18:2005-2016 [131] H. Kong, J. Jang. Antibacterial Properties of Novel Poly(methyl methacrylate) Nanofiber Containing Silver Nanoparticles[J]. Langmuir.2008,24:2051-2056
    [132]W.K. Son, J.H. Youk, W.H. Park. Antimicrobial cellulose acetate nanofibers containing silver nanoparticles[J]. Carbohydrate Polymers,2006,65:430-434
    [133]贾慧颖.银纳米粒子的制备、表征及其表面增强拉曼散射活性研究[D].吉林大学博士论文,2006
    [134]安静.银纳米粒子的形貌控制合成及其SERS活性研究[D].吉林大学博士论文,2007
    [135]Q. Shi, N. Vitchuli, J. Nowak, et al. Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. European Polymer Journal,2011,47:1402-1409
    [136]G.N. Sichani, M. Morshed, M. Amirnasr, et al. In Situ Preparation, Electrospinning, and Characterization of Polyacrylonitrile Nanofibers Containing Silver Nanoparticles[J]. Journal of Applied Polymer Science,2010,116:1021-1029
    [137]D. He, B. Hu, Q.F. Yao, et al. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity:Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles[J]. American Chemical Society.2009,3(12):3993-4002
    [138]C.D. Saquing, J.L. Manasco, S.A. Khan. Electrospun Nanoparticle-Nanofiber composites via a One-Step Synthesis[J]. small,2009,5(8):944-951
    [139]H. Dong, D. Wang, G. Sun, et al. Assembly of Metal Nanoparticles on Electrospun Nylon 6 Nanofibers by Control of Interfacial Hydrogen-Bonding Interactions[J]. Chem. Mater.,2008,20(21):6627-6632
    [140]K.H. Hong, J.L. Park, I.H. Sul, J. et al. Preparation of antimicrobial poly(vinyl alcohol) nanofibers containing silver nanoparticles[J]. J. Polym. Sci. Part B:Polym. Phys.,2006, 44(17):2468-2474
    [141]Y.J. Lee, W.S. Lyoo. Preparation of Atactic Poly(vinyl alcohol)/Silver Composite Nanofibers by Electrospinning and Their Characterization[J]. Journal of Applied Polymer Science,2010,115:2883-2891
    [142]安静.银/聚合物纳米复合材料的制备、结构和抗菌性能研究[D].天津大学博士论文,2009
    [143]Y.Z. Wang, Q.B. Yang, G.Y. Shan, et al. Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning[J]. Materials Letters,2005,59: 3046-3049
    [144]F.F. Manuela, N. Chaniotakis. Semiconductor Quantum Dots in Chemical Sensors and Biosensors[J]. Sensors,2009,9(9):7266-7286
    [145]A.G. Kanani, S.H. Bahrami, H.A. Taftei, et al. Effect of chitosan-polyvinyl alcohol blend nanofibrous web on the healing of excision and incision full thickness wounds[J]. IET Nanobiotechnol.,2010,4(4):109-117
    [146]S.S. Choi, Y.S. Lee, C.W. Joo, et al. Electrospun PVDF nanofiber web as polymer electrolyte or separator[J]. Electrochim. Acta,2004,50:339-343
    [147]K. Onozuka, B. Ding, Y. Tsuge, et al. Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications[J]. Nanotechnology,2006,17:1026-1031
    [148]E. Kenawy, G. Bowlin, K. Mansfield, et al. Controlled Release from Solid Polymer Nanofibers[J]. J. Control. Release,2002,81:57-64
    [149]X. Wang, C. Drew, S.H. Lee, et al. Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors. Nano Letter.,2002,2:1273-1275
    [150]R. Tatavarty, E. T. Hwang, J. W. Park, et al. Conductive quantum dot-encapsulated electrospun nanofibers from polystyrene and polystyrene-co-maleic anhydride copolymer blend as gas sensors [J]. Reactive & Functional Polymers,2011,71(2):104-108
    [151]M.G. Hajra, K. Mehta, G..G.. Chase, Effects of humidity, temperature, and nanofibers on drop coalescence in glass fiber media[J]. Sep. Purif. Techno.1,2003,30:79-88
    [152]R. Dersch, M. Steinhart, U. Boudriot, et al. Polym. Nanoprocessing of polymers: Applications in medicine, sensorics, catalysis, photonics[J]. Advan. Technol.,2005,16: 276-282
    [153]M.J. Li, J.H. Zhang, H. Zhang, et al. Electrospinning:A Facile Method to Disperse Fluorescent Quantum Dots in Nanofibers without Forster Resonance Energy Transfer[J]. Adv. Funct. Mater.,2007,17:3650-3656
    [154]Z.Y. Zhang, C.L. Shao, F. Gao, et al. Enhanced ultraviolet emission from highly dispersed ZnO quantum dots embedded in poly(vinyl pyrrolidone) electrospun nanofibers[J]. Journal of Colloid and Interface Science,2010,347:215-220
    [155]T. Abitbol, J.T. Wilson, D.G. Gray. Electrospinning of Fluorescent Fibers from CdSe/ZnS Quantum Dots in Cellulose Triacetate[J]. Journal of Applied Polymer Science,2011,119: 803-810
    [156]Z. Yang, L. Li, Z.H. Sun, et al. Direct encoding of silica submicrospheres with cadmium telluride Nanocrystals[J]. J. Mater. Chem.,2009,19:7002-7010
    [157]鹿霞,钟文英,于俊生.高量子产率水溶性CdTe量子点的制备与表征[J],分析试验室,2009,28(1):36-40
    [158]H. Yano, J. Sugiyama, A.N. Nakagaito, et al. Optically transparent composites reinforced with networks of bacterial nanofibers [J]. Adv. Mater.,2005,17(2):153-155
    [159]W.J. Koch, P.S. Nordman. US pat.,2006, WO/2006/014961
    [160]K. Matumura, Y. Kagawa, K. Baba. Light transmitting electromagnetic wave shielding composite materials using electromagnetic wave polarizing effect[J]. J. Appl. Phys.,2007, 101(1):014912-014916
    [161]S. Kang, H. Lin, D.E. Day, et al. Optical transparent polymethyl methacrylate composites made with glass fibers of varying Refractive index[J]. J. Mater. Res.,1997,12:1091-1101
    [162]M. Fleischmann, P.J. Hendra, A. McQuillan. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters,1974,26(2):163-166
    [163]D.L. Jeanmaire, R.P. VanDuyne. Surface Raman spectroelectrochemistry Pan I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry,1977,84(1):1-20
    [164]M.G. Albrecht, J.A. Creighton. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. Journal of the American Chemical Society,1977,99(15):5215-5217
    [165]G.Q. Liu, W.P. Cai, C.H. Liang. Trapeziform Ag nanosheet arrays induced by electrochemical deposition on Au-eoated substrate[J]. Cryst. Growth Des.,2008,8(8): 2748-2752
    [166]A.M. Michaels, L.M. Nirma, L.E. Brus. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals[J]. J. Am. Chem. Soc.,1999, 121:9932-9939
    [167]V.P. Drachev, V.C. Nashine, M.D. Thoreson, et al. Adaptive silver fihm for detection of antibody-antigen binding[J]. Langmuir,2005,21:8368-8373
    [168]E.J. Smythe, M.D. Dickey, J.M. Bao, et al. Optical antenna arrays on a fiber facet for in situ surface-enhanced raman scattering detection[J]. Nano Lett.,2009,9(3):1132-1138
    [169]L.L. Sun, Y.H. Song, L. Wang, et al. Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection[J]. J. Phys. Chem. C,2008,112:1415-1422
    [170]W. Song, Y.C. Cheng, H.Y. Jia, et al. Surface enhanced Raman scattering based on silver dendrites substrate[J]. Journal of Colloid and Interface Science,2006,298:765-768
    [171]C.H. Tang, H.Q. Liu. Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance[J]. Composites:Part A,2008,39:1638-1643

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700