用户名: 密码: 验证码:
导电沥青混凝土的机敏特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青混凝土已被广泛应用于道路和桥梁的铺面层。通过掺入适量的导电相材料,能显著地改善其导电性能,并具有高度灵敏的机敏特性。可利用导电沥青混凝土的机敏特性来实现对外部应力及其产生的应变,甚至内部结构损伤的自诊断。这将会对沥青路面损坏检测、交通流量和车辆载荷进行监控和调配等公路交通智能化管理等产生深远的影响。
     采用连续级配AC-20和间断级配Superpave12.5均可获得同时具有优异电学性能和路用性能的沥青混凝土。马歇尔残留稳定度,四点弯曲疲劳试验,间接拉伸模量试验和车辙试验表明石墨导电沥青混凝土的抗水稳定性能力强,抗疲劳开裂能力较佳,弹性模量高,高温稳定性能良好,可作为新型路面使用。电阻率与空隙率之间遵从一定的指数关系。由于沥青与石墨的膨胀系数不一致,导致其电阻率随温度变化而发生变化。
     对于间接拉伸疲劳试验,四点弯曲小梁疲劳试验和车辙疲劳试验,导电沥青混凝土对外加应力所产生的应变具有良好的诊断能力。其电阻率变化呈现负压阻效应,石墨相材料掺量相对较低时(在阈值范围内),单位应变对应的电阻率变化值也越大,也就是说对应变的响应越明显。当施加更高的应力荷载时,每单位应变所引起的电阻率变化值也更高。导电沥青混凝土对其内部损伤也有良好的自诊断能力,在试件遭到破坏的过程中,电阻率输出变化存在三个明显的阶段:首先由于导电沥青混凝土试件受到追密作用后导致导电颗粒接触更加紧密,表现为输出电阻率急剧下降;第二阶段,沥青混凝土电阻率变化处于平稳变化阶段;最后阶段,由于沥青混凝土的微细裂缝逐渐发展,最终导致试件的完全破坏和裂开,导电通路遭到严重破坏,表现为电阻率急剧增大。
     当导电沥青混凝土作为器件只占试件体积分数的一部分时,其路用性能与完全导电沥青混凝土相比有了大幅度的提高,而且仍然具有良好的机敏特性。当压阻效应从负开始转变为正压阻效应的时候,这时对应的车辙深度10mm就是影响舒适性和安全性的车辙深度临界值,因而车辙变形的自诊断具有特别重要的意义。
     导电沥青混凝土具有良好的机敏特性,机理可用载流子的浓度变化来解释,其电阻率与载流子浓度成反比。当试件受压时,总应变小于零,而且随着荷载的增加变的越来越负,受压后载流子浓度大于受压前,而且随着加载时间的延长越来越大,导致电阻逐渐减小。当试件受拉时,总应变大于零,导致受拉后载流子浓度小于受压前,而且随着加载时间的延长越来越小,电阻逐渐增大。采用CT破损识别能够证实电阻率的变化是由材料内部结构变化所引起的,疲劳破坏过程中电阻率出现下降或上升是由于材料内部空隙率下降或上升所导致的。
Asphalt concrete has been widely applied in the pavement of highway and bridge. The conductive behavior of asphalt mixture can be improved with the addition of conductive materials, thus the self-monitoring material can be obtained. The monitoring of strain is valuable for structural control and dynamic load monitoring for traffic control; the monitoring of damage is valuable for structural health monitoring and service life prediction. The combined ability to monitor both reversible strain and damage is particularly valuable in real-time fatigue damage monitoring under dynamic loading, because the strain cycle and the point within the cycle at which damage occurs can be identified.
     The continuous mixture proportion such as AC-20 and discontinuous mixture proportion such as Superpave 12.5 are all can be employed to prepare electrically conductive asphalt concrete (CAC). Experimental results of Marshall Remnant Stability Test, Four Point Bend Fatigue Test, Indirect Tensile Modulus Test and Rutting Test show that graphite modified CAC possesses of high resistance to moisture damage and resistance to fatigue damage, high resilient modulus and excellent high-temperature stability, which is expected to apply as new-type pavement. It is exponential relation between the resistivity and air voids of asphalt mixture. The resistivity varied with temperature because the expansion coefficient of asphalt and graphite are repugnant.
     By using Dynamic Indirect Tensile Test, Four Bend Fatigue Test and Rutting Test, the use of CAC containing graphite and carbon fibers for strain monitoring was investigated and shown to be effective. The electrical resistivity increases reversibly with increasing strain under the test. It has higher self-monitoring ability when the graphite content is lower (beyond the value of threshold) and higher load. CAC for interior damage monitoring was investigated and shown to be effective too. The resistivity change can be divided into three phases through fatigue process: The resistivity is deceased with the specimen was more compressed in the first phase, and then it changed little in the second phase because the specimen was in a steady state after compressed. Finally the resistivity is increased with the specimen was destructed gradually. The increase or decrease of resistivity can be thought is begot by the variation of internal structure of asphalt concrete. Compression action can form more conductive paths and the resistivity is decreased. In the meanwhile, material failure can cut conductive path and the resistivity is increased.
     When the conductive concrete was embedded into common asphalt concrete specimen as a partial structure function, the road performances were greatly improved compared with completely CAC and it still has excellent piezoreisitivity character. When the piezoresistivity from negative turn into positive, it is 10mm rutting depth critical value that influence driving comfortably and safely, therefore the deformation self-monitoring has specially important significance.
     CAC has highly sensitive piezoresistivity and the mechanism can be explained by the number variation of electronic carrier. When the loading is compressive stress, the strain becomes smaller and smaller, so the number of carriers higher than that of previous load, therefore the resistivity is decreased. When the loading is tensile stress, the strain becomes bigger and bigger, so the number of carriers lower than that of previous load, as a result, the resistivity is increased. It can be identified that the structure variation of CAC was responsible to the resistivity change by Computer Tomography damage detecting.
引文
[1] 中国公路运输业发展研究报告(2005/2006)[R].北京:人民交通出版社,2006,3
    [2] 国家高速公路网规划(2004)[R].北京:人民交通出版社,2005,2
    [3] 王乐.国外沥青路面车辙的控制[J].交通标准化,2006,(08),17-19.
    [4] 黄瑞豹,林洲.沥青路面早期损坏的分析与防治[J].交通标准化,2006,(11),147-150.
    [5] 崔颖超,孙民刚,潘国强.公路改建中沥青混凝土路面病害检测与评价[J].地下空间, 2005,(S1),1163-1167.
    [6] 施树明,初秀民,王荣本.沥青路面破损图像测量方法研究[J].公路交通科技, 2004,(07),12-16.
    [7] 孙成仁,何桂平.路面破损状况自动检测系统[J].公路,2002,(07),19-22.
    [8] 蒋彬,刘淑荣.基于图象识别的公路路面破损自动检测研究进展[J].东北公路, 2002,(03),19-21.
    [9] 何桂平,曹翠星,孙成仁.路面破损自动评价技术的现状和发展[J].中外公路, 2002,(03),11-13.
    [10] Tarek A. Monem, Amr A. Oloufa, and Hesham Mahgoub. Asphalt crack detection using thermography[C]. InfraMation 2005 Proceeding,2005:1-12.
    [11] 王钧,刘东,张联盟.碳纤维增强聚合物基复合材料自诊断性能研究[J].武汉理工大学学报,2002,24(4):36-40.
    [12] 陈兵,吴科如,等.损伤自诊断机敏混凝土材料研究[J].混凝土 2002,8:3-8.
    [13] 郑立霞.机敏混凝土及其结构的压敏性研究[D].武汉:武汉理工大学,2003.
    [14] 郑立霞,宋显辉,等.机敏混凝土结构变形的自诊断[J].华中科技大学学报 2004.4:30-35.
    [15] Xuli Fu and D.D.L. Chung, Effect of curing age on the self-monitoring behavior of carbon fiber reinforced mortar [J]. Cement and Concrete Research, 1997,27 (9): 1313-1318.
    [16] D.D.L. Chung. Self-monitoring structural materials [J]. Materials Science and Engineering, R22 (1998) 57-78.
    [17] Xuli Fu, D.D.L. Chung. Self-monitoring in carbon fiber reinforced mortar by reactance measurement [J]. Cement and Concrete Research, 1997, (27):845-852.
    [18] Wu Yao, Bing Chen and Keru Wu. Smart behavior of carbon fiber reinforced cement-based composite [J]. Journal of Materials Science & Technology, 2003, (19):239-245.
    [19] Shui Zhonghe, Li Jizhong, Huang Fengping. Study on the electrical properties of carbon fiber-cement composite [J]. Journal of Wuhan University of Technology, 1995,(10):37-41.
    [20] F J Carrion, J FDoyle, A Lozano. Structural health monitoring and damage detection using a sub-domain inverse method [J]. Smart Mater. Struct. 2003 ,(12):776-784.
    [21] Ken P Chong, Nicholas J Carino and Glenn Washer. Health monitoring of civil infrastructures [J]. Smart Mater. Struct. 2003, (12):483-493.
    [22] Gerhard Mook, Juergen Pohl and Fritz Michel. Non-destructive characterization of smart CFRP structures [J]. Smart Mater, Struct., 2003, (12): 997-1004.
    [23] ShoukaiWang, Daniel P Kowalik and D.D.L Chung. Self-sensing attained in carbon-fiber polymer-matrix structural composites by using the interlaminar interface as a sensor [J]. Smart Mater. Struct., 2004, (13): 570-592.
    [24] S F Mash, L-H Sheng, J P Caffrey, R L Nigbor, MWahbeh and A M Abdel-Ghaffar. Application of a web-enabled real-time structural health monitoring system for civil infrastructure systems [J]. Smart Mater. Struct., 2004, (13) :1269-1283.
    [25] Yung Bin Lin, KuoChun Chang, Jeun Chuan Chem and Lon A Wang. The health monitoring of a prestressed concrete beam by using fiber Bragg grating sensors [J]. Smart Mater. Struct., 2004, (13) :712-718.
    [26] Hiroshi Tsuda, Nobuyuki Toyama, KeiUrabe and JunjiTakatsubo. Impact damage detection in CFRP using fiber Bragg gratings [J]. Smart Mater. Struct., 2004, (13): 719-724.
    [27] Kevin K Tsengl and Liangsheng Wang. Smart piezoelectric transducers for in situ health monitoring of concrete [J]. Smart Mater. Struct. 2004, (13):1017-1024.
    [28] Jeong-Beom Ihn and Fu-Kuo Chang. Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network [J]. Smart Mater. Struct., 2004, (13): 609-620.
    [29] Sun Mingqing, Li Zhuoqiu, Mao Qizhao. A study on thermal self-monitoring of carbon fiber reinforced concrete [J]. Cerrmt and Concrete Research, 1999, (29): 169-771.
    [30] Shui zhonghe, Stroeven piet. Electrical conductive behavior of cementitious composites with low content of hybrid steel-carbon fiber systems [J]. Journal of Wuhan University of Technology, 1998, (13):18-24
    [31] Pu-Woei Chen, D.D.L. Chung. Concrete as a new strain/stress sensor [J]. Composites: Part B ,1996, (27B) : 11-23.
    [32] Xuli Fu, D.D.L. Chung. Contact electrical resistivity between cement and carbon fiber: its decrease with increasing bond strength and its increase during fiber pull-out [J]. Cement and Concrete Research, 1995, (25): 1391-1396.
    [33] Xuli Fu, D.D.L. Chung. Self-monitoring of fatigue damage in carbon fiber reinforced cement [J]. Cement and Concrete Research, 1996, (26):15-20
    [34] S. Wang, D.D.L. Chung. Self-monitoring of strain and damage by a carbon-carbon composite [J]. Carbon, 1997, (35): 621-630.
    [35] Sihai Wen, D.D.L. Chung. Effects of carbon black on the thermal, mechanical and electrical properties of pitch-matrix composites [J]. Carbon, 2004, (42):2393-2397.
    [36] 张登良.沥青与沥青混合料[M].北京:人民交通出版社,1993:15-89.
    [37] 吴少鹏,磨炼同,林振华.石油沥青及传导性能的研究[J].国外建材科技,2001, (22):14-16
    [38] 吴少鹏,磨炼同,水中和.石墨改性沥青混凝土的导电机制[J].自然科学进展, 2005,(15)4:446-451.
    [39] Shaopeng Wu, Liantong Mo, Zhonghe Shui, Zheng Chen. Investigation of the conductivity of asphalt concrete containing conductive fillers [J]. Carbon,2005,(43): 1358-1363.
    [40] Shaopeng Wu, Liantong Mo, Zhonghe Shui. Percolation model of graphite-modified asphalt concrete [J]. J. Wuhan Univ. Tech. (Mater. Sci. Ed.), 2005, (20)1:111-113.
    [41] Wu shaopeng, Mo Liantong, Shui Zhonghe. Piezoresistivity of graphite modified asphalt-based composites [J]. Key Engineering Materials, 2003,(249):391-396.
    [42] Shaopeng Wu, Xiaorning Liu. Research of self-monitoring mechanism of electrically conductive asphalt-based composite [J].Key Engineering Materials, 2006,(326-328): 1499-1502.
    [43] S. Wen and D. D. L. Chung. Pitch-matrix composites for electrical, electromagnetic and strain-sensing applications [J], Journal of Materials Science,2005,(40)15:3897-3903.
    [44] Shaopeng Wu, Xiaoming Liu. Fatigue Failure Self-monitoring of graphite modified bituminous composites. Proceedings of the 2nd International Conference on Structural Health Monitoring of Intelligent Infrastructure 16-18 November 2005, Shenzhen, China, 1494-1498.
    [45] Shaopeng Wu, Xiaoming Liu. Deformation self-monitoring of bituminous composites containing conductive fillers. Proceedings of the 2nd International Conference on Structural Health Monitoring of Intelligent Infrastructure 16-18 November 2005, Shenzhen, China, 1499-1503.
    [46] Whiteoak D.壳牌沥青手册[M].北京:英国壳牌石油公司沥青部,1995:145.
    [47] JTG F40-2004,公路沥青路面施工技术规范[S].北京:人民交通出版社,2005.
    [48] NCHRP Report 539: Aggregate properties and the performance of superpave-designed hot mix asphalt.
    [49] JTG E42-2005,公路工程集料试验规程[S].北京:人民交通出版社,2006,1
    [50] 陆长征.碳黑填充导电塑料的研究[J].塑料,2000,29(1):32-34.
    [51] 景志坤.碳黑在塑料(橡胶)中的作用[J].塑料科技,1994,99(1):14-20.
    [52] Dana Pantea, Hans Darmstadt, Serge Kaliaguine. Electrical conductivity of thermal carbon fibers [J]. Carbon, 2002,40(13):2461-2468.
    [53] 陈晓梅,全成子,沈经纬.聚丙烯/石墨导电复合材料的制备与表征[J].中国塑料, 2001,15(9):40-43.
    [54] Hand G.P. Graphite [J]. Mining Engineering. 1997,49(2):34-38.
    [55] 许立宁,邓海金,等.原位聚合法制备PMMA/石墨纳米导电复合材料[J].塑料工业, 2001,29(6):17-19.
    [56] 周强,徐瑞清.石墨材料的润滑性能及其开发应用[J].新型碳材料,1997,12(3):11-17.
    [57] 彭波,靳明,袁万杰.纤维增强沥青混合料陛能的研究[J].重庆交通学院学报,2002,21(4):27-29.
    [58] Lee Young-Seak, Lee Byoung-Ky. Surface properties of oxyfluorinated PAN-based carbon fibers[J]. Carbon, 2002,40(13):2461-2468.
    [59] 唐祖全.导电混凝土路面材料的性能分析及导电组份选择[J].混凝土,2002,150 (4):28-32.
    [60] 钱庆纬,张经双.纤维混凝土特性研究及应用前景[J].西部探矿工程, 2005,114(10):165-167.
    [61] 王建军,宋显辉.碳纤维水泥涂层的温敏性研究[J].武汉理工大学学报,2005,12(1):15-21.
    [62] 许美萱,刘文广,姚康德.纤维增强复合材料无损检测的新趋势——自诊断智能材料的构思[J].材料导报,1995,2:8-11.
    [63] 陈兵,吴科如,姚武.碳纤维水泥基复合材料导电性能研究[J].混凝土与水泥制品,2002(12),6:36-39.
    [64] 王建军,宋显辉,李卓球.碳纤维水泥基复合材料压敏性应用研究[J].华中科技大学学报(自然科学版),2007,35(03):100-103.
    [65] 韩宝国,关新春,欧进萍.碳纤维水泥石测试方法研究[J].玻璃钢/复合材料,2003,24 (6):6-9.
    [66] 简华丽,谢慧才,刘金伟.碳纤维混凝土中纤维含量对其力学、压敏性能的影响[J].混凝土,2003,170 (12):21-23.
    [67] Wu shaopeng, Mo Liantong, Shui Zhonghe. An Improvement in electrical properties of asphalt concrete[J]. Journal of Wuhan Univesity of Technology(Mater.Sci.Ed), 2002, 17 (4):63-65.
    [68] 周晓青,李宇峙,应荣华.沥青混合料拉伸疲劳试验下疲劳损伤特性研究[J].重庆建筑大学学报,2005,27(5):47-52.
    [69] 许志鸿,李淑明,高英.沥青混合料疲劳性能研究[J].交通运输工程学报,2001,1(1):20-24.
    [70] 黄爱明,刘铁山.沥青混合料疲劳性能的能耗分析方法研究[J].山西建筑,2005,31(23):148-149.
    [71] AASHTO Designation: T 321-03. Standard method of test for determining the fatigue life of compacted hot-mix asphalt (HMA) subjected to repeated flexural bending [S].
    [72] AASHTO Designation: T 322-03: Standard test method for determining the creep compliance and strength of hot mix asphalt (HMA) using the indirect tensile test device [S].
    [73] Monismith C L, F Long. Overlay design for cracked and seated Portland cement concrete (PCC) pavement-interstate route 710 [C]. USA: University of California-Berkley,1999.
    [74] Monismith C L, Viscoelastic behavior of asphalt concrete pavements, 1st International Conference on the Structural Design of Asphalt Pavements, 1962.Vol. 1.
    [75] 郑健龙,吕松涛,田小革.沥青混合料粘弹性参数及其应用[J].郑州大学学报,2004,25(4):8-12.
    [76] NCHRP Report 325: Significant findings from full-scale accelerated pavement testing
    [77] David Harold Timm. A phenomenological model to predict thermal crack spacing of asphalt pavement. A thesis submitted to the Faculty of the Graduate School of the University of Minnesota in partial fulfillment of the requirements for the Degree of Doctor of Philosophy
    [78] 吴少鹏,磨炼同,水中和.导电沥青混凝土的制备研究[J].武汉理工大学学报(交通科学与工程版),2002,26(5):566-569.
    [79] 彭波,刘红瑛.SAC及superpave沥青混合料路用性能[J].长安大学学报(自然科学版), 2002,22(6):23-29.
    [80] 吴少鹏,刘小明,等.自诊断沥青混凝土及其应用前景[J].华中科技大学学报,2005,22(3):1-4.
    [81] 吕伟民.沥青混合料设计原理与方法[M].上海:同济大学出版社,2000.40-80.
    [82] 沈金安.改性沥青与SMA路面[M].北京:人民交通出版社,1999.60-79.
    [83] 中华人民共和国交通行业标准.公路工程沥青及沥青混合料试验规程(JTJ052-200)[S],北京:人民交通出版社,2000.
    [84] 磨炼同.导电沥青混凝土的制备与研究[D].武汉:武汉理工大学,2004.6.
    [85] 杨大川译.金属填充聚合物—性能与应用[M].北京:中国石化出版社,1992:104-106.
    [86] 汤浩,陈欣方,罗云霞.复合型导电高分子材料导电机理研究及电阻率计算[J].高分子材料科学与工程,1996,12(3):1-7
    [87] R.Q. Li, D.Y. Dou. Complicated resistivity-temperature behavior in polymer composites [J]. Journal of Applied Polymer Science, 2002, (86):2217-2221.
    [88] 席保锋,刘辅宜,徐传骧.聚合物/炭黑复合材料PTC特性的理论研究进展[J].高分子材料科学与工程.1999,15(6):25-29.
    [89] G.H. Chen, W. G. Weng. Nonlinear conduction in nylon-6/foliated graphite nanocomposites above the percolation threshold [J]. Journal of Polymer Science: Part B: Polymer Physics, 2004,(42): 155-167.
    [90] X.W. Zhang, Y. Pan. Piezoresistance of conductor filled insulator Composites [J]. Polymer International, 2001,(50):229-236.
    [91] J.F. Zou, Z. Z. Yu, Y.X. Pan. Conductive mechanism of polymer graphite conducting composites with low percolation threshold [J]. Journal of Polymer Science: Part B: Polymer Physics, 2002, (40):954-963.
    [92] 南策文,陈政新.Ti-Al_2O_3金属陶瓷的渗流模型[J].物理学报,1987,36:511-513.
    [93] Y. H. Hou, M. Q. Zhang. Improvement of conductive network quality in carbon black-filled polymer blends [J]. Journal of Applied Polymer Science, 2002, 84, 2768-2775
    [94] K. P. Sau, D. Khastgir, T. K. Chaki. Electrical conductivity of carbon black and carbon fibre filled silicone rubber composites. Die Angewandte Makromolekulare Chemie 1998 (258): 11-17
    [95] T.A. Ezquerra, N.T. Connor. Alternating-current properties of graphite, carbon-black and carbon-fiber polymeric composites [J]. Composites Science and technology, 2001, 61:903-909
    [96] 曾竟成.复合材料理化性能[M].长沙:国防科技大学出版社,1998:84-98.
    [97] G. Yu, M. Q. Zhang, Effect of filler treatment on temperature dependence of resistivity of carbon-black-filled polymer blends [J]. Journal of Applied Polymer Science, 1999, 73:489-494
    [98] Weihua Di, Guo Zhang. Resistivity-temperature behavior of carbon fiber filled semicrystalline composites [J]. Journal of Applied Polymer Science, 2004, 91:1222-1228
    [99] Jie Zhang, Shengyu Feng. Temperature effects of electrical resistivity of conductive silicone rubber filled with carbon blacks [J]. Journal of Applied Polymer Science, 2003, 90:3889-3895.
    [100] 宣兆龙.炭黑/高聚物导电复合材料PTC效应的研究[J].塑料.1999,19(10):25-30.
    [101] 杨建高,刘成岑,施凯.渗流理论在复合型导电高分子材料研究中的应用[J].化工中间体,2006,22(2):12-16.
    [102] 王绍怀,张肖宁.沥青混合料疲劳破坏预测方法的研究[J],哈尔滨建筑大学学报,1995,28(2):37-44.
    [103] AASHTO Designation: TP31-96. Standard method of test for determining the resilient modulus of bituminous mixtures by indirect tension [S].
    [104] Zhonghe Shui. The electrical properties of carbon fiber-cement composite (CFCC) [J]. Journal of Wuhan University of Technology (Mater. Sci. Ed.), 1995, 10(04):38-42.
    [105] M. Taya, W.J. Kim, K. Ono. Piezoresistivity of a short fiberrelastomer matrix composite [J]. Mechanics of Materials, 1998,28:53-59.
    [106] Ming Qiu Zhang. J. of Mater, Sci.,1995,30:4226-4232.
    [107] Sihai Wen, D. D.L. Chung, Piezoresistivity in continuous carbom fiber cement-matrix composite [J]. Cement and Concrete Research, 1999,29:445-449.
    [108] Shaopeng Wu, Xiaoming Liu. Self-monitoring electrically conductive asphalt-based composite containing carbon fillers [J]. Trans.Nonferrous Met.Soc.China,2006:s512-s516.
    [109] V. V. Novikov. Frequency dependences of dielectric properties of petal-Insulator composites [J]. Physics of the Solid State, 2002, 44, (11): 2055-2062.
    [110] 张志详,陈荣生,白绮峰.沥青混合料抗车辙性能研究[J].公路交通科技,2006,23(4):19-122.
    [111] 刘峰,李宇峙.沥青路面车辙分析与防治[J].中外公路,2005,25(4):192-195.
    [112] Yongqi Li. Asphalt pavement fatigue cracking modeling. A Dissertation submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the Degree of Doctor of Philosophy
    [113] Jo Sias Daniel. Development of a simplified fatigue test and analysis procedure using a viscoelastic, continuum damage model and its implementation to Westrack mixtures. A Dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy
    [114] Khalid Ahmad Ghuzlan. Fatigue damage analysis in asphalt concrete mixtures based upon dissipated energy concepts. A thesis submitted to the Civil Engineering in the Graduate College of the University of Illinois in partial fulfillment of the requirements for the Degree of Doctor of Philosophy
    [115] NCHRP Report 523: Optimal timing of pavement preventive maintenance treatment applications
    [116] Fenella Margaret Long. Permanent deformation of asphalt concrete pavements: a nonlinear viscoelastic approach to mix analyses and design. A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering-civil and Environmental Engineering in the Graduate Division of the University of California, Berkeley
    [117] Saurabh bahuguna. Permanent deformation and rate effects in asphalt concrete: constitutive modeling and numerical implementation. A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Department of Civil Engineering Case Westen Reserve University
    [118] Yanqing Zhao. Permanent deformation characterization of asphalt concrete using a viscoelastoplastic model. A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Department of Civil Engineering of Raleigh, North Carolina
    [119] Weixin Shen. B.S., M.E. Models and solutions for permanent deformation and thermal cracking of flexible pavements. A Dissertation submitted to the Graduate School of the University of Notre Dame in partial fulfillment of the requirements for the Degree of Doctor of Philosophy
    [120] Q. Zheng, Y. Song. Reversible nonlinear conduction behavior for high-density polyethylene graphite powder composites near the percolation threshold. Journal of Polymer Science: Part B: Polvmer Physics. 2001.39:2833-2842
    [121] 朱道本译.导电高分子材料[M].北京:北京科学出版社,1989:145-153.
    [122] 王后裕,朱可善,言志信.沥青混合料蠕变柔量的一种实用模型及其应用[J].固体力学学报,2002,23(2):232-236.
    [123] 李晓军,张肖宁.沥青混合料破损动态识别研究进展[J].长安大学学报,2003,23(6):11-14.
    [124] 李晓军,张肖宁.CT技术在沥青胶结颗粒材料内部结构分析中的应用.公路交通科技,2005,22(2):14-16.
    [125] 李晓军,张肖宁.沥青混合料单轴重复加卸载破损CT识别[J].哈尔滨工业大学学报,2005,37(9):1228-1230.
    [126] SHRP-A-656. Development of an asphalt core tomographer. Strategic Highway Research program, National Research Council, Washington,DC 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700