用户名: 密码: 验证码:
拟南芥抗病突变体cpr30的蛋白质组学研究及抗病机制初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物抗病机制一直是植物病理学研究的热点。近些年来,人们对植物应答病原菌胁迫的作用分子及其作用方式已有了较深入的认识,但抗病途径的一些节点仍不清楚。抗病突变体是研究植物抗病机制的有效工具,用蛋白质组学方法对这些突变体进行研究,可以较全面地揭示出受突变基因调控的蛋白及其介导的抗病相关途径。CPR30是植物抗病反应的一个负调控因子,拟南芥功能缺失突变体cpr30具有自发的超敏反应和系统获得性抗性现象,是典型的获得性抗性突变体。本文用蛋白质组学方法对cpr30突变体中的差异表达蛋白进行了研究并初步分析了CPR30对抗病途径的调控机制。
     本文用双向电泳对野生型和cpr30的总蛋白进行了分离,凝胶图谱分析结果显示cpr30的双向电泳图谱中有52个蛋白点的表达量发生了显著变化。将这些差异表达的蛋白点经酶解后用MALDI-TOF-MS进行质谱鉴定,数据分析结果表明有33个蛋白点得到鉴定。这些差异表达蛋白按生物学功能可分为以下5类:防御相关蛋白;氧化还原相关蛋白;能量代谢相关蛋白;信号转导相关蛋白;蛋白折叠及动态平衡相关蛋白。用荧光定量PCR对部分编码差异表达蛋白的基因进行了转录水平分析,结果表明其转录水平和翻译水平并不完全一致,这可能与蛋白表达的滞后性和翻译后修饰有关。对部分差异蛋白进行了Western blot验证,结果表明其蛋白表达量的变化与蛋白质组学的实验结果是一致的。
     本实验室前期研究发现pad4cpr30双突变体几乎完全抑制了cpr30的矮小表型,并且阻断了cpr30中一些抗病因子的表达。本文对pad4cpr30双突变体进行了蛋白质组学研究。双向凝胶图谱分析结果显示共有9个蛋白点的表达量发生了显著变化,质谱结果显示这9个蛋白点都得到了可信的鉴定结果。功能分析表明这些差异蛋白主要参与蛋白折叠、细胞氧化还原动态平衡、能量代谢和氨基酸代谢等四个途径。其中有6个蛋白在cpr30中的表达也发生了显著变化,因此这6个蛋白可能也参与CPR30调控的抗病途径。
     由于CPR30是一个F-box蛋白,可能通过与SKP1和Cde53形成泛素连接酶复合体来参与泛素-蛋白酶体降解途径。因此cpr30中表达发生上调的蛋白有可能是CPR30作用的底物。通过酵母双杂交实验对CPR30的互作蛋白进行了筛选,结果表明只有SGTla及其同源蛋白SGT1b能与CPR30相互作用。进一步通过构建sgt1a cpr30和sgtlb cpr30双突变体来研究SGTla和SGTlb在cpr30中的作用。表型观察和台盼蓝染色结果表明这两个双突变体部分恢复了cpr30的株高并抑制了其细胞坏死现象。抗病性鉴定结果表明双突变体的感病情况介于野生型和单突变体之间,即部分恢复了cpr30的感病表型。这说明SGTla和SGTlb参与了CPR30介导的抗病途径,并在该途径中起正调控作用。
Much attention has always been paid to the molecular mechanisms of plant defense response against pathogen infection. Over the years, many new components involved in plant immunity have been elucidated, yet some joint points of the entire pathway of plant defense are still unclear. The mutants that exhibit native disease resistance are powerful materials to dissect the plant defense mechanisms. Furthermore, proteomic study on these materials can help us obtain systematical cognitions for protein expression profiles of the defense response involved in these mutants. The F-box protein CPR30is a negative regulator of plant defense response, and its loss-of-function mutant cpr30, which show HR-like lesion formation and SAR-like constitutive defense responses, is a typical gain-of-resistance mutant. In the present study, we analyzed the proteome of cpr30and explored its defense mechanism preliminarily.
     The total proteins of cpr30and the control (wild type) were separated by2-D electrophoresis, and analysis of the2-DE patterns revealed that the expression level of52proteins had been changed significantly in cpr30. Among the52spots digested with trypsin and identified by MALDI-TOF mass spectrometry,33spots, a major of which were strongly up-regulated and had sufficient abundance, obtained high and credible scores. The identified proteins were classified into five groups based on their putative functions, including pathogen-defense, redox homeostasis, energy metabolism, signal transduction, and protein folding and homeostasis. We compared the mRNA abundance of some genes encoding affected-proteins via quantitative RT-PCR to see if there are any changes between mRNA level and protein level, and the results showed that the protein level was not coincided with the mRNA level, which might be due to the posttranslational modification. We further confirmed the expression pattern of some important proteins via Western blot. Consistent with our2-DE results, Western blot analysis also indicated that the expressions of these proteins were indeed greatly affected in cpr30. In addition, the Western blot results also demonstrated that the2-DE analysis yielded fairly accurate measurement of protein expression.
     We also studied the proteome of the double mutant pad4cpr30, which almost completely suppressed the phenotype of cpr30. Nine protein spots whose abundance had changed significantly were identified by2-DE coupled with MALDI-TOF-MS. Function analysis indicated that these proteins were involved in protein folding, redox homeostasis, energy metabolism and amino acid metabolism. Six spots of which increased significantly in pad4cpr30were also increased in cpr30, indicating the possibility that they may involved in the defense pathway regulated by CPR30.
     The F-box protein CPR30can interact with ASK proteins to form SCF complex, so it might degrade some yet unknown substrates through ubiquitination, and the substrates might be one or more proteins that induced in cpr30. The yeast two-hybrid assays were performed to screen the substrates interacted with CPR30. The results showed that only SGTla and its homolog SGTlb could interact with CPR30. The function of SGT1a and SGTlb involved in cpr30were explored through the generation of the double mutants sgtla cpr30and sgtlb cpr30. The appearance of these double mutants indicated that sgtla and sgtlb partially suppressed the dwarf morphology of cpr30, as well as cell death and disease resistance conformed by typan blue stain and pathogen infection. Above all, these results suggested that SGTla and SGTlb played positive roles in the defense response regulated by CPR30.
引文
范文艳,姜述君.(2005)植物抗病性及抗病信号转导的研究进展.中国农学通报21,249-252.
    王钧.植物抗病反应的分子机理.见:余叔文,汤章城主编.植物生理与分子生物学.北京:科学出版社1998,784-807.
    Aarts, N., Metz, M., Holub, E., Staskawicz, B.J., Daniels, M.J., and Parker, J.E. (1998). Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc. Natl. Acad. Sci. USA 95,10306-10311.
    Alvarez, M.E. (2000). Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol. Biol.44,429-442.
    An, C., and Mou, Z. (2011). Salicylic acid and its function in plant immunity. J Integr Plant Biol 55,412-428.
    Andrade, M.A., Gonzalez-Guzman, M., Serrano, R., and Rodriguez, P.L. (2001). A combination of the F-box motif and kelch repeats defines a large Arabidopsis family of F-box proteins. Plant Mol. Biol.46, 603-614.
    Assmann, S.M. (2005). G proteins go green:a plant G protein signaling FAQ sheet. Science 310,71-73.
    Austin, M.J., Muskett, P., Kahn, K., Feys, B.J., Jones, J.D., and Parker, J.E. (2002). Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295,2077-2080.
    Azevedo, C., Betsuyaku, S., Peart, J., Takahashi, A., Noel, L., Sadanandom, A., Casais, C., Parker, J., and Shirasu, K. (2006). Role of SGT1 in resistance protein accumulation in plant immunity. Embo. J.25, 2007-2016.
    Azevedo, C., Sadanandom, A., Kitagawa, K., Freialdenhoven, A., Shirasu, K., and Schulze-Lefert, P. (2002). The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295, 2073-2076.
    Baginsky, S., Kleffmann, T., von Zychlinski, A., and Gruissem, W. (2005). Analysis of shotgun proteomics and RNA profiling data from Arabidopsis thaliana chloroplasts. J. Proteome Res.4,637-640.
    Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W., and Elledge, S.J. (1996). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263-274.
    Balague, C., Lin, B., Alcon, C., Flottes, G., Malmstrom, S., Kohler, C., Neuhaus, G., Pelletier, G., Gaymard, F., and Roby, D. (2003). HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15,365-379.
    Bar-Even, A., Noor, E., Lewis, N.E., and Milo. R. (2010). Design and analysis of synthetic carbon fixation pathways. Proc. Natl. Acad. Sci. USA 107,8889-8894.
    Bartsch, M., Gobbato, E., Bednarek, P.. Debey, S., Schultze, J.L., Bautor, J., and Parker, J.E. (2006). Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7. Plant Cell 18, 1038-1051.
    Benz, J.P., Lintala, M., Soil, J., Mulo, P., and Bolter, B. (2010). A new concept for ferredoxin-NADP(H) oxidoreductase binding to plant thylakoids. Trends Plant Sci.15,608-613.
    Bernoux, M., Ve, T., Williams, S., Warren, C, Hatters, D., Valkov, E., Zhang, X., Ellis, J.G., Kobe, B., and Dodds, P.N. (2011). Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9,200-211.
    Besson-Bard, A., Pugin, A., and Wendehenne, D. (2008). New insights into nitric oxide signaling in plants. Annu. Rev. Plant Biol.59,21-39.
    Bhattarai, K.K., Li, Q., Liu, Y., Dinesh-Kumar, S.P., and Kaloshian, I. (2007). The MI-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiol.144,312-323.
    Bieri, S., Mauch, S., Shen, Q.H., Peart, J., Devoto, A., Casais, C., Ceron, F., Schulze, S., Steinbiss, H.H., Shirasu, K., et al. (2004). RAR1 positively controls steady state levels of barley ML A resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 16,3480-3495.
    Bors, W., Langebartels, C, Michel, C., and Sandermann Jr, H. (1989). Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28,1589-1595.
    Boter, M., Amigues, B., Peart, J., Breuer, C., Kadota, Y., Casais, C., Moore, G., Kleanthous, C., Ochsenbein, F., Shirasu, K., et al. (2007). Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19, 3791-3804.
    Bouck, D., and Bloom, K. (2005). The role of centromere-binding factor 3 (CBF3) in spindle stability, cytokinesis, and kinetochore attachment. Biochem. Cell Biol.83,696-702.
    Brisson, L.F., Tenhaken, R., and Lamb, C. (1994). Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6,1703-1712.
    Buhot, N., Gomes, E., Milat, M.L., Ponchet, M., Marion, D., Lequeu, J., Delrot, S., Coutos-Thevenot, P., and Blein, J.P. (2004). Modulation of the biological activity of a tobacco LTP1 by lipid complexation. Mol. Biol. Cell 15,5047-5052.
    Buschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., et al. (1997). The barley Mlo gene:a novel control element of plant pathogen resistance. Cell 88,695-705.
    Cannon, S.B., Zhu, H., Baumgarten, A.M., Spangler, R., May, G., Cook, D.R., and Young, N.D. (2002). Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J. Mol. Evol.54,548-562.
    Cao, Y, Yang, Y, Zhang, H., Li, D., Zheng, Z., and Song, F. (2008). Overexpression of a rice defense-related F-box protein gene OsDRF1 in tobacco improves disease resistance through potentiation of defense gene expression. Plant Physiol.134,440-452.
    Cazale, A.C., Clement, M., Chiarenza, S., Roncato, M.A., Pochon, N., Creff, A., Marin, E., Leonhardt, N., and Noel, L.D. (2009). Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana. J. Exp. Bot.60,2653-2664.
    Century, K.S., Shapiro, A.D., Repetti, P.P., Dahlbeck, D., Holub, E., and Staskawicz, B.J. (1997). NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278,1963-1965.
    Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H., Jr., Van Montagu, M., Inze, D., and Van Camp, W. (1998). Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc. Natl. Acad. Sci. USA 95,5818-5823.
    Chang, G.G., and Tong, L. (2003). Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry 42,12721-12733.
    Chen, F., Yuan, Y, Li, Q., and He, Z. (2007). Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics 7,1529-1539.
    Chen, H., McCaig, B.C., Melotto, M., He, S.Y., and Howe, G.A. (2004). Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine. J. Biol. Chem.279,45998-46007.
    Chen, X., Fu, S., Zhang, P., Gu, Z., Liu, J., Qian, Q., and Ma, B. (2013). Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice. Rice 6,1-10.
    Cheng, W.H., Endo, A., Zhou, L., Penney, J., Chen, H.C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., et al. (2002). A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14,2723-2743.
    Cheng, Y.T., Li, Y., Huang, S., Huang, Y., Dong, X., Zhang, Y., and Li, X. (2011). Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. Proc. Natl. Acad. Sci. USA 108,14694-14699.
    Clarke, A., Desikan, R., Hurst, R.D., Hancock, J.T., and Neill, S.J. (2000a). NO way back:nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J.24,661-611.
    Clarke, J.D., Volko, S.M., Ledford, H., Ausubel, F.M., and Dong, X. (2000b). Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12,2175-2190.
    Clifford, R., Lee, M.H., Nayak, S., Ohmachi, M., Giorgini, F., and Schedl, T. (2000). FOG-2, a novel F-box containing protein, associates with the GLD-1 RNA binding protein and directs male sex determination in the C. elegans hermaphrodite germline. Development 127,5265-5276.
    Coppinger, P., Repetti, P.P., Day, B., Dahlbeck, D., Mehlert, A., and Staskawicz, B.J. (2004). Overexpression of the plasma membrane-localized NDR1 protein results in enhanced bacterial disease resistance in Arabidopsis thaliana. Plant J.40,225-237.
    Dagdas, Y.F., Dagdas, G., Unver, T., and Akkaya, M.S. (2009). A new ZTL-type F-box functions as a positive regulator in disease resistance:VIGS analysis in barley against powdery mildew. Physiol. Mol. Plant P. 74,41-44.
    Dassi, B., Dumas-Gaudot, E., and Gianinazzi, S. (1998). Do pathogenesis-related (PR) proteins play a role in bioprotection of mycorrhizal tomato roots towards Phytophthora parasitical Physiol. Mol. Plant P.52, 167-183.
    Dat, J.F., Pellinen, R., Beeckman, T., Van De Cotte, B., Langebartels, C., Kangasjarvi, J., Inze, D., and Van Breusegem, F. (2003). Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J.33,621-632.
    del Pozo, J.C., and Estelle, M. (2000). F-box proteins and protein degradation:an emerging theme in cellular regulation. Plant Mol. Biol.44,123-128.
    Delledonne, M., Zeier, J., Marocco, A., and Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Nat1. Acad. Sci. USA 98,13454-13459.
    Desimone, M., Henke, A., and Wagner, E. (1996). Oxidative stress induces partial degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant Physiol. 111,789-796.
    Dieterle, M., Zhou, Y.C., Schafer, E., Funk, M., and Kretsch, T. (2001). EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev.15,939-944.
    Dixon, M.S., Hatzixanthis, K., Jones, D.A., Harrison, K., and Jones, J.D. (1998). The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10,1915-1925.
    Dong, X. (2004). NPR1, all things considered. Curr. Opin. Plant Biol.7,547-552.
    Edreva, A. (2005). Pathogenesis-related proteins:research progress in the last 15 years. Gen. Appl. Plant Physiol.31,105-124.
    Falk, A., Feys, B.J., Frost, L.N., Jones, J.D., Daniels, M.J., and Parker, J.E. (1999). EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc. Natl. Acad. Sci. USA 96,3292-3297.
    Feys, B.J., Moisan, L.J., Newman, M.A., and Parker, J.E. (2001). Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. Embo. J.20,5400-5411.
    Flor, H.H. (1971). Current status of the gene-for-gene concept. Annu. Rev. Plant Biol.9,275-296.
    Flores, H.E., and Galston, A.W. (1984). Osmotic stress-induced polyamine accumulation in cereal leaves. Plant Physiol.75,102-109.
    Garcia-Campana, A.M., Gamiz-Gracia, L., Baeyens, W.R., and Ales Barrero, F. (2003). Derivatization of biomolecules for chemiluminescent detection in capillary electrophoresis. J. Chromatogr. B.793,49-74.
    Ge, X., Li, GJ., Wang, S.B., Zhu, H., Zhu, T., Wang, X., and Xia, Y. (2007). AtNUDT7, a negative regulator of basal immunity in Arabidopsis, modulates two distinct defense response pathways and is involved in maintaining redox homeostasis. Plant Physiol.145,204-215.
    Geddes, J., Eudes, F., Laroche, A., and Selinger, L.B. (2008). Differential expression of proteins in response to the interaction between the pathogen Fusarium gramimarum and its host, Hordeum vulgare. Proteomics 8,545-554.
    Gomi, K., Sasaki, A., Itoh, H., Ueguchi-Tanaka, M., Ashikari, M., Kitano, H., and Matsuoka, M. (2004). GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J.37,626-634.
    Gou, M., Su, N., Zheng, J., Huai, J., Wu, G, Zhao, J., He, J., Tang, D., Yang, S., and Wang, G. (2009). An F-box gene, CPR30, functions as a negative regulator of the defense response in Arabidopsis. Plant J.60, 757-770.
    Grant, J.J., and Loake, GJ. (2000). Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol.124,21-29.
    Gray, W.M., Muskett, P.R., Chuang, H.W., and Parker, J.E. (2003). Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response. Plant Cell 15,1310-1319.
    Gruber, C.W., Cemazar, M., Mechler, A., Martin, L.L., and Craik, D.J. (2009). Biochemical and biophysical characterization of a novel plant protein disulfide isomerase. Biopolymers 92,35-43.
    Guo, H., and Ecker, J.R. (2003). Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115,667-677.
    Gupta, D., and Tuteja, N. (2011). Chaperones and foldases in endoplasmic reticulum stress signaling in plants. Plant Signal Behav.6,232-236.
    Gygi, S.P., Rochon, Y., Franza, B.R., and Aebersold, R. (1999). Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol.19,1720-1730.
    Harmon, F.G, and Kay, S.A. (2003). The F box protein AFR is a positive regulator of phytochrome A-mediated light signaling. Curr. Biol.13,2091-2096.
    He, Z., Wang, Z.Y., Li, J., Zhu, Q., Lamb, C., Ronald, P., and Chory, J. (2000). Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288,2360-2363.
    Heath, M.C. (2000). Hypersensitive response-related death. Plant Mol. Biol.44,321-334.
    Hwang, S.G, Lin, N.C., Hsiao, Y.Y., Kuo, C.H., Chang, P.F., Deng, W.L., Chiang, M.H., Shen, H.L., Chen, C.Y., and Cheng, W.H. (2012). The Arabidopsis short-chain dehydrogenase/reductase 3, an abscisic acid deficient 2 homolog, is involved in plant defense responses but not in ABA biosynthesis. Plant Physiol. Biochem.51,63-73.
    Igarashi, D., Miwa, T., Seki, M., Kobayashi, M., Kato, T., Tabata, S., Shinozaki, K., and Ohsumi, C. (2003). Identification of photorespiratory glutamate.glyoxylate aminotransferase (GGAT) gene in Arabidopsis. Plant J.33,975-987.
    Jackson, P.K., and Eldridge, A.G. (2002). The SCF ubiquitin ligase:an extended look. Mol. Cell 9,923-925.
    Jambunathan, N., and Mahalingam, R. (2006). Analysis of Arabidopsis growth factor gene I (GFG1) encoding a nudix hydrolase during oxidative signaling. Planta 224,1-11.
    Jambunathan, N., Penaganti, A., Tang, Y., and Mahalingam, R. (2010). Modulation of redox homeostasis under suboptimal conditions by Arabidopsis nudix hydrolase 7. BMC Plant Biol.10,173-188.
    Jelitto-Van Dooren, E.P., Vidal, S., and Denecke, J. (1999). Anticipating endoplasmic reticulum stress. A novel early response before pathogenesis-related gene induction. Plant Cell 11,1935-1944.
    Jin, J., Cardozo, T., Lovering, R.C., Elledge, S.J., Pagano, M., and Harper, J.W. (2004). Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev.18,2573-2580.
    Jirage, D., Tootle, T.L., Reuber, T.L., Frost, L.N., Feys, B.J., Parker, J.E., Ausubel, F.M., and Glazebrook, J. (1999). Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. USA 96,13583-13588.
    Johal, G.S., and Briggs, S.P. (1992). Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258,985-987.
    Jones, A.M., Thomas, V., Truman, B., Lilley, K., Mansfield, J., and Grant, M. (2004). Specific changes in the Arabidopsis proteome in response to bacterial challenge:differentiating basal and R-gene mediated resistance. Phytochemistry 65,1805-1816.
    Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444,323-329.
    Jung, Y.H., Rakwal, R., Agrawal, G.K., Shibato, J., Kim, J.A., Lee, M.O., Choi, P.K., Jung, S.H., Kim, S.H., Koh, H.J., et al. (2006). Differential expression of defense/stress-related marker proteins in leaves of a unique rice blast lesion mimic mutant (blm). J. Proteome Res.5,2586-2598.
    Kaiser, P., and Huang, L. (2005). Global approaches to understanding ubiquitination. Genome Biol.6, 233-240.
    Kawamura, Y., Takenaka, S., Hase, S., Kubota, M., Ichinose, Y., Kanayama, Y., Nakaho, K., Klessig, D.F., and Takahashi, H. (2009). Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Plant Cell Physiol.50, 924-934.
    Kay, S., Hahn, S., Marois, E., Hause, G., and Bonas, U. (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318,648-651.
    Khan, M.F., Bennett, M.J., Jumper, C.C., Percy, A.J., Silva, L.P., and Schriemer, D.C. (2011). Proteomics by mass spectrometry-go big or go home? J. Pharm. Biomed. Anal.55,832-841.
    Kim, H.S., and Delaney, T.P. (2002). Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell 14, 1469-1482.
    Kim, K.C., Fan, B., and Chen, Z. (2006). Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol.142,1180-1192.
    Kingston-Smith, A.H., and Foyer, C.H. (2000). Bundle sheath proteins are more sensitive to oxidative damage than those of the mesophyll in maize leaves exposed to paraquat or low temperatures. J. Exp. Bot.51,123-130.
    Kipreos, E.T., and Pagano, M. (2000). The F-box protein family. Genome Biol.1,30021-30027.
    Kong, M., Barnes, E.A., Ollendorff, V, and Donoghue, D.J. (2000). Cyclin F regulates the nuclear localization of cyclin B1 through a cyclin-cyclin interaction. Embo. J.19,1378-1388.
    Kuroda, H., Takahashi, N., Shimada, H., Seki, M., Shinozaki, K., and Matsui, M. (2002). Classification and expression analysis of Arabidopsis F-box-containing protein genes. Plant Cell Physiol.43,1073-1085.
    Lawrence, C.B., Singh, N.P., Qiu, J., Gardner, R.G., and Tuzun, S. (2000). Constitutive hydrolytic enzymes are associated with polygenic resistance of tomato to Alternaria solani and may function as an elicitor release mechanism. Physil. Mol. Plant P.57,211-220.
    Leister, R.T., Dahlbeck, D., Day, B., Li, Y., Chesnokova, O., and Staskawicz, B.J. (2005). Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2 protein activity in Nicotiana benthamiana. Plant Cell 17,1268-1278.
    Li, D., Wang, L., Teng, S., Zhang, G., Guo, L., Mao, Q., Wang, W., Li, M., and Chen, L. (2012). Proteomics analysis of rice proteins up-regulated in response to bacterial leaf streak disease. J. Plant Biol.55, 316-324.
    Li, R.J., Hua, W., and Lu, Y.T. (2006). Arabidopsis cytosolic glutamine synthetase AtGLN1;1 is a potential substrate of AtCRK3 involved in leaf senescence. Biochem. Biophys. Res. Commun.342,119-126.
    Li, Y., Li, S., Bi, D., Cheng, Y.T., Li, X., and Zhang, Y. (2010). SRFR1 negatively regulates plant NB-LRR resistance protein accumulation to prevent autoimmunity. PLOS Pathog.6,1001111.
    Lieberherr, D., Wagner, U., Dubuis, P.H., Metraux, J.P., and Mauch, F. (2003). The rapid induction of glutathione S-transferases AtGSTF2 and AtGSTF6 by avirulent Pseudomonas syringae is the result of combined salicylic acid and ethylene signaling. Plant Cell Physiol.44,750-757.
    Liechti, R., and Farmer, E.E. (2002). The jasmonate pathway. Science 296,1649-1650.
    Liu, Y., Burch-Smith, T, Schiff, M., Feng, S., and Dinesh-Kumar, S.P. (2004). Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rarl to modulate an innate immune response in plants. J. Biol. Chem.279,2101-2108.
    Liu, Y., Schiff, M., Serino, G., Deng, X.W., and Dinesh-Kumar, S.P. (2002). Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to Tobacco mosaic virus. Plant Cell 14,1483-1496.
    Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25,402-408.
    Locke, J.M., Bryce, J.H., and Morris, P.C. (2000). Contrasting effects of ethylene perception and biosynthesis inhibitors on germination and seedling growth of barley (Hordeum vulgare L.). J. Exp. Bot.51, 1843-1849.
    Luan, S., Kudla, J., Rodriguez-Concepcion, M., Yalovsky, S., and Gruissem, W. (2002). Calmodulins and calcineurin B-like proteins:calcium sensors for specific signal response coupling in plants. Plant Cell 14, S389-400.
    Lunn, J.E., Ashton, A.R., Hatch, M.D., and Heldt, H.W. (2000). Purification, molecular cloning, and sequence analysis of sucrose-6F-phosphate phosphohydrolase from plants. Proc. Natl. Acad. Sci. USA 97,12914-12919.
    Ma, W., Wei, L., Wang, Q., Shi, D., and Chen, H. (2007). Increased activity of the non-regulated enzymes fructose-1,6-bisphosphate aldolase and triosephosphate isomerase in Anabaena sp. strain PCC 7120 increases photosynthetic yield. J. Appl. Phycol.19,207-213.
    Martin, G.B., Bogdanove, A.J., and Sessa, G. (2003). Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol.54,23-61.
    Mas, P., Kim, W.Y., Somers, D.E., and Kay, S.A. (2003). Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426,567-570.
    Mauch, F., and Dudler, R. (1993). Differential induction of distinct glutathione-S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol.102,1193-1201.
    Mehta, A., Brasileiro, A.C., Souza, D.S., Romano, E., Campos, M.A., Grossi-de-Sa, M.F., Silva, M.S., Franco, O.L., Fragoso, R.R., Bevitori. R., el al. (2008). Plant-pathogen interactions:what is proteomics telling us? Febs. J.275,3731-3746.
    Meyers, B.C., Kozik, A., Griego, A., Kuang, H., and Michelmore, R.W. (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15,809-834.
    Miflin, B.J., and Habash, D.Z. (2002). The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J. Exp. Bot. 53,979-987.
    Mitrovic, S.M., Pflugmacher, S., James, K.J., and Furey, A. (2004). Anatoxin-a elicits an increase in peroxidase and glutathione S-transferase activity in aquatic plants. Aquat. Toxicol.68,185-192.
    Moeder, W., Del Pozo, O., Navarre, D.A., Martin, G.B., and Klessig, D.F. (2007). Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana. Plant Mol. Biol.63,273-287.
    Moon, J., Parry, G, and Estelle, M. (2004). The ubiquitin-proteasome pathway and plant development. Plant Cell 16,3181-3195.
    Moons, A. (2005). Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam. Horm.72,155-202.
    Mou, Z., Fan, W., and Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113,935-944.
    Mukherjee, A.K., Carp, M.J., Zuchman, R., Ziv, T., Horwitz, B.A., and Gepstein, S. (2010). Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. J. Proteomics 73,709-720.
    Mukhtar, M.S., Nishimura, M.T., and Dangl, J. (2009). NPR1 in plant defense:it's not over'til it's turned over. Cell 137,804-806.
    Mulo, P. (2011). Chloroplast-targeted ferredoxin-NADP(+) oxidoreductase (FNR):structure, function and location. Biochim. Biophys. Acta 8,927-934.
    Nagano, A.J., Fukao, Y., Fujiwara, M., Nishimura, M., and Hara-Nishimura, I. (2008). Antagonistic jacalin-related lectins regulate the size of ER body-type beta-glucosidase complexes in Arabidopsis thaliana. Plant Cell Physiol.49,969-980.
    Nakazato, Y., Tamogami, S., Kawai, H., Hasegawa, M., and Kodama, O. (2000). Methionine-induced phytoalexin production in rice leaves. Biosci. Biotechnol. Biochem.64,577-583.
    Nekrasov, V., Li, J., Batoux, M., Roux, M., Chu, Z.H., Lacombe, S., Rougon, A., Bittel, P., Kiss-Papp, M., Chinchilla, D., et al. (2009). Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. Embo. J.28,3428-3438.
    Ni, W., Xie, D., Hobbie, L., Feng, B., Zhao, D., Akkara, J., and Ma, H. (2004). Regulation of flower development in Arabidopsis by SCF complexes. Plant Physiol.134,1574-1585.
    Nilsson, T., Mann, M., Aebersold, R., Yates, J.R.,3rd, Bairoch, A., and Bergeron, J.J. (2010). Mass spectrometry in high-throughput proteomics:ready for the big time. Nat. Methods 7,681-685.
    Nishimune, A., Nash, S.R., Nakanishi, S., and Henley, J.M. (1996). Detection of protein-protein interactions in the nervous system using the two-hybrid system. Trends Neurosci.19,261-266.
    Noel, L.D., Cagna, G., Stuttmann, J., Wirthmuller, L., Betsuyaku, S., Witte, C.P., Bhat, R., Pochon, N., Colby, T, and Parker, J.E. (2007). Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19,4061-4076.
    Noir, S., Brautigam, A., Colby, T., Schmidt, J., and Panstruga, R. (2005). A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem. Biophys. Res. Commun.337,1257-1266.
    Ohshima, M., Itoh, H., Matsuoka, M., Murakami, T., and Ohashi, Y. (1990). Analysis of stress-induced or salicylic acid-induced expression of the pathogenesis-related la protein gene in transgenic tobacco. Plant Cell 2,95-106.
    Ong, S.E., and Pandey, A. (2001). An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomol. Eng.18,195-205.
    Pan, Q., Wendel, J., and Fluhr, R. (2000). Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol.50,203-213.
    Peart, J.R., Lu, R., Sadanandom, A., Malcuit, I., Moffett, P., Brice, D.C., Schauser, L., Jaggard, D.A., Xiao, S., Coleman, M.J., et al. (2002). Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc. Natl. Acad. Sci. USA 99,10865-10869.
    Pedley, K.F., and Martin, G.B. (2003). Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annu. Rev. Phytopathol.41,215-243.
    Pickart, C.M. (2001). Mechanisms underlying ubiquitination. Annu. Rev. Biochem.70,503-533.
    Pieterse, C.M., and Van Loon, L.C. (2004). NPR1:the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol.7,456-464.
    Raasi, S., and Wolf, D.H. (2007). Ubiquitin receptors and ERAD:a network of pathways to the proteasome. Semin. Cell Dev. Biol.18,780-791.
    Ravanel, S., Block, M.A., Rippert, P., Jabrin, S., Curien, G., Rebeille,F., and Douce, R. (2004). Methionine metabolism in plants:chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J. Biol. Chem.279,22548-22557.
    Reichheld, J.P., Vernoux, T., Lardon, F., Van Montagu, M., and Inze, D. (1999). Specific checkpoints regulate plant cell cycle progression in response to oxidative stress. Plant J.17,647-656.
    Ridgen, J., and Coutts, R. (1988). Pathogenesis-related proteins in plants. Trends Genet.4,87-89.
    Romijn, E.P., Krijgsveld, J., and Heck, A.J. (2003). Recent liquid chromatographic-(tandem) mass spectrometric applications in proteomics. J. Chromatogr. A1000,589-608.
    Roux, F., Gao, L., and Bergelson, J. (2010). Impact of initial pathogen density on resistance and tolerance in a polymorphic disease resistance gene system in Arabidopsis thaliana. Genetics 185,283-291.
    Saijo, Y., Tintor, N., Lu, X., Rauf, P., Pajerowska-Mukhtar, K., Haweker, H., Dong, X., Robatzek, S., and Schulze-Lefert, P. (2009). Receptor quality control in the endoplasmic reticulum for plant innate immunity. Embo. J.28,3439-3449.
    Seppanen, M.M., Cardi, T., Borg Hyokki, M., and Pehu, E. (2000). Characterization and expression of cold-induced glutathione S-transferase in freezing tolerant Solarium commersonii, sensitive S. tuberosum and their interspecific somatic hybrids. Plant Sci.153,125-133.
    Shapiro, A.D., and Zhang, C. (2001). The role of NDR1 in avirulence gene-directed signaling and control of programmed cell death in Arabidopsis. Plant Physiol.127,1089-1101.
    Shen, J., Zhang, J., Luo, X., Zhu, W., Yu, K., Chen, K., Li, Y, and Jiang, H. (2007). Predicting protein-protein interactions based only on sequences information. Proc. Natl. Acad. Sci. USA 104, 4337-4341.
    Sherameti, I., Venus, Y., Drzewiecki, C., Tripathi, S., Dan, V.M., Nitz, I., Varma, A., Grundler, F.M., and Oelmuller, R. (2008). PYK10, a beta-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant J.54,428-439.
    Shilatifard, A. (1998). Factors regulating the transcriptional elongation activity of RNA polymerase Ⅱ. FASEB J.12,1437-1446.
    Shirasu, K., Lahaye, T., Tan, M.W., Zhou, F., Azevedo, C., and Schulze-Lefert, P. (1999). A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99,355-366.
    Slaymaker, D.H., Navarre, D.A., Clark, D., del Pozo, O., Martin, G.B., and Klessig, D.F. (2002). The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc. Natl. Acad. Sci. USA 99,11640-11645.
    Smalle, J., and Vierstra, R.D. (2004). The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol.55,555-590.
    Smolka, M.B., Martins-de-Souza, D., Winck, F.V., Santoro, C.E., Castellari, R.R., Ferrari, F., Brum, I.J., Galembeck, E., Della Coletta Filho, H., Machado, M.A., et al. (2003). Proteome analysis of the plant pathogen Xylella fastidiosa reveals major cellular and extracellular proteins and a peculiar codon bias distribution. Proteomics 3,224-237.
    Soares, M.R., Facincani, A.P., Ferreira, R.M., Moreira, L.M., de Oliveira, J.C., Ferro, J.A., Ferro, M.I., Meneghini, R., and Gozzo, F.C. (2010). Proteome of the phytopathogen Xanthomonas citri subsp. citri:a global expression profile. Proteome Sci.8,55-65.
    Song, F., and Goodman, R.M. (2001). Activity of nitric oxide is dependent on, but is partially required for function of, salicylic acid in the signaling pathway in tobacco systemic acquired resistance. Mol. Plant Microbe Interact.14,1458-1462.
    Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.X., Zhu, L.H., et al. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270,1804-1806.
    Stirnberg, P., van De Sande, K., and Leyser, H.M. (2002). MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129,1131-1141.
    Sung, D.Y., and Guy, C.L. (2003). Physiological and molecular assessment of altered expression of Hsc70-l in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol.132,979-987.
    Tadolini, B., Cabrini, L., Landi, L., Varani, E., and Pasquali, P. (1984). Polyamine binding to phospholipid vesicles and inhibition of lipid peroxidation. Biochem. Biophys. Res. Commun.122,550-555.
    Takahashi, A., Casais, C., Ichimura, K., and Shirasu, K. (2003). HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. USA 100, 11777-11782.
    Takahashi, Y., Uehara, Y, Berberich, T., Ito, A., Saitoh, H., Miyazaki, A., Terauchi, R., and Kusano, T. (2004). A subset of hypersensitive response marker genes, including HSR203J, is the downstream target of a spermine signal transduction pathway in tobacco. Plant J.40,586-595.
    Tan, X., Calderon-Villalobos, L.I., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M., and Zheng, N. (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446,640-645.
    Taylor, N.L., Heazlewood, J.L., Day, D.A., and Millar, A.H. (2005). Differential impact of environmental stresses on the pea mitochondrial proteome. Mol. Cell. Proteomics 4,1122-1133.
    Thomma, B.P., Eggermont, K., Penninckx, I.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P., and Broekaert, W.F. (1998). Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci.USA 95,15107-15111.
    Thongboonkerd, V, Klein, E., and Klein, J.B. (2004). Sample preparation for 2-D proteomic analysis. Proteomics in Nephrology 141,11-24.
    Torres, M.A., Jones, J.D., and Dangl, J.L. (2005). Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat. Genet.37,1130-1134.
    Tronconi, M.A., Maurino, V.G, Andreo, C.S., and Drincovich, M.F. (2010). Three different and tissue-specific NAD-malic enzymes generated by alternative subunit association in Arabidopsis thaliana. J. Biol. Chem.285,11870-11879.
    Tsunezuka, H., Fujiwara, M., Kawasaki, T., and Shimamoto, K. (2005). Proteome analysis of programmed cell death and defense signaling using the rice lesion mimic mutant cdr2. Mol. Plant Microbe Interact. 18,52-59.
    Uetz, P., and Hughes, R.E. (2000). Systematic and large-scale two-hybrid screens. Curr. Opin. Microbiol.3, 303-308.
    Ushijima, K., Sassa, H., Dandekar, A.M., Gradziel, T.M., Tao, R., and Hirano, H. (2003). Structural and transcriptional analysis of the self-incompatibility locus of almond:identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15,771-781.
    van den Burg, H.A., Tsitsigiannis, D.I., Rowland, O., Lo, J., Rallapalli, G, Maclean, D., Takken, F.L., and Jones, J.D. (2008). The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant Cell 20,697-719.
    van Loon, L.C., Rep, M., and Pieterse, C.M. (2006). Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol.44,135-162.
    Vernoud, V., Horton, A.C., Yang, Z., and Nielsen, E. (2003). Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol.131,1191-1208.
    Vitale, A., and Boston, R.S. (2008). Endoplasmic reticulum quality control and the unfolded protein response: insights from plants. Traffic 9,1581-1588.
    Vollenweider, S., Weber, H., Stolz, S., Chetelat, A., and Farmer, E.E. (2000). Fatty acid ketodienes and fatty acid ketotrienes:Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. Plant J.24,461-416.
    Wagner, U., Edwards, R., Dixon, D.P., and Mauch, F. (2002). Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol. Biol.49,515-532.
    Wang, D., Weaver, N.D., Kesarwani, M., and Dong, X. (2005). Induction of protein secretory pathway is required for systemic acquired resistance. Science 308,1036-1040.
    Wang, G.L., Ruan, D.L., Song, W.Y., Sideris, S., Chen, L., Pi, L.Y., Zhang, S., Zhang, Z., Fauquet, C, Gaut, B.S., et al. (1998). Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10,765-779.
    Wasinger, V.C., Cordwell, S.J., Cerpa-Poljak, A., Yan, J.X., Gooley, A.A., Wilkins, M.R., Duncan, M.W., Harris, R., Williams, K.L., and Humphery-Smith, I. (1995). Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis 16,1090-1094.
    Watt, S.A., Wilke, A., Patschkowski, T., and Niehaus, K. (2005). Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100. Proteomics 5,153-167.
    Welchman, R.L., Gordon, C., and Mayer, R.J. (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol.6,599-609.
    Woo, H.R., Chung, K.M., Park, J.H., Oh, S.A., Ahn, T., Hong, S.H., Jang, S.K., and Nam, H.G.(2001). ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13,1779-1790.
    Xiao, S., Dai, L., Liu, F., Wang, Z., Peng, W, and Xie, D. (2004). COS1:an Arabidopsis coronatine insensitivel suppressor essential for regulation of jasmonate-mediated plant defense and senescence. Plant Cell 16,1132-1142.
    Xu, F., Fan, C., and He, Y. (2007). Chitinases in Oryza sativa ssp. japonica and Arabidopsis thaliana. S. Genet. Genomics 34,138-150.
    Xu, G., Ma, H., Nei, M., and Kong, H. (2009). Evolution of F-box genes in plants:different modes of sequence divergence and their relationships with functional diversification. Proc. Natl. Acad. Sci. USA 106,835-840.
    Xu, Y., Chang, P., Liu, D., Narasimhan, M.L., Raghothama, K.G, Hasegawa, P.M., and Bressan, R.A. (1994). Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6, 1077-1085.
    Yan, S., Tang, Z., Su, W., and Sun, W. (2005). Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5,235-244.
    Ye, C., Dickman, M.B., Whitham, S.A., Payton, M., and Verchot, J. (2011). The unfolded protein response is triggered by a plant viral movement protein. Plant Physiol.156,741-755.
    Yu, H., Wu, J., Xu, N., and Peng, M. (2007a). Roles of F-box proteins in plant hormone responses. Acta Biochim. Biophys. Sin.39,915-922.
    Yu, S., Zhang, X., Guan, Q., Takano, T., and Liu, S. (2007b). Expression of a carbonic anhydrase gene is induced by environmental stresses in rice (Oryza sativa L.). Biotechnol. Lett.29,89-94.
    Zhang, M., Kadota, Y., Prodromou, C., Shirasu, K., and Pearl, L.H. (2010). Structural basis for assembly of Hsp90-Sgt1-CHORD protein complexes:implications for chaperoning of NLR innate immunity receptors. Mol. Cell 39,269-281.
    Zhang, X., Shi, L., Shu, S., Wang, Y., Zhao, K., Xu, N., Liu, S., and Roepstorff, P. (2007). An improved method of sample preparation on AnchorChip targets for MALDI-MS and MS/MS and its application in the liver proteome project. Proteomics 7,2340-2349
    Zheng, B., Halperin, T., Hruskova-Heidingsfeldova, O., Adam, Z., and Clarke, A.K. (2002). Characterization of chloroplast Clp proteins in Arabidopsis:localization, tissue specificity and stress responses. Plant Physiol.114,92-101.
    Zhou, W., Eudes, F., and Laroche, A. (2006). Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics 6,4599-4609.
    Zhou, X., and Su, Z. (2007). EasyGO:Gene Ontology-based annotation and functional enrichment analysis tool for agronomical species. BMC Genomics 8,246.
    Zimmermann, P., Hirsch-Hoffinann, M., Hennig, L., and Gruissem, W. (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol.136,2621-2632.
    Zipfel, C., and Felix, G (2005). Plants and animals:a different taste for microbes? Curr. Opin. Plant Biol.8, 353-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700