用户名: 密码: 验证码:
我国百合属植物资源评价及抗病基因同源序列(RGA)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
百合是世界重要的观赏花卉,具有重要的经济价值。我国具有丰富的野生百合资源,但是目前破坏比较严重,濒危种不断增多,此外,开发利用程度也很低。关于百合资源的调查与评价大多集中于区域性,缺乏全面系统的了解,而资源的调查、评价和利用是种质创新的基础;抗病育种一直是百合育种的热点,百合灰霉病在百合生产中危害严重而广泛,但是目前有关百合抗灰霉病资源评价与筛选、抗病品种选育、抗病基因定位与克隆等方面十分薄弱。基于以上问题,本研究在资源系统调查与收集的基础上,从表型性状和AHP评价、亲缘关系和分子系统学、灰霉病抗性评价三个层面对百合野生资源进行了系统评价;进行了百合抗病基因同源序列的克隆与表达分析,为百合抗灰霉病基因的克隆奠定基础。通过上述研究,得到如下主要结果:
     1.本研究对我国百合属植物分布集中的东北地区、中部地区以及西南地区进行了系统的调查,收集资源34个种/变种,86份资源。调查发现我国百合属植物资源水平分布广泛,西南地区分布最为集中;在垂直分布上,从200-4000m都有分布,尤其是L. lancifolium、L. brownii和L. sargentiae的垂直分布范围较大;具有分布生境多样、群体内变异丰富、鳞茎增值方式和地下茎特点多样等特征;百合属植物更新进程较慢,易受环境的影响。对原生境土壤特性分析发现,不同种类野生百合原生境土壤的全氮、有机质含量、有效磷、速效钾、全盐及pH值都存在一定的差异;同种不同种源地原生境土壤特性也存在差异,其中L. davidii可作为培育耐盐碱百合的优良亲本;L.regale、L. lancifolium、L. henryi、L. rosthornii、L. leucanthum、L. sargentiae的适应性都较强,可作为抗逆育种亲本和应用于园林绿化。
     2.对表型性状分析发现,野生百合资源表现出显著的形态多样性。主成分分析表明,花器官因子是百合资源形态特征分化和在分类上的相对重要的指标。此外,基于观赏特性、开发潜力和生态适应性三个方面16个指标,对收集的27个种,3个变种进行了AHP评价筛选出L. dauricum、L. henryi、L. rosthornii、L. tsingtauense、L. concolor var. pulchellum、L. lancifolium及喇叭组百合等一批开发利用潜力较大的资源,可为我国野生百合资源的开发、利用和保护提供借鉴和参考。
     3.通过对我们收集的分布于中国所有的组的代表种25个种和5个变种,以及从目前已登录在NCBI的170份材料,共计98个种,5个变种的214份材料构建了目前百合属最大的ITS进化树。对目前百合属分类系统系统存在的关于subsect.5c Comber的划分sect.Leucolirion的修正以及L. rosthornii的系统位置进行了研究。通过分析,认为subsect.5c Comber应该划分为subsect.5c和sect. Lophophorum:而后者又被分为三个亚组subsect. Lophophorum Ⅰ,、,subsect. Lophophorum Ⅱ,及subsect. Lophophorum Ⅲ;通过ITS进化树和FISH分析,证明L. henryi和L. rosthornii亲缘关系较近,应该被划入subsect. Leucolirion6a;研究结果支持Comber基于鳞茎颜色对sect. Leucolirion的分组。中国分布的百合分为5个组:sect. Archelirion, sect. Leucolirion, sect. Sinomartagon,和sect. Lophophorum;建议将L. ducharteri和L.lankongense划分为sect. Sinomartagon的一个新的亚组。
     4.通过扫描电镜观察,发现百合属植物花粉大多为单粒花粉,首次在L.bakerianum花粉中发现了四合花粉;首次在L. formosanum花粉中发现一种新的外壁状纹饰,命名为Formosanum-type。通过ITS进化树与花粉外壁纹饰对应,表明百合花粉外壁纹饰对某些种或亚组有一定的分类学意义。基于花粉进化理论,补充和完善了百合属花粉外壁纹饰演化趋势:Martagon→Callose→Concolor→Formosanum。方差分析和相关性分析表明,年降水量与花粉性状有着显著的相关性;发现花粉大小与环境的选择压有关,小的花粉粒适应极端环境的能力更强。
     5.对SSR分子标记的遗传学参数分析,发现百合SSR位点多态性较高;聚类分析表明我国野生百合资源具有丰富的遗传多样性;主坐标分析表明野生百合聚类有明显的地域特征,从等位基因层面证实L. henryi和L. rosthornii与subsect. Leucolirion6a亲缘关系较近,L. brownii应该划入subsect. Leucolirion6b;同时也表明SSR标记可以有效的应用于百合种质资源的遗传多样性和亲缘关系分析。
     6.通过离体接种,筛选出8个高抗资源:L. leucanthum、L. regale、 L. sargentiae、 L. henryi、 L. rosthornii、 L. taliense、 L. dauricum及L. tsingtauense,可为百合抗灰霉病育种提供亲本材料,以及用于挖掘相关抗病基因。建立了百合RGA-PCR反应体系;通过抗性表型与抗病基因同源序列的多态性分析,发现百合扩增谱带较为丰富,而且抗性相似的趋于聚在一起。首次基于转录组数据,分离和克隆了百合NBS-LRR抗病基因同源序列;挑取1000个克隆进行序列分析,从系统发育树可看出百合RGA分为5个家族,氨基酸序列比对发现百合RGA均属于non-TIR-NBS类型,是逐步进化趋异,而不是快速进化过程;通过不同家族的百合NBS型RGAs在不同灰霉菌侵染时间的样品的表达分析可看出,都不同程度的参与了抗病反应;Southern杂交分析表明,百合RGA都以多拷贝形式存在。
Lilium spp., as an important ornamental flowers in the world, has an important economic value. There are abundant wild resources in China. However, the resources were destroyed severely, and the endangered species was growing. In addition, the utilization of Lilium resources was not optimistic. Investigation, evaluation and utilization of germplasm resources is the basis of innovation, yet the investigation and evaluation of the Lilium mostly concentrated on some region, lacking of a comprehensive and systematic understanding of Lilium resources. Resistance breeding has always been a hot spot for lily breeding. The harm of gray mold is severe and extensive in cutting flower production of lily, however, the evaluation and screening of Lilium resources resistance to Botrytis elliptica, breeding for gray mold resistance, as well as the mapping and cloning of resistance gene is very weak. Therefore, evaluation and excavation of excellent resistance resources is very important! Due to the above problems, on the basis of investigation and collection of Lilium resources, this research evaluated resources at three levels:the phenotypic traits and the AHP, the genetic relationships and molecular systematics and the resistance to gray mold. Moreover, cloning and expression analysis of resistance gene homologous from Lilium was carried out, laying a foundation for cloning gray mold resistant genes. Through these studies, the main results obtained are as follows:
     1. A systematic investigation was carried out in the Northeast, Central and Southwest regions of concentrated distribution of Lilium, a total of34species (varieties) representing86samples of Lilium were found. The survey found that the level of Lilium resources are widely distributed, especially the southwest China. Besides, Lilium resources occupy a wide variety of habitats consists of forests, mountain, shrub and meadows. L. brownii, L. lancifolium and L. sargentiae have very wide ranges on the vertical distribution. Rich variation within populations was found. Features of Bulbs added and characteristics of underground stemsbulbs were various. Although reproductive capacity of Lilium is strong, the update process is slow, and therefore it is vulnerable to the environment. An analysis of soil characteristics of the original habitat found that different kinds of wild lily in situ soil nitrogen, organic matter content, phosphorus, potassium, full of salt and pH value were different, and soil characteristics of the same species from different provenances were also different. L. davidii can be used as an excellent parent for salt resistance breeding. Soils in situ of L. regale, L.lancifolium, L. henryi, L. rosthornii, L. sargentiae and L. leucanthum was relatively infertile, suggesting that they have good adaptability.
     2. An analysis of phenotypic trait found that wild lily resources showed significant morphological diversity. Principal component analysis showed that floral organ factors were the relative importance of indicators in morphological differentiation and the classification of resources. An analytical hierarchy process (AHP) utilizing16indicator characteristics was used to evaluate the collected Lilium resources based on their ornamental value, utilization potential, and ecological adaptability. L. dauricum, L. henryi, L. rosthornii, L. tsingtauense, L. concolor var. pulchellum, L. lancifolium, and species with trumpet-shaped flowers were selected which showed better potential for exploitation than other species. This study also provides references regarding the effective exploitation and use of wild Lilium resources.
     3. The largest currently ITS phylogenetic tree of Lilium for214samples representing98species and five varieties, including44species and five varieties native to China was constructed. The results suggest that the subsection (subsect.)5c Comber should be classified into the true subsect.5c and the section (sect.) Lophophorum. And the latter was divided into three subsections (subsect. Lophophorum Ⅰ, subsect. Lophophorum Ⅱ, and subsect. Lophophorum Ⅲ). Based on molecular phylogenetic analysis and fluorescence in situ hybridization, L. henryi and L. rosthornii are closely related, and we propose their classification into subsect. Leucolirion6a. The results support Comber's subdivision of sect. Leucolirion, which was primarily based on bulb color. Chinese species were divided into five sections: sect. Martagon, sect. Archelirion, sect. Leucolirion, sect. Sinomartagon, and sect. Lophophorum. These findings contribute to our understanding of the phylogeny, origin, and classification of Lilium.
     4. Though the scanning electron microscopy (SEM), pollen tetrads was first found in L. bakerianum. Based on present and previous studies, our results suggest that pollen from L. formosanum should be classified as a new type, Formosanum. Combined with morphological and molecular evidence, pollen sculpture patterns appear to reflect phylogenetic relationships and are useful for species or subsection delimitation. Based on a comprehensive survey and correlation with potential functional implications, the following hypothesis was proposed:evolution of an exine sculpture shows pollen type trends from Martagon→Callose→Concolor→Formosanum. The evolutionary trend regarding pollen sculpture and size could be related to selective pressure to adapt to environmental conditions. Pollen size and shape showed a significantly positive correlation with annual precipitation, and smaller pollen grains appear to adapt better in habitats with extreme conditions.
     5. Based on the analysis of genetic parameters of SSR markers, the results show that the SSR loci were polymorphism. Cluster analysis indicate that the resources of wild lily has a rich genetic diversity, Principal coordinate analysis showed a significant clustering of wild lily with geographical features; L. henryi and L. rosthornii are closely related, and they showed close relationship with subsect. Leucolirion6a, moreover, L. brownii should be classisfied into subsect. Leucolirion6b. Besides, SSR markers in genetic analysis and phylogenetic analysis can be effectively used for lily evaluating, genetic diversity analysis as well as germplasm identification.
     6. Eight high resistance resources (L. regale, L. leucanthum, L. sargentiae L. dauricum, L. henryi. L. rosthornii, L. tsingtauense, L. taliense) were selected based on in vitro inoculation by mycelium block. These resources could provide for materials for resistance breeding and excavation of disease resistance genes. RGA-PCR amplification reaction system of lily was established. Resistance evaluation and cluster analysis by RGA fingerprinting showed similar resistance tending to gather together.
     7. Based on transcriptome sequencing, the NBS-LRR resistance gene analogs from Lilium was firstly isolated and cloned. Phylogenetic studies revealed close relationships of some Lilium RGAs to R genes and classified these sequences into five main subclasses. Pairwise comparisions indicated that the deduced amino acid sequences of RGAs contain the conserved domains such as P-loop, Kinase-2, Kinase-3a and GLPL, and the RGAs all belonged to nonTIR-NBS type resistance gene segments. Southern blot analyses showed that the RGAs were organized as multicopy loci in the Lilium genome. Quantitative real-time PCR analysis revealed dramatic variations in the transcript level of RGAs with the increase in the level of resistance of the hosts against gray mold, indicating its close relationship with the resistance against this pathogen. These RGAs are of great value for positional cloning of disease resistance genes. Our results provide a primary RGA pool for the further functional validation of resistance genes in Lilium.
引文
1.鲍隆友,周杰,刘玉军.西藏野生百合属植物资源极其开发利用[J].中国林副特产,2004,(2):54-55.
    2.陈辉.百合种质离体保存技术研究[D].华中农业大学硕士论文,2005.
    3.陈辉,陈晓玲,卢新雄,等.百合种质资源限制生长法保存研究[J].园艺学报,2006,33(4):789-793
    4.陈俊愉主编.中国花经[M].中国林业出版社,1990.
    5.陈小兰,胡琼华,王红霞.金百合的离体快速繁殖[J].植物生理学通讯,2000,36(4):334
    6.邓明文.岷江百合种质资源遗传多样性研究[D].南京林业大学硕士学位论文,2008
    7.丁兰,刘国安,田卫东,等.新铁炮百合组织培养和快速繁殖研究[J].西北师范大学学报,2001,37(1):80-82.
    8.董燕,韩见宇,孙超.百合属七种植物的引种栽培-生长发育规律研究[J].种子,2007(12):90-92.
    9.杜运鹏,李双,何恒斌,杨爽,贾桂霞.百合鳞片总RNA提取方法的比较[J].分子植物育种,2010,8(4):832-836.
    10.傅立国,陈潭清,郎楷永,等.中国高等植物[M].青岛出版社,2002,118-133.
    11.傅立国主编.中国植物红皮书[M].科学出版社,1992.
    12.傅玉兰,何风群.影响百合试管鳞茎增殖因素的研究[J].安徽农业大学学报,2001,28(2):179-181.
    13.葛亮.基于转录组信息的百合SSR标记开发及种质分子鉴定[D].中国农业科学研究院硕士学位论文.2012.
    14.郭海滨,雷家军.卷丹百合鳞片及珠芽组织培养研究[J].中国农学通报,2006(2):72-74.
    15.韩斯琴,徐梅,白震,等.D2-4放线菌抗真菌活性成分研究[J].微生物学杂志,2004,24(1):8-10.
    16.何显静,李标,虞弘.紫斑百合群体生物学研究[J].云南大学学报(自然科学版),2003,25(增刊):78-83.
    17.胡凤荣,刘光欣,席梦利,吴祝华,施季森.宜昌百合根尖染色体c-带分析[J].植物研究,2009,29(1):12-14.
    18.胡人伦.植物激素对药用植物山丹离体子叶愈伤组织诱导、器官分化及植株再生的影响[J].河北大学学报(自然科学版),1994,14(4):83,85.
    19.黄济明.百合的组织培养和试管内诱发多倍体实验[J].园艺学报,1983,10(2):125-128.
    20.贾月慧,张克中,王威毅,赵祥云,张启翔.几种中国野生百合的过氧化物酶同工酶[J].东北林业大学学报,2005,33(2):16-17.
    21.姜雨,刘佳,孙超,等.有斑百合的组织培养及无性系建立的研究[J].辽宁农业科学,2008(4):13-15.
    22.雷家军,荣立苹,毕晓颖,等.辽宁省野生百合资源的调查与分类研究[J].沈阳农业大学学报,2008,39(2):161-164.
    23.李标.紫斑百合遗传多样性与进化研究[D].云南大学硕士论文,2001.
    24.李标,胡琼华,何显静.紫红花滇百合的组织培养[J].植物生理学通讯,2002,38(1):40.
    25.李黛,谈锋,祝顺琴.淡黄花百合的组织培养[J].种子,2005(9):27-29.
    26.李光照.广西百合科植物分类及地理分布研究[J].广西植物,1999(1):29-42.
    27.李景原,李大卫,毛使民.山丹的组织培养和再生鳞茎的形态解剖学研究[J].河南师范大学学报(自然科学版),1995,23(1):102-104.
    28.李俊清.植物遗传多样性及保护研究进展[J].植物研究,1998,18(2):227-242.
    29.李淑斌,罗思宝,王元忠.野生淡黄花百合的引种栽培研究[J].中国野生植物资源,2007,26(4):66-67.
    30.李林.中国芍药(Paeonia lactiflora)种质资源遗传多样性及品种起源研究[D].北京林业大学博士学位论文,2011.
    31.李文媛.部分百合资源收集、保存和评价研究[D].北京林业大学硕士论文,2009.
    32.李秀娟,李虹,黄仁征,等.广西百合科野生花卉资源的研究与应用[J].湖南农业大学学报(自然科学版)2008,34(4):442-449.
    33.李云侠,王建华,刘思秀.兰州百合快速繁殖的研究[J].国土与自然环境研究,1993(3):68-69.
    34.刘冬云.野生山丹种质资源遗传多样性及利用研究[D].北京林业大学博士学位论文,2011.
    35.刘光欣,胡凤荣,席梦利,等.泸定百合根尖染色体C2带分析[J].南京林业大学学报:自然科学版,2007,31(6):91-93.
    36.刘光欣,胡凤荣,席梦利,等.岷江百合根尖染色体的C2分带和F ISH分析[J].分子植物育种,2008,6(1):95-99.
    37.刘光欣,胡凤荣,席梦利,等.三个卷瓣组百合的根尖染色体C2带比较[J].分子植物育种,2007,5(6):887-889.
    38.刘树芳,李艳琼,曾莉,等.放线菌次生代谢产物对百合灰霉病菌的抑菌活性筛选[J].西南农业学报,2006,19(4):627-630.
    39.刘选明,周朴华,屈妹存,等.百合鳞片叶离体诱导形成不定芽和体细胞胚[J].园艺学报,1997,24(4):353-358.
    40.刘燕琴,胡开治,肖波,等.南川百合组织培养研究[J].中国现代中药,2006(9):32-33.
    41.刘幼琪,杨毅,周有院.湖北百合离体繁殖中的形态发生[J].湖北大学学报,1985,17(2):214-219.
    42.龙雅宜,张金政.百合属植物资源的保护与利用[J].植物资源与环境,1998(1):40-44.
    43.梁松筠,张无休.百合属中的四合花粉兼论玫红百合的分类问题[J].植物分类学报,1984,22(4):297-300.
    44.梁松筠.百合科(狭义)植物的分布区对中国植物区系研究的意义[J].植物分类学报,1995,3(1):27-51.
    45.卢其能.龙牙百合的组织培养和快速繁殖研究[J].江西农业学报,2002,14(4):43-461.
    46.吕玉虎,李彬青,吴淑平,等.百合的离体组织培养和快速繁殖[J].信阳农业高等专科学校学报,2002,12(2):31-32.
    47.罗凤霞,徐桂华,金丽丽,等.新铁炮百合微繁的研究[J].沈阳农业大学学报,2000,31(3):254-257.
    48.罗丽萍,杨柏云,蔡奇英,等.龙牙百合的组织培养[J].植物生理学通讯,2001,37(6):527.
    49.罗仕凤.川黔地区百合属植物资源表型多样性及孢粉学研究[D].四川农业大学硕士论文,2011.
    50.马纯艳.有斑百合叶片的组织培养[J].沈阳师范学院学报:自然科学版,2002(3):219-221.
    51.马惠,郭扶兴,周俊彦,等.百合叶片愈伤组织的诱导和植株再生[J].植物生理学通讯,1992,28(4):284-287.
    52.马吉龙,李艳君.凤凰百合-百合属-新种[J].武汉植物学研究,2000,18(2):115-116.
    53.毛钧,张明宇,虞乱.沪定百合普洱居群遗传与变异研究[J].云南大学学报(自然科学版),2003,25(增刊):91-96.
    54.孟杨,潘佑找,贾姗姗,等.湖北百合的组织培养技术研究[J].安徽农业科学,2006,34(17):4247-4248.
    55.穆鼎等.观赏百合-生理、栽培、种球生产与育种[M].中国农业出版社,2005.
    56.潘锦旭,邢震,郑维列.西藏卓巴百合组织培养技术研究[J].中国生态农业学报,2002(2):26-28.
    57.彭隆金.云南百合-新种[J].云南植物研究,1984(2):235-236.
    58.彭隆金.云南百合-新种[J].云南植物研究,1985(7):317-318.
    59.齐春敏,王奎玲,刘庆超,等.青岛百合组织培养研究[J].中国农学通报,2008,24(4):85-88.
    60.邱宁宏,罗林会,王勤,等.淡黄花百合的组织培养与快速繁殖[J].中国野生植物资源,2004(2):64-65.
    61.屈云慧,张婷,张艺萍,等.文山百合的离体培养及其试管仔球快速繁殖[J].植物生理学通讯,2007,43(5):901.
    62.屈云霞,吴丽芳,杨春梅.百合幼胚离体培养成株体系的建立[J].云南农业科技,2002(3):9-13.
    63.任鄄胜,肖培村,陈勇,黄湘,王玉平,李仕贵.水稻品种稻瘟病抗性和抗病基因同源序列多态性分析[J].中国农业科学,2009,42(1):1-9.
    64.荣立苹.东北地区野生百合种质资源及遗传多样性研究[D].沈阳农业大学博士学位论文,2010.
    65.孙启时,石猛.东北百合花粉形态的研究[J].沈阳药学院学报,1989,1(6):29-31.
    66.孙石,赵晋铭,邢邯,武晓玲,郭娜,王源超,唐卿华,盖钧镒.大豆品种RGA分析与疫霉根腐病抗性鉴定[J].作物学报,2008,34(10):1704-1711.
    67.孙晓梅,罗凤霞,王亚斌,等.百合幼胚离体培养基的筛选[J].沈阳农业大学学报,2002,33(1):22-26.
    68.孙晓梅.利用RAPD标记评价百合品种(种)间的遗传多样性[J].中国观赏园艺科技进展2005.中国林业出版社,2005.
    69.唐祥宁,肖爱萍,游春平,等.百合灰霉病病菌生物学特性研究[J].江西农业大学学报,1998(4):485-489.
    70.王冬梅,李登武,胡春萍.秦岭地区百合科药用植物资源多样性及其评价[J].西北师范大学学报(自然科学版),2007,43(4):79-84.
    71.王丽.崂山百合属植物资源调查研究[D].西北农林科技大学硕士论文,2010.
    72.王刚,杜捷,李桂英,等.兰州百合和野百合组织培养及快速繁殖研究[J].西北师范大学学报(自然科学版),2002,38(1):69-71.
    73.王爱勤,周岐伟,何龙飞,等.百合试管结鳞茎的研究[J].广西农业大学学报,1998,17(1):71-75.
    74.汪发瓒,唐进.中国植物志[M].科学出版社,1980.
    75.王红霞.通江百合及崛江百合的形态和染色体变异式样研究[D].云南大学硕士学位论文,2000.
    76.王红霞,胡琼华,陈小兰.通江百合的组织培养[J].植物生理学通讯,2000,36(2):132.
    77.王红霞,王文锋.紫斑百合的组织快繁研究[J].安徽农业科技,2008,36(17):7133-7137.
    78.王家福,陈振光.百合快速繁殖条件的优化[J].福建农业大学学报,1999,28(2):152-156.
    79.王洁琼.中国野生百合资源调查与遗传多样性研究[D].北京林业大学硕士学位论文.2006.
    80.王俐,李枝林,赵燕.百合的组织培养及快繁技术[J].云南农业大学学报,2001,16(4):304-307.
    81.王瑞波.中国特有植物南川百合(Lilium rosthornii Diels)保护生物学研究[D].西南大学博士学位论文.
    82.王元忠,沙本才.南川百合的组织培养和快速繁殖(简报)[J].亚热带植物科技,2008,37(3),69-70.
    83.吴若菁,阮少宁.百合胚状体形成途径及植株的再生研究[J].福建林学院学报,2003,23(4):322-325.
    84.吴旭红.毛百合的组织培养和快速繁殖[J].生物学杂志,2003,20(6):47.
    85.吴祝华,施季森,席梦利,刘光欣.百合种质资源花粉形态及亲缘关系研究[J].浙江林学院学报,2007,24(4):406-412.
    86.吴祝华.百合属部分种亲缘关系与岷江百合群体遗传结构的研究[D].南京林业大学博士学位论文.2008.
    87.席梦利,王节萍,章静娟,等.宜兴百合脱毒技术[J].江苏农业学报,2001,17(1):49-51.
    88.谢中隐,刘鹏.安徽省百合科野生观赏种质资源的分布与利用[J].安徽农业科学,1994,22(3):261-264.
    89.辛培尧,岷江百合组织培养和快速繁殖(简报)[J].亚热带植物科学,2007,36(4):57.
    90.徐洪星,秦华,眭顺照,等.大理百合的离体快繁研究[J].西南师范大学学报(自然科学版),2008(1):58-61.
    91.薛晓娜,张延龙,牛立新.秦岭野生宜昌百合的组织培养研究[J].西北农林科技大学学报,2007,35(6):108-112.
    92.阎爱民,陈文新,首蓓,草木择,锦鸡儿根瘤菌的表型多样性分析[J].生物多样性.1999,7(2):1-8.
    93.杨利平,丁冰,刘香环,张教方.东北百合属植物的细胞遗传多样性[J].东北林业大学学报,1996,24(5):19-33.
    94.杨秀梅,王继华,王丽花,张艺萍,张丽芳,瞿素萍.百合品种抗病基因同源序列分析及抗枯萎病的鉴定[J].园艺学报,2012,39(12):2404-2412.
    95.杨毅,刘幼琪,傅运生.湖北百合离体繁殖技术[J].湖北大学学报,1993,15(4):449-453.
    96.叶世森,林芳,宋建英.百合病害的研究综述[J].西南林学院学报,2005,25(3):84-88.
    97.于晓英,吴铁明,倪沛,等.百合幼胚的离体培养和植株再生[J].湖南农业大学学报,2000,26(4):286-288.
    98.袁芳亭,陈龙清.麝香百合的叶片离体培养及植株再生[J].湖北农业科学,2001(3):50-51.
    99.袁秀云,张仙云,马杰.河南百合科野生花卉植物资源及观赏评价[J].安徽农业科学,2009,37(7):2935-2936.
    100.岳玲,雷家军,王欣.辽宁的4种野生百合(Lilium spp.)的核型研究[J].辽宁农业科学,2006(4):5-8.
    101.张彩铃.卷丹组织培养的研究[J].科技创新导报,2008(23):147.
    102.张彩霞,明军,刘春,赵海涛,王春城,单红臣,任君芳,周旭,穆鼎.岷江百合天然群体的表型多样性[J].园艺学报,2008,35(8):1183-1188.
    103.张德强,张志毅,杨凯.AFLP技术在林木遗传改良中的应用[J].北京林业大学学报,2000,22(6):75-78.
    104.张君,武丽敏,王雷,等.麝香百合组培快繁技术初步研究[J].吉林农业大学学报,2002,24(1):53-55.
    105.张丽娜,雷家军,韩凌,胡新颖.百合属(Lilium)几种植物花粉形态的观察[J].西北农业学报,2006,15(6):174-178.
    106.张克中.百合种质扩繁、亲缘关系及雄性不育诱导[D].北京林业大学博士论文,2003.
    107.张克中,贾月慧,赵祥云,张启翔.部分中国野生百合亲缘关系的RAPD分析[J].东北林业大学学报,2006,34(6):43-45.
    108.张克中,贾月慧,张启翔,王洁琼.部分中国野生百合亲缘关系的AFLP分析[J].东北林业大学学报,2008,36(2):19-22.
    109.张绍斌.云南淡黄花百合遗传多样性与进化研究[D].云南大学硕士学位论文,2002.
    110.张文娥,潘学军,胥青青,等.贵州野生淡黄花百合离体快繁研究[J].安徽农业科技,2008,36(17):5770-5772,5827.
    111.张敩方,于海滨,张显国,等.毛百合繁殖生物学研究(Ⅲ)—毛百合种子萌发特性[J].东北林业大学学报,1994,22(2):46-51.
    112.张敩方,李国臣,于海滨,等.毛百合地理变异规律的研究[J].东北林业大学学报,1995,23(6):33-39.
    113.张敩方,马宪红,丁冰,等.毛百合的胚培养[J].东北林业大学学报,1997,25(1):26-28.
    114.张兴翠,周昌华,殷家明等,药用百合的多倍体诱导及快速繁殖[J].西南农业大学学报,2003,25(1):14-17.
    115.张彦妮,钱灿.12种百合属植物花粉形态扫描电镜观察[J].草业学报,2011,20(5):111-118.
    116.张艺萍,屈云慧,吴学尉,等.大理百合组织培养和快速繁殖[J].北方园艺,2007(8):189-190.
    117.张延龙.秦巴山区及毗邻地区野生百合种质资源调查收集与评价研究[D].北京林业大学博士论文,2009.
    118.张延龙,张启翔,谢松林.秦巴山及其毗邻地区8种野生百合孢粉学研究[J].西北农业学报,2010,19(1):144-146.
    119.赵庆芳,马世云,曾小英,李小峡,等.百合栽培品种资源的RAPD分析[J].兰州大学学报(自然科学版).2005,41(2):30-33.
    120.赵秀芳.青岛百合组培快繁技术研究[J].安徽农业科学,2005,33(2):254-341.
    121.赵祥云,王树栋,陈新露,等.百合[M].中国农业出版社,2000.
    122.赵样云,陈新露.中国野生种质资源及其研究利用[M].海峡两岸花卉发展交流研讨会论文精选.中国农业出版社,1994,355-861.
    123.赵祥云,陈新露,王树栋等.秦巴山区野生百合研究初报[J].西北农业大学学报,1990,18(4):80-84.
    124.赵生顺,张敬馨.牡丹江林区百合科野生药用植物及开发利用[J].林业勘查设计,2006(2):87-88.
    125.赵桦,杨培君.陕西汉中地区百合科植物资源研究[J].陕西理工学院学报,2006,22(2):46-52.
    126.褚云霞,陈龙清,黄燕文,等.百合的花药培养研究[J].园艺学报,2001,28(5):472-474.
    127.智丽.百合属(Lium)植物亲缘关系及通江百合(L. sargentiae)遗传多样性研究[D].西南大学博士学位论文.2011.
    128.周厚高,等.几个百合品种遗传亲缘关系的等位酶分析[J].西南农业学报,1999,12(4):92-95.
    129.周明国,叶钟音,刘经芬.杀菌剂抗性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    130.周树军, Jaap vanTuyl,臧德奎,夏宜平,李方45S rDNA在4种百合属植物染色体上的物理定位[J].园艺学报,2008,35(6):859-862.
    131.周繇.长白山百合属植物野生资源及其开发利用[J].中国野生资源,2002,21(3):22-23.
    132.朱丽梅,胡凤荣,罗凤霞.不同百合品种对百合灰霉病的抗病性鉴定[J].植物保护,2010,36(3):148-151.
    133.朱茂山,关天舒.百合主要病害及其防治关键技术[J].辽宁农业科学,2007,6:41-43.
    134.朱正普,戴启金.河南省大别山区百合科野生花卉资源[J].中国野生植物资源,2006,25(1):29-31.
    135.左志锐.百合耐盐机理及其遗传多样性研究[D].中国农业大学博士学位论文,2005.
    136.左志锐,穆鼎,高俊平,刘春.百合遗传多样性及亲缘关系的RAPD分析[J].园艺学报,2005,32(3):468-472.
    137. Asano Y. A numerical taxonomic study of the genus Lilium in Japan [J]. J Fac Agr Hokkaido Univ 1986,62:333-341.
    138. Avetissian EM. Simplified method of pollen preparation by acetolysis [J]. Zhum. Russk. Bot. Obshch. Akad. Nauk,1950,35 (385):6-7.
    139. Barba-Gonzalez R, Ramanna MS, Visser RGF and Van Tuyl JM. Intergenomic recom bination in Fl lily hybrids(Lilium) and its significance for genetic variation in the B C1 progenies as revealed by GISH and FISH [J]. Genome,2005,48:884-894.
    140. Baranova MV. A synopsis of the system of the genus Lilium (Liliaceae) (in Russian) [J]. BotZhur,1988,73 (9):1319-1329.
    141. Bent AF, Kunkel BN, Dahlbeek D, et al. RPS2 of Arabidopsis thaliana:aleueine-rich repeat elass of plant disease resistance genes [J]. Seienee,1994,265:1865-1870.
    142. Bonnier FJM, Van Tuyl JM. Long term in vitro storage of lily:effects of temperature and Concentration of nutrients and sucrose [J]. Plant Cell, Tissue and Organ Culture, 1997,49:81-87.
    143. Broehmann C, Soltis PS. Recurrent formation and polyphly of Nordic polyploids in D raba (Brassieaceae) [J]. Amer. J. Bot.1992,79(6):673-688
    144. Buxbaum F. Die Entwieklungslinien der lilioideae [J]. Bot Arehiv Band,1937,38:21 3-398
    145. Catherine F, Gabriele S, Beat K. Molecular cloning of a new receptor-like kinase gen e encoded at the L r10 disease resistance locus of wheat [J]. The Plant Journal,1997, 11 (1):45-52.
    146. Chen CY, Huang HE. Salicylic acid-induced resistance of lily leaves against Botrytis elliptica [J]. Plant Pathol. Bull.1997,6:76-82.
    147. Chen XM, a R F. Line a H. Leung. Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis [J]. Theor Appl Genet.1998, 97:345-355.
    148. Chen ZF, Zhang L, Shang FD, Use analytic hierarchy process to appraise someOsmanthus fragranscultivars in Hubei Province [J]. Acta Hortic Sin,2004,31(6):825-828.
    149. Chiou AL, Wu WS. Isolation, identification and evaluation of bacterial antagonists against Botrytis elliptica on lily [J]. J. Phytopathol.2001,149:319-324.
    150. Chiou AL, Wu WS. Formulation of Bacillus amyloliquefaciens B190 for control of lily grey mould(Botrytis elliptica) [J]. J. Phytopathol.2003,151:13-18.
    151. Comber HF. A new classification of the genus Lilium [J]. Lily Year Book RHS,1949, 13:86-105.
    152. De Jong PC. Some notes on the evolution of lilies [J]. Lily Year Book of the North American Lily Society,1974,27:23-28
    153. Diwan N, Mclntosh MS, Bauehan GR. Methods of developing a core colleetion of annual Medicago speceies [J]. Theoretical and Applied Genetics,1995,90:755-761.
    154. Doss RP, Chastagner GA and Riley KI. Techniques for inoculum production and inoculation of lily leaves with Botrytis elliptica [J]. Plant Dis,1984,68:854-856.
    155. Doss RP, Christian JK and Chastagner GA. Infection of Easter lily leaves from conidia of Botrytis elliptica [J]. Can J Bot,1988,66:1204-1208.
    156. Du YP, He HB, Wang ZX, Wei C, Li S, Jia GX. Investigation and evaluation of the genus Lilium resources native to China[J]. Genetic Resources and Crop Evolution,2014, 61:395-412.
    157. Du YP, Wang ZX, Liu XL, Yuan XN, He HB, Jia GX. Molecular phylogeny and Genetic Variations of the Genus Lilium Native to China based on nrDNA ITS Sequences[J]. Journal of Plant Research,2014,127:249-263.
    158. Du YP, Wang ZX, Wei C, Li S, He HB,Jia GX. Lilium spp. pollen in China (Liliaceae): Taxonomic and phylogenetic implications and pollen evolution related to environmental conditions[J]. PLoS One,2014, DOI:10.1371/journal.pone.0087841
    159. Dubouzet JG, Shinoda K. ITS DNA sequence relationships between Lilium concolor Salisb., L. dauricum Ker-Gawl. and their putative hybrid, L. maculatun Thunb [J]. Theor Appl Genet, 1999a,98(2):213-218.
    160. Dubouzet JG, Shinoda K. Phylogenetic analysis of the internal transcribed spacer region of Japanese Lilium species [J]. Theor Appl Genet,1999b,98:954-960.
    161. Fen PB, Hu YH, Zhang QX, Ren YH (2005) Comprehensive appraisal on landscape value for flowering and evergreen perennial [J]. J Beijing for Univ 25 (6):84-87
    162. Gadaleta A, Giancaspro A, Giove SL, Zacheo S, Mangini G, Simeone R, Signorile A, Blanco A. Genetic and physical mapping of new EST-derived SSRs on the A and B genome chromosomes of wheat [J]. Theoretical and Applied Genetics,2009,118 (5):1015-1025.
    163. Gao YD, et al. Karyotypes of four genera in Liliaceae (s.str.) from Hengduan Mountains of southwest China [J]. Acta Bot Yunnan,2009,31:399-405.
    164. Gao YD, Zhou SD, He XJ. Karyotype studies in thirty-two species of Lilium (Liliaceae) from China [J]. Nordic Journal of Botany,2011,29:746-761.
    165. Gao YD, Hohenegger Markus, Harris AJ, Zhou SD, He XJ, Wan J. A new species in the genus Nomocharis Franchet (Liliaceae):evidence that brings the genus Nomocharis into Lilium [J]. Plant Syst Evol,2012a,298:69-85.
    166. Gao YD, Zhou SD, He XJ, Wan J. Chromosome diversity and evolution in tribe Lilieae (Liliaceae) with emphasis on Chinese species [J]. J Plant Res,2012b,125:55-69.
    167. Gerlach WL, and Bedbrook JR. Cloning and characterization of ribosomal RNA genes from wheat and barley [J]. Nucleic Acids Res,1979,7:1869-1885.
    168. Gregory BM, Sergio HB, Julapark C, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato [J]. Science,1993,262 (26):1432-1435.
    169. Hammond-Kosack KE, Jones JDG. Plant disease resistance genes [J]. Annu Rev Plant Physiol Plant Mol Biol,1997,48:575-607.
    170. Hattendorf A, Debener T. Molecular characterization of NBS-LRR-RGAs in the rose genome [J]. Physiologia Plantarum.2007,129:775-786.
    171. Haw SG. The lilies of China [M]. BT Batsford Ltd,1986.
    172. Heckenberger M, van der Voort JR., Melchinger AE, Peleman J, Bohn M. Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties:Ⅱ. Genetic and technical sources of variation in AFLP data and comparison with SSR data [J]. Molecular Breeding,2003,12(2):97-106.
    173. Hesse M, Halbritter H, Zetter R, Weber M., Buchner, R., Frosch-Radivo, A. and Ulrich, S. Pollen Terminology [M]. Springer-Verlag,2009.
    174. Hiroshi Kayano. Cytogenetic studies in Lilium callosum [J].Fukuoka,1956,2(2):136-139.
    175. Hsieh Ting Fang and Jenn Wen Huang. Effect of film-forming polymers on control of lily leaf blight caused by Botrytis elliptica [J]. European Journal of Plant Pathology.1999,105: 501-508.
    176. Huang CJ, Wang TK, Chung SC, Chen CY. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9[J]. J. Biochem. mol. Biol.2005,38:82-88.
    177. Irigoyen ML, Ferrer E, Loarce Y. Cloning and characterization of resistance gene analogs from A vena species [J]. Genome 2006,49:54-63.
    178. Isono K. Antibiotics as Non-pollutionAgricultural Pesticide [J]. Comments and Food Chemistry.1990,2 (2):133-124.
    179. Jacob JJ, Lindpaintner K, Lincoln SE, Kusumi K, Bunker RK, Mao YP, Ganten D, D zau VJ, Lander ES. Genetic mapping of a gene causing hypertension in the stroke-pr one spontaneously hypertensive rat [J]. Cell,1991,67 (1):213-224.
    180. Jian-Xiu Wang, Tao Xia, Jin-Mei Zhang, et al.2009. Isolation and characterization of fourteen microsatellites from a tree peony (Paeonia suffruticosa) [J]. Conserv. Genet., 10:1029-1031.
    181.Kanazin V. Marek LF, Shoemaker RC. Resistance gene analogs are conserved and clu stered in soybean [J]. Proc. Natl. Acad. Sci.1996,93:11746-11750.
    182. Lee CS, Kim SC, Yeau SH, Lee NS. Major Lineages of the Genus Lilium (Liliaceae) Based on nrDNA ITS Sequences, with Special Emphasis on the Korean Species [J]. J Plant Biol, 2011,54:159-171.
    183. Lee JS, Lee PO, Lim YP, Shin EM, Park SY. Classification of lilies using random amplified polymorphic DNA (RAPD) analysis [J]. Acta Hort,1996,414:137-144.
    184. Lee Sung-Ⅱ, Park Kyong-Cheul, Song Ye-Su, Son Jae-Han, Kwon Soon-Jae, Na Jong-Kuk, Kim Jong-Hwa, Kim Nam-Soo. Development of expressed sequence tag derived-simple sequence repeats in the genus Lilium [J]. Genes and Genomics,2011,33 (6):727-733.
    185. Lee WB, Choi S, Kim S, et al. An application of random amplified polymorphic DNA(RAPD) to systemitics of some species of Lilium in Korea [J]. Korean Journal of Plant Taxonomy, 1993,23 (2):35-42.
    186. Leigh Fiona, Lea Vince, Law John, Wolters Petra, Powell Wayne, Donini Paolo. Assessment of EST- and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat [J]. Euphytica,2003,133 (3):359-366.
    187. Leister D, Kurth J, Laurie DA, et al. Rapid reorganization of resistance gene homologues in cereal genomes [J]. Proc Natl Acad Sci,1998,95:370-375.
    188. Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak MA, Fay MF. Punctuated genome size evolution in Liliaceae[J]. Journal of Evolutionary Biology,2007,20 (6):2296-2308.
    189. Liang SY, Tamura M. In:Wu ZY, Raven PH (eds.) Flora of China [M]. Science Press/Missouri Botanical Garden Press,2000,24:118-152.
    190. Lighty RW. Evolutionary Trends in Lilies [M]. Lily Year Book.1968,40-44.
    191. Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene [J]. American journal of human genetics,1989,44 (3):397.
    192. Liu Yi-Hung, Chien-Jui Huang, and Chao-Ying Chen. Evidence of Induced Systemic Resistance Against Botrytis elliptica in Lily [J]. Phytopathology,2008,98:830-836.
    193. LIU YH, C.J. HUANG, C.Y. CHEN. Identification and transcriptional analysis of genes involved in Bacillus cerews-induced systemic resistance in Lilium [J]. BIOLOGIA PLANTARUM 2010,54 (4):697-702.
    194. Lu, Y.Y., Chen, C.Y.:Probenazole-induced resistance of lily leaves against Botrytis elliptica [J].Plant Pathol. Bull.1998,7:134-140.
    195. Lu YY, Chen CY. Molecular analysis of lily leaves in response to salicylic acid effective towards protection against Botrytis elliptica [J]. Plant Sci.2005,169:1-9.
    196. Lu YY, Liu YH, Chen CY.Stomatal closure, callose deposition and increase of LsGRP1-corresponding transcript in probenazole-induced resistance against Botrytis elliptica in lily [J]. Plant Sci.2007,172:913-919.
    197. Matsumoto T, A. Sakai, K. Yamada. Cryopreserveation of in vitro-growen apical meristems of lily by vitrification [J]. Plant Cell Tissue and Organ Culture,1995,41:237-241.
    198. McRae EA. Lily species. In:Lilies [M]. Timber Press,1998.
    199. Meyers BC, Dickerman AW, Michelmore RW, et al. Plant disease resistance genes encode members of an ancient and di2verse protein family with the nucleotide binding superfamily [J]. Plant J,1999,20:317-332.
    200. Micheli MR, Bova R, Pascale E, et al. Reproducible DNA fingerprinting with the Ra ndom amplified Polymorphic DNA (RAPD) method [J]. Nucletic Acids Res.,1994,22 (10):1921-1922.
    201.Muller J. Form and function in angiosperm pollen. Annals of the Missouri Botanical Garden [J],1979,66:593-632.
    202. Nishikawa T, Okazaki K, Uchino T, Arakawa K, Nagamine T. A molecular phylogeny of Lilium in the internal transcribed spacer region of nuclear ribosomal DNA [J]. J Mol Evol,1999,49:238-249.
    203. Nishikawa T, Okazaki K, Arakawa K, Nagamine T. Phylogenetic analysis of section Sinomartagon in genus Lilium using sequences of the internal transcribed spacer region in nuclear ribosomal DNA [J]. Breed Sci,2001,51:39-46.
    204. Oriane Hidalgo, Alfonso Susanna, Nuria Garcia-Jacas, Joan Martin. From acaveate to caveate:evolution of pollen types in the Rhaponticum group (Asteraceae, Centaureinae) related to extreme conditions. Botanical Journal of the Linnean Society [J].2008,158: 499-510.
    205. Peter VAN Baarlen, Martijn Staats, JAN AL VAN Kan. Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica [J]. MOLECULAR PLANT PATHOLOGY, 2004,5 (6):559-574.
    206. Philip A.G. Elmer and Jurgen Kohl. The survival and saprophytic competitive ability of the Botrytis spp. antagonist Ulocladium atrum in lily canopies [J]. European Journal of Plant Pathology 1998,104:435-447.
    207. Punt W, Hoen PP, Biackmore S, Nilsson S, Le Thomas A. Glossary of Pollen and Spore Terminology. Rev [J]. Palaeobot. Palynol.2007,143 (1-2):1-81.
    208. Hou Ping-fu, Chen Chao-ying. Early Stages of Infection of Lily Leaves by Botrtis elliptica and B. cinerea [J]. Plant Pathology Bulletin,2003,12:103-108.
    209. Quint M, Mihaljevic R, Dussle M, Xu L, Melchinger E, Lubberstedt T. Development of RGA-CAPS marhers and genetic mapping in maize [J]. Theor.Appl. Genet.,2002,105 (2-3): 355-363.
    210. Rajesh PN. Chickpea genomics:BAC library const ruction, resistance gene analog (RGA) mapping and tagging doublepodded trait [D]. University of Pune,2001.
    211.Rajora OP, H.R. Muhammad. Microsatellite DNA and RAPD fingerprinting identification and genetic relationships of hybrid poplar cultivars [J]. Theoreticle and Applied Genetics, 2003,106:470-477.
    212. Ramalingam J, vera Cruz CM, Kukreja K, Chittoor JM, Wu JL, Lee SW, Leach JE, Leung H. Candidate defense genes from rice, barley, and maize and their association with qualitative ad quantitative resistance in rice, Mol. Plant, Microbe interact [J].2003,16 (1):14-24.
    213. Reiji. Ogihara on the supernumertry chromosomes found in the natural populations of Lilium auratum Lindl and L. maximowiczii [M]. Regal La Kromosomo,1996.
    214. Resetnik I, Liber Z, Satovic Z, Cigic'P, Nikolic'T. Molecular phylogeny and systematics of the Lilium carniolicum group (Liliaceae) based on nuclear ITS sequences [J]. Plant Syst Evol, 2007,265:45-58.
    215. Rong L, Lei J, Wang C, Collection and evaluation of the genus Lilium resources in Northeast China [J]. Genet Resour Crop Evol,2010,58 (1):115-123.
    216. Saaty TL The analytic hierarchy process [M]. McGraw-Hill,1980.
    217. Sarangthem N,Talukdar NC,Thongam B Collection and evaluation ofHedychiumspecies of Manipur, Northeast India [J]. Genet Resour Crop Evol,2013,60:13-21.
    218. Shi ZX, Chen XM, Line RF, Leung H, and Wellings CR. Development of resistance gene analog polymorphism markers for the Yr9 gene resistence to Wheat stripe rust[J]. Genome,2001,44(4):509-516.
    219. Smyth DR, Kongsuwan K, Wisudharomn S. A survey of C-band patterns in chromoso mes of Lilium (Liliaceae) [J]. Plant Syst Evol,1989,163:53-69.
    220. Song WY, Wang GL, Chen LL, et al. A receptor kinase-Iike protein encoded by the rice disease resistance gene, Xa21[J]. Science,1995,270(15):1804-1806.
    221. Stamatakis A. RAxML-Ⅵ-HPC:maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models [J]. Bioinformatics,2006,22:2688-2690.
    222. Stephen BM, John B, J afar Y, et al. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes [J]. The Plant Cell,1998,10:1307-1319.
    223. Stephen A. Spongberg, A reunion of trees,The discovery of exotic plants and their introduction into Northern American and Euroean landscapes [M], Harvard University Press. 1990,198-217.
    224. Stebbins GL. Chromosomal evolution in higher plants [M]. Edward Arnold,1971,71-100.
    225. Stewart RN The morphology of somatic chromosomes in Lilium [J]. Am J Bot,1947,34: 9-26.
    226. Stoker F. The Environment of Lilies Nature [J]. London:Royal Horticultural Socity Lily Yearbook,1933,11-57.
    227. Sultana Sayeda, Lee SH, Bang JW, Choi HW. Physical Mapping of rRNA Gene Loci and Inter-specific Relationships in Wild Lilium Distributed in Korea [J]. J Plant Biol 2010,53: 433-443.
    228. Sultana Sayeda, Lim YP, Bang JW, Choi HW. Internal Transcribed Spacer (ITS) and Genetic Variations Lilium Native to Korea [J]. Hort Environ Biotechnol,2011,52 (5):502-510.
    229. Smyth DR, Kongsuwan K, Wisudharomn S. A survey of C-band patterns in Choromosoms of Lilium (Liliaceae) [J]. PI. Syst. Evo,1989,163:53-69.
    230. Tantasawat P, Trongchuen J, Prajongjai T, Jenweerawat S. SSR analysis of soybean (Glycine max (L.) Merr.) genetic relationship and variety identification in Thailand [J]. Australian Journal of Crop Science.2011,5 (3):280-287.
    231.Tomotaro Nishikawa, Keiichi Okazaki, Tae Uchino, et al. A Molecular phylogeny of 1 ilium in the internal transcribed spacer region of nuclear ribosomal DNA [J]. J Mol Evol,1999,49:238-249.
    232. Thorne, RF. Major disjunction in the geographic ranges of seed plants [J]. The Quart erly Review of Biology,1973,47 (4):365-411.
    233. Valentina Scariot, Aziz Akkak, Roberto Botta. Charactization and genetic relationship of wild species and old gardon roses based on microsatellite analysis [J]. J. Amer. So c. Hort. Sci,2006,131 (1):66-73
    234. Van de Kasteele FSCS. Conservation of wild Lilium species [J]. Biological Conservati on,1974,6 (1):26-31.
    235. Wagenitz G. Pollen morphologie und Systematik in der Gattung Centaurea L. s. l. Fl ora [J].1955,142:213-279.
    236. Whitham S, Dinesh-KumarSP,Choi D, etal.The Product of the tobacco mosaic virus re sistance gene N:similarity to toll and the interleukin-1 receptor [J]. Cell.1994,78 (6): 101-115.
    237. Withers LA. In-vitro conservation [J]. Biol.J.Linnean Soc.,1991,43:31-42.
    238. Xu Qiang, Wen Xiaopeng, Deng Xiuxin. Isolation of TIR and nonTIR NBS-LRR resi stance gene analogues and identification of molecular markers linked to a powdery mi ldew resistance locus in chestnut rose (Rosa roxburghii Tratt) [J]. Theor Appl Genet, 2005,111:819-830.
    239. Yamagishi M. Detection of section-specific random amplified polymorphic DNA (RAP D) markers in Lilium [J]. Theor Appl Genet,1995,91:830-835.
    240. Yan Z, C. Denneboom, A. Hattendorf, O. Dolstra, T. Debener, P. Stam, P.B. Visser. Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers [J]. Theor Appl Genet,2005,110:766-777.
    241. Yonnrmn LF, Jefers SN, Dean RA. Genetic Analysis of Isolates of Botrytis Cinerea Sensitive and Resistant to Benzimidzole and Dicarboximide Fungicides [J]. Phytopatho logy,2000,90 (8):851-859.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700