用户名: 密码: 验证码:
高粱靶斑病菌致病机理及抗病基因分子标记定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高粱是重要的食用、酿酒、饲用和工业用原料,病菌侵染会导致粮食品质变劣、产量降低。同时,病原菌会产生真菌毒素,危害人类和动物健康。由生离蠕孢属病菌侵染所致高粱靶斑病(Bipolaris sorghicola)是高粱重要的叶部病害之一,病菌的致病机理以及遗传机制和分子水平的研究,在国内尚未见报道。本文围绕高粱靶斑病菌致病机理及品种抗靶斑病基因定位研究目标,在高粱靶斑病菌生物特性、病原菌种群多样性,病原菌粗毒素对种子萌发、根系生长及其对高粱胚根细胞膜透性和防御酶活性的影响,病原菌侵染后的高粱叶片光合指标和光系统Ⅱ的变化,高粱抗靶斑病特性遗传规律及抗病基因标记与定位,等诸多方面进行了较系统研究,获得了较理想结果,部分结果填补了我国该研究空白,为高粱抗靶斑病育种及病害治理等提供了科学依据。论文主要结果总结如下:
     1.高粱靶斑病病原菌的生物学特性
     生物学特性研究结果表明:病菌菌丝生长的适宜温度为25~30℃,分生孢子萌发的适宜温度为20~30℃。分生孢子萌发的适宜pH为3~6,偏酸性。大多糖类均可作为该病的碳源营养,如半乳糖和乳糖,而山梨糖对菌丝生长不太适宜。不同光照处理对病菌菌丝生长的影响不明显。
     2.我国高粱靶斑病病原菌种类及种群多样性
     从采自我国不同地区的感染高粱靶斑病病叶中分离出病原菌,通过形态学观察和rDNA-ITS序列分析进行多样性研究。结果表明,虽然这些发病地区病叶上的病斑差异很大,但病原菌在菌落形态和孢子形态方面却极为相似;通过这些菌株的rDNA-ITS序列聚类分析表明,它们与Bipolaris sorghicola相似度达99%,从而证实虽然不同地区病斑差异较大,但都是同一病原菌引起的病害。
     3.高粱靶斑病菌粗毒素能降低细胞膜透性
     采用测定不同浓度病原菌粗毒素处理的高粱种子L407B和Tx622B的胚根生长抑制率以及电导率和丙二醛(MDA)含量的方法,探讨高粱靶斑病菌粗毒素对高粱不同品种胚根生长及胚根细胞膜透性的影响。结果表明,病菌粗毒素对高粱胚根生长有明显的抑制作用。在同一毒素浓度下,处理后2d,处理组胚根的相对电导率和MDA含量均高于对照组;同一处理时间内,不同浓度毒素处理后胚根相对电导率和MDA含量均高于对照组。说明高粱靶斑病菌毒素能降低高粱胚根细胞膜透性,且不同高粱品种间差异显著。
     4.高粱靶斑病菌粗毒素能抑制寄主保护酶活性
     利用紫外可见分光光度计和比色法测定了不同浓度病原菌粗毒素处理的高粱种子L407B和Tx622B胚根保护酶(过氧化物酶、超氧化物歧化酶、多酚氧化酶和苯丙氨酸解氨酶)活性。结果表明,毒素处理后,高粱种子胚根过氧化物酶、超氧化物歧化酶、多酚氧化酶和苯丙氨酸解氨酶活性明显降低,说明毒素对寄主保护酶起抑制作用。
     5.高粱靶斑病病原菌侵染会破坏高粱叶片PSII的结构和功能
     以高粱品种Tx622B为试验材料,通过同时测定高粱叶片叶绿素含量、叶绿素荧光快速诱导动力学曲线,以及过氧化氢(H2O2)含量和丙二醛(MDA)含量的变化,来研究高粱靶斑病菌[Bipolaris sorghicola (Lefebvre&Sherwin) Alcorn]侵染高粱叶片后对光系统II(PSII)结构和功能的影响。研究结果表明,受病原菌侵染的高粱叶片,H2O2和MDA含量均升高,膜脂过氧化的程度加剧;快速叶绿素荧光诱导动力学曲线发生明显变化,进一步的JIP测试分析表明病原菌侵染严重伤害了PSII供体侧、阻断了受体侧QA到QB的电子传递,从而使反应中心的活性降低。
     6.抗高粱靶斑病基因为隐性单基因
     以高粱靶斑病抗病自交系L407B和感病自交系Tx622B的杂交后代构建的重组自交系群体为材料,利用数量遗传分析方法研究了L407B的抗病遗传规律。对高粱靶斑病田间性状调查结果进行分析,经卡方分析检验符合孟德尔单基因控制的遗传分离规律。F1代田间表现与亲本Tx622B完全相同,在F2中,抗病植株占F2代总植株的四分之一,初步证实自交系L407B的抗病性是受一对隐性基因控制的质量性状。
     7.抗病基因在染色体上的位置
     从覆盖高粱染色体组的132对以“Xtxp-”开头的SSR引物和230对以“sm-”开头的SSR引物中筛选出在抗感两亲本之间有差异且在抗性亲本和F2代抗池间无差异的引物。通过染色体步移方法,将高粱抗靶斑病基因定位于标记Xtmp303和sm05014之间,即该抗病基因位于第5条染色体短臂上5.73M—8.15M内。
Sorghum is important as food, wine, feed and industrial raw materials. Sorghum infectedby pathogens can lead to poor food quality and lower production.At the same time, pathogenscan produce mycotoxin to harm humans and animals. Target leaf spot which casued byBipolaris sorghicola is one of important foliar disease in sorghum varieties. At present, thereis no report on pathopoiesis mechanism as well as inheritance mechanism and moleculargenetics of this disease in China. This paper focuses on the pathogenesis and location ofresistance gene against target leaf spot in sorghum. There was a relatively systematic study inthe biological characteristics and population diversity of pathogen, the effect of pathogencrude toxins on seed germination and root growth as well as cell membrane permeability anddefense enzyme activity in sorghum radicle, the changes of sorghum leaf photosyntheticindexes and photosystem Ⅱa fter pathogen infection, the genetic law of resistance to thedisease and the marker and location of resistance gene and many other aspects. The studyobtained ideal results, parts of them filled in the blank about this research in China. Theresults provided scientific basis for breeding of resistant varieties and disease management.
     The main results were summarized as follows:
     1. Biological characteristics of pathogen which caused target leaf spot on sorghum
     The result indicated that optimum temperature for pathogen mycelia growth was25-30℃, and that for conidiagermination was20-30℃.The optimum pH for conidiagermination was-6, leaning to acidity. The pathogen could use many kind of sugar as acarbon nutrient,eg.lactose and galactose. However, sorbose was not fit for pathogen myceliagrowth. Different light condition for mycelium growth was not obvious.
     2. The category and population diversity of pathogen in China
     In this diversity research, we isolated pathogens from infected target leaf spot diseaseleaves of different regions of China by morphological observation and rDNA-ITS sequenceanalysis.The results show that although these lesions have significant differences, the colonymorphology and spore morphology of pathogens are very similar. The rDNA-ITS sequence cluster analysis showed that the similarity of these pathogens with Bipolaris sorghicola reachto99%.All of these confirmed this disease caused by the same pathogen,although theselesions have significant differences.
     3. The Bipolaris sorghicola toxins can reduce the permeability of cell membrane
     The seeds of L407B and Tx622B were treated by different concentrations of Bipolarissorghicola crude toxins.And the radicel growth inhibition rate as well as the electricalconductivity and malondialdehyde(MDA) content were determined to studied the effect ofcrude toxins of Bipolaris sorghicola on growth and embrance permeability of differentvarieties of sorghum radicle. The results showed that crude toxin could obviously inhibitgrowth of sorghum radicel. The electrical conductivity and MDA content were all higher inthe group which was treated by Bipolaris sorghicola crude toxins with same concentrationtwo days before than in control group. The electrical conductivity and MDA content werealso higher in the group which was treated by Bipolaris sorghicola crude toxins with differentconcentration on the same treated time. This demonstrates that Bipolaris sorghicola crudetoxins can reduce membrane permeability of sorghum radicle and there is a significantdifference among the different varieties of sorghum.
     4. The Bipolaris sorghicola toxins of pathogen can inhibit host protective enzyme activity
     The method of chromometry and Ultraviolet-visible spectrophotometer were used todetect the effecte of Bipolaris sorghicola toxins on the activity of protective enzymes such asperoxidase, superoxide dismutase, phenylalnine ammonialyase and polyphenoloxidase insorghum radicle. The results showed that the activities of peroxidase, superoxide dismutase,phenylalnine ammonialyase and polyphenoloxidase were significantly reduced in thesorghum radicle after Bipolaris sorghicola toxins treatmemt. The results indicated that theBipolaris sorghicola toxins inhibited the activities of protective enzymes.
     5. The structure and function of PSII in sorghum leave will be damaged when pathogeninfection
     Using sorghum variety Tx622B as materials, the effects of the infection of Bipolarissorghicola on photosystem II (PSII) structure and function of sorghum leaves were studiedby determining the chlorophyll content, chlorophyll fluorescence transient, hydrogen peroxide(H2O2)content and malondialdehyde (MDA) content in leaves of sorghum.The resultsshowed that the infected by B. sorghicola induced increase in MDA content of sorghumLeaves along with enhanced lipid peroxidation and chlorophyll fluorescence transient inLeaves of sorghum appeared with some difference. Further JIP-test analysis showed that thepathogen infection seriously hurt the donor side of PSII, blocking the QAto QBelectrontransfer, reducing the activity of reaction center.
     6. The resistant gene to target spot leaf was controlled by recessive monogene
     The recombinat inbred lines population which was constructed by the descendent ofL407B (immune inbred line) and Tx622B (susceptible inbred line),as materials accompaniedby the method of quantitative heredity,was used to study the heredity of resistance to thedisease.According to the resistant analysis of the field investigation and X2examination,proved that the genetic mechanism was in accordant with Mendelian monogenesegregation law.Appearances in F1families was consistent with Tx622B. In F2families,resistant plants is one quarter of all plants.To verify the resistant character of L407B wascontrolled by recessive monogene preliminarily.
     7. The site of resistant gene on chromosome
     Screened out of SSR markers which132"Xtxp-" and230"sm-" at the beginningdistribute on the whole sorghum chromosome.These markers showed polymorphic betweenresistant and susceptible parents and consistency between resistant parent and resistant-pool ofF2generation.By chromosome walking, one resistant gene to target spot leaf was mappedbetween Xtxp303and sm05014on the short arm of chromosome5within5.73M-8.15M.
引文
1.部建雯,姚广,高辉远,贾裕娇,张立涛,程丹丹,王鑫.2009.核盘菌(Sclerotinia sclerotiorum (Lib.) deBary)侵染抑制黄瓜光合作用的机理[J].植物病理学报,39(6):613-621.
    2.陈捷.1994.生理植物病理学[M].沈阳:辽宁科学出版社,39-126.
    3.陈罡,钟鸣,侯玉柱,刘志恒,马惠,刘少霞.2006.稻瘟病菌粗毒素的致病力测定及其对水稻幼苗生理生化的影响[J].种子,25(5):20-23.
    4.陈启峰,陈璋,王金陵.1993.运用致病毒素筛选稻瘟病细胞突变体[J].遗传学报,20(4):340-347.
    5.陈绍江.1996.大豆紫斑病菌毒素的研究[J].植物病理学报,26(1):45-48.
    6.陈永青,姜子德,戚佩坤.2002.RAPD分析与ITS序列分析在拟茎点霉分类鉴定上的应用[J].菌物系统,21(1):39-46.
    7.董汉松.1995.植物诱导抗性原理[M].科学技术出版社
    8.董怀玉,徐秀德,姜钰,刘旸,刘延军,姜钰,刘晓舟.2001.高粱种质资源抗高粱靶斑病鉴定与评价[J].杂粮作物,21(5):42-43.
    9.董金皋,韩建民,李竹.1997.玉米大斑病菌HT-毒素对玉米细胞膜透性和Vc氧化酶、PPO活性的影响[J].玉米科学,2:77-80.
    10.董金皋,周宗山,李正平.2000.玉米大斑病菌HT-毒素组分Ⅱ的化学结构.植物病理学报,30(2):166-167.
    11.方中达.1998.植病研究方法[M].北京:中国农业出版社.
    12.郭小平,赵元明,刘毓侠.1998.SSR技术及其在植物遗传育种中的应用[J].华北农学报,3:73-76.
    13.郝建军,刘延吉.2001.植物生理学实验技术[M].沈阳:辽宁科学技术出版社.
    14.贺岩.2004.玉米抗细菌性褐斑病基因的遗传分析和分子标记定位(D):硕士学位论文.北京:中国农业大学.
    15.李耕.2009.保绿型玉米自交系叶片衰老的生理生化差异及氮素调控(D):硕士学位论文.济南:山东农业大学.
    16.李海波,吴学谦,魏海龙等.基于形态特征和ITS序列对7个鹅膏菌属菌株的分类鉴定[J].菌物研究,2007,5(1):14-19.
    17.李合生.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000:146-147.
    18.李建勇.2007.黄瓜(Cucumis sativus L.)嫁接苗耐低温及光抑制的探讨(D):博士学位论文.济南:山东农业大学.
    19.李靖,利容千.1991.黄瓜感染霜霉病菌叶片中一些酶活性的变化[J].植物病理学报,21(4):277-283.
    20.李鹏民,高辉远,Reto J. Strasser.2005.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报,31(6):559-566.
    21.李玥莹.2001.高粱抗蚜基因分子标记的建立及应用研究(D):博士学位论文.沈阳:沈阳师范大学.
    22.刘文萍,刘丽艳,吕晓波,南相日.1997.稻瘟病菌粗毒素的制备及其致病力的测定[J].黑龙江农业科学,6:16-17.
    23.陆家云.2001.植物病原真菌学[M].中国农业出版社.
    24.罗孟军,朱天辉.2001.植物病原真菌毒素.四川林业科技,3(22):1-5.
    25.马春红,翟彩霞,郑秋玲,董文琦,李运朝,崔四平,范尉尉,贾银锁.2010.玉米小斑病菌T小种毒素诱导对玉米叶片苯丙氨酸解氨酶活性的影响[J].华中农业大学学报,29(1):21-25.
    26.庞冬辉,岑秀芬.1995.病原菌毒素诱导水稻抗稻瘟病突变体初探[J].广西农业科学,1:6-9.
    27.任一兵,王宇,程君,赵牧,李勇,刘文全,刘杰,粱朝坤,李军,古洪芬.2010.芒果叶斑病病原真菌的分离与鉴定[J].贵州农业科学,38(10):107-108.
    28.单卫星,陈受宜.1995.中国小麦条锈菌流行小种的RAPD分析[J].中国农业科学,5:1-7.
    29.沈喜,李红玉,贾秋珍,冯汉青,李敏权,粱厚果.2008.条锈病对小麦(Triticum aestivum L.)叶片光合功能及光合功能蛋白D1表达的影响[J].生态学报.28(2):669-676.
    30.宋凤鸣.1996.活性氧及膜脂过氧化在植物-病原物互作中的作用[J].植物生理学通讯,32(5):377-385.
    31.万佐玺,朱晶晶,强胜.2001.链格孢菌毒素对紫茎泽兰的致病机理[J].植物资源与环境学报,10(3):47-50.
    32.王春梅,施定基,朱水芳,田波,魏宁生.2000.黄瓜花叶病毒对烟草叶片和叶绿体光合活性的影响[J].植物学报,42(4):388-392.
    33.王桂清,张涛,孙华,徐秀德.2010a.玉米灰斑病菌粗毒素对玉米胚根保护酶活性的影响[J].沈阳农业大学学报,41(2):156-160.
    34.王桂清,张涛,徐秀德.2010b.活体条件下玉米灰斑病菌毒素对玉米胚根细胞膜透性的影响[J].华北农学报,25(3):231-234.
    35.王金陵,许文耀,王允文.1988.稻瘟病菌粗毒素的制备及其对水稻毒性的测定[J].福建农学院学报,17(4):318-322.
    36.王丽娟,徐秀德,姜钰,董怀玉,刘可杰.2011.东北玉米苗枯病病原镰孢茵rDNA ITS鉴定[J].玉米科学,19(4):131-133.
    37.王裕中,Miller J.D.,Neish G.A.1989.中国南京三个禾谷镰刀菌株所产生的毒素.植物病理学报,19:40.
    38.徐吉臣,Yohan M.Weerasuriya, Jeffery L.Bennetzen.2001.高梁(Sorghum bicolor)分子图谱的构建及寄生草(Striga asiatica)萌发诱导物基因的定位[J].遗传学报,28(9):870-876.
    39.徐秀德,李慧斌,王丽娟,姜钰,董怀玉,刘志恒,蔡明,刘大军.辽宁西瓜衰萎病的病原茵鉴定[J].植物病理学报,2011,41(1):106-109.
    40.徐秀德,刘志恒.高粱靶斑病在我国的发现与研究初报[J].辽宁农业科学,1995,2:45-47.
    41.徐艳.2006.水稻纹枯病军毒素的致病机理及对寄主防御酶的影响(D):硕士学位论文.扬州:扬州大学
    42.杨斌,余静,陈勃.2005.松针褐斑病菌毒素对紫茎泽兰抗病相关酶的影响[J].草业科学,22(6):81-84.
    43.杨敏,朱书生,李健强等.2008.稗草叶枯病病原尖角突脐孢菌的鉴定[J].菌物学报,27(3):325-334.
    44.叶建仁,祁高富.1999.松针褐斑病毒毒素的专化性研究[J].南京林业大学学报,23(6):1-4.
    45.余传涨.2010.高粱大规模SSR标记的开发以及应用(D):硕士学位论文.浙江:浙江师范大学.
    46.张明会,姜钰,徐秀德.2009.玉米大斑病菌培养与DNA提取方法[J].农业科技通讯,1:42-43.
    47.赵姝华,李钥莹,邹剑秋,Rolf Folkertsma,C Tom Hash.2005.高粱分子遗传图谱的构建[J].杂粮作物,25(1):11-13.
    48.章元寿.1995.植物病理生理学[M].南京:江苏科学技术出版社,51-52.
    49.郑康乐,黄宁.1997.标记辅助选择在水稻改良中的应用前景[J].遗传,19(2):40-44.
    50.朱立煌,徐吉臣,陈英,凌忠专,陆朝福,徐云碧.1994.用分子标记定位一个未知的抗稻瘟病基因[J].中国科学B辑:化学,24,1048-1052.
    51.左豫虎,刘惕若,王根林,王彦杰.2000.禾谷镰刀菌粗毒素诱导处理对小麦穗内与抗病相关的酶活性的影响[J].黑龙江八一农垦大学学报,12(3):11-15.
    52. Aro E M, Virgin I, Andersson B.1993.Photoinhibition of photosystemⅡ. Inactivation, protein damageand turnover [J].Biochimica et Biophysica Acta,1143(2):113-134.
    53. Bhattramakki, D., J. M. Dong, A. K. Chhabra and G.E.Hart.2000.An integrated SSR and RFLP linkagemap of Sorghum bicolor (L.)[J].Moench Genome,43:988-1002.
    54. Bonierable M.W.,Plaisted R.L.,Tanksley S.D.1988.RFLP maps based on a common set of clones revealmodes of chromosomal evolution potato and tomato[J].Genetics,120:1095-1103.
    55. Borges O L.1983.Pathogenicity of Drechslera sorghicola isolates on sorghum in Venezuela [J].PlantDisease,67(9):996-997.
    56. Brown S. M., M. S. Hopkins, S. E. Mitchell, M. L. Senior, T. Y. Wang, R. R. Duncan, F.Gonzalez-Candelas and S. Kresovich.1996.Multiple methods for the identification of polymorphicsimple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench][J]. Theor ApplGenet,93:190-198.
    57. Bueno M, Fillat MF, Strasser RJ, Maldonado-Rodriguez R,Marina N, Smienk H, Gómez-Moreno C,Barja F.2004.Effects of lindane on the photosynthetic apparatus of the cyanobacterium[J].Anabaena.Environ Sci Pollut Res,11:98-106.
    58. Carmela Belloch, Teresa Ferna′ndez-Espinar, Amparo Querol, M. Dolores García, EladioBarrio.2002.An analysis of inter-and intraspecific genetic variabilities in the Kluyveromyces marxianusgroup of yeast species for the reconsideration of the K. lactis taxon.[J].Yeast,19(3):257–268.
    59. Casa A. M.,Mitchell S. E.,Hamblin M. T.,Sun H., Bowers J. E.,Paterson A. H., Aquadro C. F.andKresovich S.2005.Diversity and selection in sorghum: simultaneous analyses using simple sequencerepeats [J].Theor Appl Genet,111:23-30.
    60. Chen HX, Li WJ, AnSZ, GaoHY.2004.Characterization of PSII photochemistry and thermostability insalt-treated Rumex leaves [J].Plant Physiol,161:257-264.
    61. Dalmacio S C.2000.Target leaf spot.In:Frederiksen RA,Odvody GN(eds)Compendium of sorghumdiseases,2nd edn.APS Press,the American Phytopathological Society,St.Paul,16-17.
    62. Damann K E, Gardner J R, Scheffer J M.1974.An assay for Helminthosporium victoriae toxin based oninduced leakage of electrolytes from oat tissue [J].Phytopathol,64:652-654.
    63. Demeke T,Hawchuk L M,Lynch D R. Lynch.1993.Identification of potato cultivars and clonal variantsby random amplified polymorphic DNA analysis[J]. American Journal of Potato Research,70(8):561-570.
    64. Eggenberg P, Rensburg LV, Krüger H J, Strasser RJ.1995.Screening criteria for drought tolerance inNicotiana tabacumL derived from the polyphasic rise of the chlorophyll a fluorescence transient (O-J-I-P)[J]. In: Mathis P(ed).Photosynthesis: from Light to Biosphere. Dordrecht: KAP Press,4:661-664.
    65. Emilio M, Elisa R, Francesea A.2005.Numerical approaches for quantitative analysis of twodimensional maps A reviewof commercial software and home-made systems Proteomics,5(3):654-666.
    66. Frederiksrn R A.1986.Compendium of sorghum diseases[M].The American Phytopathological Society.
    67. Gardner J M, Scheffer R P.1973.Effects of cycloheximide and sulfhydry-binding compounds onsensityivity of oat tissues to Helminthosporium victoriae toxin [J].Plant Pathol,3,147-157.
    68. Giarroeco L E, Marassi M A, SalemoG L.2007.Assessment of the genetic diversity in Argentine ricecultivars with SSR markers[J].Crop Sci,47:853-858.
    69. Gill K.S., E.L.Lubbers, B.S.Gill, W.J.Raupp, T.S.Cox.1991.A genetic linkage map of Triticum Tauschii(DD) and its relationship to the D genome of bread wheat (AABBDD)[J].Genome,34:362-374.
    70. Guissé B, Srivastava A, Strasser RJ.1995.The polyphasic rise of the chlorophyll a fluorescence(O-K-J-I-P) in heat stressed leaves [J].Archs Sci Genève,48:147-160.
    71. Helentjaris T., M.Slocum, S.Wright, A.Schaefer, J.Nienhuis.1986.Construction of genetic linkage mapsin maiae and tomato using restriction fragment length polymorphisms [J].Genetics,118:353-363.
    72. Hiroyuki Kawahigashi,Shigemitsu Kasuga,Tsuyu Ando,Hiroyuki Kanamori,Jianzhong Wu,Jun-ichiYonemaru,Takashi Sazuka,Takashi Matsumoto.2011.Positional cloning of ds1, the target leaf spotresistance gene against Bipolaris sorghicola in sorghum [J].Theor Appl Genet,123:131-142.
    73. Holden J H, Sze H.1984.Helminthosporium maydis T toxin increased membrane permeability to Ca2+insusceptible corn mitochondria [J]. Plant Physiol,75:235-237.
    74. Hulbert S.H.,RichterT.E.,Axtell J.D.,Bennetzen J.L.1990.Genetic mapping and characterization ofsorghum and related crops by means of maize DNA probes[J].Proc.Natl.Acad.Sci.,USA,87:4251-4255.
    75. Jiang C D, Gao H Y, Zou Q.2002.Characterisitics of photosynthetic apparatus in Mn-starved leaves [J].Photosynthetica,40(2):209-213.
    76. Katewa R, Mathur K, Bunker R N.2005.Variability in target leaf spot pathogen Bipolaris sorghicola ofsorghum in Rajasthan [J].India.Int Sorghum Millets Newsl,46:32-35.
    77. Keim P.,J. M. Schupp,S. E. Travis,K. Clayton,T. Zhu,L. Shi,A.Ferreria,D. M. Webb.1997.Ahigh-density soybean genetic map based on RFLP markers[J].Crop Sci.,37:537-543.
    78. Kimber A, Sze H.1984.Helminthosporium maydis T toxin decreased calcium transport intomitochondria of susceptible corn [J].Plant Physiol,74:804-809.
    79. Kleinhofs A., A.Kilian, M.A.Saghai Maroof, R. M. Biyashev, P. Hayes, F. Q. Chen, N. Lapitan, A.Fenwick, T. K. Blake and V. Kanazin, et al.1993.A molecular, isozyme and morphological map of thebarley genome [J]. Theor.Appl.Genet,86:705-712.
    80. Mackill D.J., Zhang Z., Redoiia E.D., Colowit P. M.1996. Level of polymorphism and genetic mappingof AFLP markers in rice [J]. Genome,39:969-977.
    81. Martin G. B., Williams J. G. K., Tanksley S. D.1991.Rapid identification of markers linked to aPseudomonas resistance gene in tomato by using random primers and near-isogenic lines[J].Proc.Natl.Acad Sci.USA,88:2336-2340.
    82. Matthias Stoll, Meike Piepenbring, Dominik Begerow, Franz Oberwinkler.2003.Molecular phylogenyof Ustilago and Sporisorium species (Basidiomycota, Ustilaginales) based on internal transcribed spacer(ITS) sequences. Published on the NRC Research Press Web site at http://canjbot.nrc.ca,81:976–984.
    83. Mccouth S. R., G. Kochert, Z. H. Yu, Z.Y. Wang, G. S. Khush, W. R.Coffman, S. D.Tanksley.1988.Molecular Mapping of rice Chromosomes[J],Theor.Appl.Genet.,76:148-149.
    84. Mclntyre CL, Casu RE, Drenth J, Knight D, Whan VA, Croft BJ,Jordan DR, Manners JM.2005.Resistance gene analogues in sugarcane and sorghum and their association with quantitative traitloci for rust resistance [J]. Genome,48(3):391-400.
    85. MichelmoreR.W., Paranand I., Kessali R.V.1991.Identification of markers linked to disease resistancegene by bulked segregant analysis: a rapid method to detect markers in specific genomic regions usingsegregating populations [J].Proc.Natl.Acad.Sci.,88:9829-9832.
    86. Mohan M,Nair S,Bentur JS,Rao UPandBennett J.1994.RFLP and RAPD mapping of the rice gm2genethat confers resistance to biotype1of gall midge(Orseolia oryzae)[J].Theor.Appl.Genet.,87(7):782-788.
    87. Mojtaba Mohammadi,Homayoon Kazemi.2002.Changes in peroxidase and polyphenol oxidaseactivities in susceptible and resistant wheat heads inoculated with Fusariumgraminearurm and inducedresistanee.Plant Science,162:491-498.
    88. Mohan SM, Madhusudhana R, Mathur K, Howarth CJ, Srinivas G, Satish K, Reddy RN, Seetharama N.2009.Co-localization of quantitative trait loci for foliar disease resistance in sorghum[J]. PlantBreeding,128,532-535.
    89. Monneveux P., Pastenes C., Reynolds M.P.2003.Limitations to photosynthesis under light and heatstress in three high-yielding wheat genotypes[J].Plant Physiol,160:657-666.
    90. Nemera Geleta, Maryke T. Labuschagne and Chris D. Viljoen.2006.Genetic diversity analysis insorghum germplasm as estimated by AFLP, SSR and morpho-agronomical markers[J].Biodiversity andConservation,15(10):3251-3265.
    91. Nishiyama Y, Yamamoto H, Allakhverdiev S I, Inaba1M, Yokota A and Murata N.2001.Oxidativestress inhibits the repair of photodamage to the photosynthetic machinery [J]. European MolecularBiology Organization,20(20):5587-5594.
    92. Ohmori T., M.Murata, F.Motogoshi.1996.Molecular characterization of RAPD and SCAR markerslinked to the Tm-l locus in tomato [J].Theor. Appl Genet.,92:151-156.
    93. Olson M., L.Hood, C. Cantor,D. Botstain.1989.A common language for physical mapping of thehuaman genome[J].Science,245:1434-1435.
    94. Pra silo, A dirN, Ohad I.1992.Dynamics of photosystemⅡ: mechanism of photoinhibition andrecovery processes [J].Topics in photosynthesis,11:295-348.
    95. Queller D.C., J.E.Strassmann, Hughes C.E.1993.Microsatellite and kinship [J].TrendsEvol,8:285-288.
    96. Ragot M., P.H.Sisco, D. A.Hoisington and C. W. Stuber.1995.Molecular marker mediatedcharacterization of favorable exotic alleles at quantitative trait loci in maize. Crop Sci.,35(5):1306-1315.
    97. Richard B. Peterson, Evelyn A. H.2004.The multiphasic nature of nonphotochemical quenching:implications for assessment of photosynthetic electron transport based on chlorophyll fluorescence.Photosynthesis Research,82:95-107.
    98. Sarkar R.K., Panda D.,Rao D.N, Sharma S.G.2004.Chlorophyll fluorescence parameters as indicatorsof submergence tolerance in rice. Crop management and physiology,29:66-68.
    99. Schansker G, Srivastava A, Govindjee,Strasser R.2003. Characterization of the820nm transmissionsignal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves [J]. Functional Plant Biology,30:785-796.
    100. Smith J.S.C., Chin E. C. L., Shu H., Smith O. S., Wall S. J., Senior M. L., Mitchell S. E., Kresovich S.and Ziegle J.1997.An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.):Comparison with data from RFLPs and pedigree [J].Theor. Appl. Genet.,95:163-173.
    101. Srivastava A,Guissé B,Greppin H,Strasser RJ.1997.Regulation of antenna structure and electrontransport in PSII of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophylla fluorescence transient:OKJIP[J]. Biochim Biophys Acta,1320:95-106.
    102. Strasser R J, Srivastava A, Govindjee.1995.Ployphasic chlorophyll,a fluorescence transients in plantsand cyanobacteria [J]. Photochemistry and Photobiology,61(1):32-42.
    103. Strasser RJ,Srivastava A,Tsimilli-Michael M.2000.The fluorescence transient as a tool to characterizeand screen photosynthetic samples [J]. In: Yunus M, Pathre U, Mohanty P (eds).Probing Photosynthesis:Mechanism, Regulation and Adaptation. London: Taylor and Francis Press,445-483.
    104. Strasser R J,Tsimill-Michael M,Srivastava A.2004.Analysis of the chlorophyll a fluorescence transient[J]. In: Papageorgiou G, Govindjee (eds).Advances in Photosynthesis and Respiration. Netherlands: KAPPress,1-42.
    105. Strivastava A, Strasser RJ.1996.Stress and stress management of land plants during a regular day[J].Plant Physiol,148:445-455.
    106. Tangoa N G.1992.Sorghum disease in the Philippines [M].India ICRSAT,35-40.
    107. TaoY Z, Jordan D R,Henzell R G and McIntyre C L.1998.Identification of genomic regions for rustresistance in sorghum[J]. Euphytica,103(3):287-292.
    108. Tsukiboshi T.1990.Inheritance of resistanea to target leaf spot caused by Bipolaris (Saccade)shoemaler in sorghum (Sorghum bicolor Moench)[J].Journal of Japanese Society of GrassslandScience,25(4):302-308.
    109. Uptmoor R,Wenzel W,Friedt W,.Donaldson G, Ayisi K and Ordon F.2003.Comparative analysis onthe genetic relatedness of sorghum bicolor aceessions from Southern Africa by RAPDs,AFLPs andSSRs[J].Theor Appl Genet,106:1316-1325.
    110. WuYQ,HuangY.2008.Molecular mapping of QTLs for resistance to the greenbug Schizap hisgraminum(Rondani) in Sorghum bicolor(Moench)[J],Theor Appl Genet,117(1):117-124.
    111. Verhoeven A S, Adams III W W, Demmig-Adams B, Roberta Croce and RobertoBassi.1999.Xanthophyll cycle pigment localization and dynamics during exposure to low temperaturesand light stress in Vinca major[J]. Plant Physiology,120(3):727-737.
    112. Young N. D.,Zamir D.,Ganal M. W.1988.Use of isogenic lines and simultaneous probing to identifyDNA markers tightly linked to the Tm-2a gene in tomato [J].Genetics,120:579-585.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700