用户名: 密码: 验证码:
Fe包Al粉末的化学镀法制备及其激光熔覆层组织结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe-Al金属间化合物是介于高温合金与陶瓷之间的一种新型高温材料,该合金中最受关注的主要是Fe_3Al,这种合金具有优良的抗氧化和抗硫化性能、多种介质中的抗腐蚀性和较高的高温强度,密度低,不含贵重合金元素,有望成为新一代廉价耐腐蚀材料。但Fe_3Al室温韧性不足、加工成型困难的问题至今尚未获得圆满解决,从而限制了Fe_3Al作为结构材料在工业中的应用。而利用激光熔覆技术,在钢铁材料表面制备Fe_3Al涂层,可避开其上述缺点并可显著改善钢铁材料的表面性能,从而提高材料的服役寿命。
     本文以Q235钢为基体材料,利用激光熔覆技术,制备了Fe_3Al涂层。利用SEM,XRD等手段分析熔覆合金组织及相结构,探讨激光熔覆条件下Fe_3Al金属间化合物合金层的组织结构特点。
     以次亚磷酸钠为还原剂,用化学镀法制备Fe包覆Al复合粉末,通过研究络合剂、镀液pH值、镀液温度以及施镀时间对所得Fe/Al复合粉末镀覆效果的影响,得出优化的工艺参数为:硫酸亚铁8g/L;酒石酸钾钠16 g/L;柠檬酸6 g/L;次亚磷酸钠30~40g/L;pH值9.5;温度75~80℃;镀覆时间:40min。在上述工艺条件下在微米级铝粉表面包覆了一层均匀的团粒状的铁层,得到了以铝为核,铁为壳的核-壳包覆式复合粉末。
     在Q235钢表面激光熔覆通过化学镀法制得的Fe包覆Al复合粉末,可得到Fe-Al金属间化合物涂层,熔覆合金层主要由Fe_3Al和FeAl_2构成,覆层中分布着树枝晶、柱状晶和颗粒相。分析了激光熔覆中的凝固行为及凝固速度R和温度梯度G对凝固后晶体组织形貌的影响,温度梯度G/凝固速度R(G/R)是凝固组织生长形态选择的控制参量,随着距熔池底部距离的增加,G/R迅速下降,形成了树枝状或柱状晶的涂层区组织特征。由于在激光熔覆过程中熔化的基体材料通过对流传质作用扩散到涂层中,造成了涂层的稀释,从而使涂层成分有较大的改变。而在激光熔覆快速冷却过程中由于涂层中很高的温度梯度以及涂层与基体间的热膨胀系数差造成的热应力,容易导致涂层产生裂纹。
     为了与激光熔覆Fe包覆Al复合粉末生成铁铝金属间化合物涂层的组织形貌作比较,在Q235钢表面激光熔覆通过机械合金化法制得的Fe_3Al粉末,得到了成分为Fe_3Al的涂层。激光熔覆Fe包覆Al复合粉末同样可以得到Fe_3Al涂层,但与激光熔覆Fe_3Al粉末得到的涂层组织结构不同。前者熔覆层中分布着树枝晶、柱状晶和颗粒相,后者覆层组织为粗大等轴状晶团,等轴状晶团内部由大量极细小的条状Fe_3Al晶粒构成。
Fe-Al intermetallic is a relatively new class of high-temperature material, which has melting point between high-temperature alloys and ceramics. Fe_3Al is a potential low-cost corrosion resistant material due to its outstanding properties such as good anti-oxidization and anti-sulphidation property, excellent corrosion resistance, high strength at a high temperature. However, Fe_3Al has poor ductility at room temperature, which in turn limits its applications as structural material. Fabricating Fe_3Al coating on steel substrate by laser cladding technonlogy is expected to combine the advantages of both Fe_3Al and steel—with high strength as steel and good surface property as Fe_3Al.
     In this paper, we will use laser surface modification technology to fabricate Fe_3Al coating on the surface of Q235 steel. The features of phase structure of the cladding alloy were studied with SEM, XRD et al.
     Composite powder for electroless iron plating on aluminium-matrix was prepared by chemical plating using sodium hypophosphite as reductant. By analyzing the influences of complexing agent, pH value, plating temperature and time on the coating, we get the optimal technological parameters: the concentrations are 8,16,6,30~40g/L for ferrous sulphate, potassium sodium tartrate, citrate acid, sodium hypophosphite and the pH value is 9.5, plating temperature is 75~80℃, plating time is 40 min. At technological conditions above mentioned, iron plating on aluminium-matrix of micron dimension has a granular surface morphology and composite powder that aluminium as nucleate and iron as shell was obtained.
     Using Q235 steel as substrate, Fe/Al composite powder produced by chemical plating as laser cladding material, we produce Fe-Al intermetallic coatings by means of laser surface modification technology. The cladding laser is composed of Fe_3Al and FeAl_2 phase, and the morphology contains dendrite crystals, columnar crystals and particles. We analyze the solidification behavior of the coating and the influence of solidification velocity R and temperature gradient G on the crystal structure and morphology after the solidification. The temperature gradient G and solidification rate R(G/R) is the dominant facts of the morphology of solidification structure. With distance from the bottom of the pool, G/R drop rapidly and form the coating characteristics which is constituted of dendrite and columnar crystals. Laser cladding, melted substrate diffused into the coating at the effect of contra-flow and mass transfer. This can make the coating diluted and component of the coating will have a great change. In the process of rapid cooling of laser cladding, thermal stress are produced due to the high temperature gradient in coating and the dilatometric coefficient contrast between substrate and coating, which may lead to cracking.
     In order to compare the microstructure with the coating produced by Fe/Al composite powder, using Q235 steel as substrate, the Fe_3Al prepared by mechanical alloying, we produce Fe_3Al graded coatings by means of laser surface modification technology. Using Fe/Al composite powder as laser cladding material, we can also obtain Fe_3Al coating, but the microstructure is different from the coating produced by laser cladding Fe_3Al powder. The former cladding layer contains dendrite crystals, columnar crystals and particles, and the latter consists of coarse equiaxed grain-groups, which consist of large amount of banding fine Fe_3Al grains.
引文
[1]尹衍升,施忠良,刘俊友.铁铝金属间化合物[M].上海:上海交通大学出版社,1996:1-3
    [2]McKamey C G,et al.A review of recent developments in Fe_3Al-based alloys[J].Mater Res,1991,(6):1779
    [3]望斌,彭志方.粉末冶金制备Fe-Al金属间化合物[J].材料导报,2007,01
    [4]汤文明,唐红军,郑治祥.Fe-Al金属间化合物基复合材料的研究进展[J].中国有色金属学报,2003(8):811-823
    [5]范润华,刘英才,尹衍升.Fe_3Al金属间化合物强韧化研究进展[J].材料科学与工程,1997,15(4):47-50
    [6]庞建超,李世杰.现代表面工程技术的发展及应用[J].天津冶金,2005,01:46-54
    [7]田保红,刘平.热喷涂合成Fe_3Al基涂层的高温摩擦学特性[J].中国有色金属学报,2003,13(4):974-978
    [8]刘长松,殷声.反应热喷涂的发展[J].材料保护,2000(1):83
    [9]潘邻.激光表面改性的现状和展望[J].表面工程资讯.2005,(01):5-6
    [10]R.L.Sun,D.Z.Yang,L.X.Guo,S.L.Dong.Microstructure and wear resistance of NiCrBSi laser clad layer on titanium alloy substrate[J].Surface and Coatings Technology,2000,132:251-255
    [11]朱子新,徐滨士,马世宁.高速电弧喷涂铁铝涂层的组织和性能[J].金属热处理,2002,27(3):12-13
    [12]闵学刚,余新泉,孙扬善.铁铝混合粉热喷涂及扩散处理组织分析[J].金属热处理,2001,26(5):47
    [13]刘爽,徐润发.高速火焰喷涂三种Fe-Al复合涂层300℃冲蚀性能研究[J].热加工工艺(焊接版),2006,04
    [14]闵学刚,余新泉,孙扬善.手弧堆焊Fe_3Al堆焊层的组织形貌与抗氧化性能[J].焊接学报,2001,22(1):56-58
    [15]丁成钢,陈春焕,从国志.Fe-Al合金堆焊层的组织与性能研究[J].大连铁道学院学报,2000,21(2):58-60
    [16]Agarwal A,Dahotre N B.In-situ synthesis of intermetallic and ceramic coating using pulse electrode surfacing[J].Scripta Materialia,2000,42(5):493-498.
    [17]Pillai S R,Shankar P,Rao R.Diffusion annealing and laser surface alloying with aluminum to enhance oxidation resistance of carbon steels[J].Matericals Science and Technology,2001,17(10):1249-1252
    [18]程广萍.激光熔覆制备Fe_3Al覆层的研究[J].焊接,2005(10):44-47
    [19]程广萍,何宜柱.钢基表面单道激光熔覆Fe_3Al金属间化合物的研究[J].铸造技术,2004(8):600
    [20]吴惠英,程广萍.Fe_3Al金属间化合物激光熔覆层的组织结构[J].物理测试,2005,9
    [21]程广萍,何宜柱.激光熔覆制备Fe-Al金属间化合物覆层[J].焊接学报,2006,6
    [22]吴惠英,程广萍.钢基表面激光熔覆Fe_3Al的组织结构[J].热处理2004,19(3):31
    [23]RotelM,Za haviJ,Tamir S,et al.Pre-bonding technology based on excimer Laser surface treatment[J].Applied Surface Science,2000,(154-155):610-616
    [24]Przybylowicz J,Kusinski J.Structure of cladded tungsten carbide composite coatings[J].Journal of Materials Processing Technology,2001,109:154-160
    [25]钱苗根.现代表面技术[M].北京:机械工业出版社,2003,8
    [26]董世运,马运哲.激光熔覆材料研究现状[J].材料导报,2006,20(6):5-9
    [27]Agarwal S C,Ocken H.Microstructure and galling wear of a laser-melted cobalt-base hard facing alloy[J].Wear,1996,140(2):223-233
    [28]Przybylowicz J,Kusinski J.Laser cladding and erosive wear of Co-Mo-Cr-Si coatings[J].Surface and Coatings Technology,2000,125:15-17
    [29]K wokC T,L eongK I,C hengF T,et al.Microstructural and corrosion Characteristics of laser surface-melted plastics mold steels[J].Materials Science and Engineering,2003,357:94-103
    [30]Lee SungJoon,Park ChanJin,LimYunSoo,et al.Influences of laser surface Alloying with niobium(Nb)on the corrosion resistance of Zircaloy-4[J].Journal of Nuclear Materials,2003,321:177-183
    [31]杨永强,田乃良.激光溶覆高温合金及其应用[J].中国激光,1995,22(8):632-636
    [32]Wu Xiaolei,Hong Youshi.Fe-based thick amorphous-alloy coating by laser cladding[J].Surface and Coatings Technology,2001,141:141-144
    [33]Lo K H,Cheng F T,Kwok C T,et al.Improvement of cavitation erosion resistance of AlSl 316 stainless steel by laser surface alloying using fine WC powder[J].Surface and Coatings Technology,2003,(165):258-267
    [34]Zhang Qingmao,He Jinjiang,Liu Wenjin,et al.Microstructure characteristics of ZrC -reinforced composite coating produced by laser cladding[J].Surface and Coatings Technology,2003,(162):140-146
    [35]D'Oliveira A S C M,Vilar R,Feder C G.High temperature behavior of plasma Transferred arc and laser Co-based alloy coatings[J].Applied Surface Science,2002,201:154-160
    [36]Qiang Li,Yinbin Chen,Jiahu Ouyang.The present status and future development of laser cladding wear-resistant coatings[J].Aerospace Materials and Technology,1996,4:22-36
    [37]Qiang Li,Jiahu Quyang,Tingquan Lei.Recent development in laser cladding of materials surface[J].Materials and Technology,1996,4:22-36
    [38]Hao Chen,Chunxu Pan,Lin Pan.Development of wear-resistant laser cladding[J].Heat Treatment of Metal,2002,27(9):5-9
    [39]姚建华,张伟.激光熔覆镍包纳米氧化铝[J].中国激光,2006,5(5)
    [40]居毅,郭绍义等.激光镍包纳米Al_2O_3增强复合涂层的摩擦磨损性能研究[J].摩擦学学报,2007,1(1)
    [41]凌国平.金属包覆型复合粉末及其在工程材料中的应用[J].机械工程材料,2005,29(3):44-46
    [42]陈曙光,刘君武,丁厚福.化学镀的研究现状、应用及展望[J].热加工,2000,(2):43-45
    [43]俞世俊,宋力昕.化学镀Ni-P-SiC复合镀层的研究[J].无机材料学报,2004,19(3):647-651
    [44]Jenq S N,Yang H W.Modification of Ti_(0.35)Zr_(0.65)Ni_(1.2)V_(0.6)Mn_(0.2)alloy powder by electroless nickel coating and its influence on discharge performance[J].Journal Powder Sources,1995(57):111-118
    [45]Yoon.B.K,Park.H.M.Synthesis of amorphous/crystallic composite using electroless copper plated amorphous powder[J].Materials Science and Engineering A,2005,396:166-171
    [46]姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版社,第一版,2000,3-4
    [47]Brenner Aetal:J.Research Natl.Bur.Standards,1946,37:1-5
    [48]程志鹏,杨毅,刘小娣.置换法制备核壳结构Cu/Al复合粉末[J].化学学报,2007,65(1):81-85
    [49]张承忠.金属的腐蚀与保护[M].北京:冶金工业出版社,1988:102
    [50]齐宝森.机械工程材料教程[M],2001,10:49-51
    [51]郭伟,徐庆鸿.激光熔覆的研究发展状况[J].宇航材料工艺,1998,1:1-8
    [52]肖爱军,邱长军,李学兵.激光熔覆表面改性技术及其应用综述[J].机械制造,2006,44(499):59-61
    [53]冯莉萍,黄卫东,李延民.激光金属定向凝固显微组织及成分偏析研究[J].金属学报,2002,5(38):501-506
    [54]胡汉启.金属凝固[M].北京:冶金工业出版社,1985:185
    [55]Kurz W,Fisher J.Fundamentals of solidification.Aedermannsdors[M].Switzerland:Transactions Technical Publications,1989:67
    [56]M.Von奥尔曼.激光束与材料相互作用得物理原理及应用[M].科学出版社,1994,83-85
    [57]刘江龙等.高能束热处理[M].北京:机械工业出版社,1997,6:145-155
    [58]M.J.Jakon,G.M.Robinson,M.D.H.Gill,W.O Neill.The effect of nozzle design on laser micro-machining of M_2 tool steels[J].Journal of Materials Processing Technology,2005,160(2):198-212.
    [59]B.J.Kooi,YT.Pei,J.Th.M.De Hosson.The evolution of microstructure in a laser clad TiB-Ti coating[J].Acta Materialia,51(2003),831-845.
    [60]Cai X,YangX.Y,ChenQ.L.Laser surface modification of Al-Si alloy.Laser Surface Melting(LSM)[J].Journal of Shanghai Jiaotong University,1999,33(7):804-807.
    [61]Zhang S,Zhang C.H,Wu W.T.An in-situ formed TiC particle reinforcement composite coating induced by laser cladding on surface of alloy Ti_6Al_4V and its wearing performance[J].Acta Metallurgica Sinica,2001,37(3):315-320
    [62]王福德,胡乾午,曾晓雁.ZL108镍基粉末激光表面合金化气孔与裂纹的研究[J].应用激光,2004,24(5):265-268
    [63]Rabin B H and Wright R N,Knibloe J R,Raman R V.Reaction Processing of Iron Aluminides[J].Mater.Sci & Eng.,1992,A153(1-2):706-711
    [64]李力钧.现代激光加工及其装备[M].北京理工大学出版社,1992,11:238-241

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700