用户名: 密码: 验证码:
Al-Cr合金涂层的制备及氧化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝化物涂层由于其氧化物致密,具有优良的抗氧化、抗硫化性能,因此被广泛用于燃气涡轮机及火箭发动机、核反应堆、火力发电厂、石油化工设备等领域。A1-Cr合金涂层是铝化物涂层的一种,它除了具备常见铝化物涂层的抗氧化性能外,还具有抗热冲蚀性能和阻氚性能。但A1-Cr合金涂层的制备都在900℃以上高温进行,这将降低基体的力学性能。
     本文通过在水溶液电镀Cr,之后在摩尔比为2:1的AlCl3-EMIC(氯化1-甲基3-乙基咪唑)离子液体中在Cr镀层表面镀Al,再通过低温热处理,制备Al-Cr合金涂层。用光学显微镜、二次电子及背散射电子、特征X射线能谱及X射线衍射,研究了热处理对A1-Cr涂层组成与结构的影响。用努氏硬度测定仪对合金层的力学性能进行检测。同时对不同A1-Cr合金相的涂层进行了氧化行为的研究。
     对高Cr含量的6.5μm Cr/15μm Al复合镀层热处理研究表明:500-740℃、5min热处理时,Cr/Al复合镀层在540℃时A1、Cr界面可以形成A1-Cr合金层。在640℃和740℃,5 min~16h时间内,其最外层合金层的相依次为Al4Cr、Al11Cr4、Al9Cr4和Al8Cr5; 740℃、1h可获得Al9Cr4为主相的合金涂层;640℃、16h和740℃、16h获得以A18Cr5为主相的合金涂层;Al8Cr5涂层与基体之间不发生明显的互扩散;短时间或氮气保护热处理可以避免Al-Cr合金涂层外表层空洞形成;在740℃热处理时,5 min-20 min内,反应掉的Cr层及Al9Cr4合金层的厚度与时间的平方跟成线性关系;Al8Cr5、Al9Cr4、Al11Cr4和Al4Cr合金层的硬度和韧性依次减小。
     对低Cr含量的1.6μm Cr/15μmAl复合镀层热处理的研究表明:低温热处理时,最初高Cr和低Cr含量镀层的反应规律一致,但当Cr层消耗完之后,所形成的Al-Cr合金涂层会与基体发生扩散形成Al-Cr-Fe合金层;1.6μm Cr/15μmAl的复合镀层经600℃、30min热处理,可得到以Al4Cr为主的Al-Cr涂层;Cr、Al镀层在低温扩散反应过程中,最初形成相为Al7Cr相。
     Al7Cr, Al4Cr和Al8Cr5的Al-Cr合金涂层经690℃、100h氧化,XRD、XPS检测结果表明:A1-Cr合金试样经喷砂后氧化表面粗糙、经抛光后氧化表面平整致密,同时喷砂试样形成的氧化物比抛光试样形成的氧化膜厚;外表面为Al4Cr和Al7Cr的高Cr涂层试样在氧化过程中,涂层会继续反应最终形成Al8Cr5相;XPS检测结果表明,Al-Cr合金相氧化后最外表层为Al2O3;同时Al8Cr5、Al4Cr和Al11Cr2相氧化后表面Al2O3的含量依次增高。
Aluminide coating for elevated temperature applications rely on the formation of a continuous, and compact Oxide scales for protection in oxidizing and sulfide environment. Aluminide coating were used widely in gas turbine, rocket engine, nuclear reactor, thermal power plant, petrochemical equipment.Al-Cr alloy coating is one of Aluminide coating, which have good oxidation and sulfuration resistant also have excellent thermal erosion and Tritium permeation resistant. The common formation of Al-Cr alloy coating is above 900℃, which can case degradation in mechanical properties of substrate alloys.
     In this paper, the Cr/Al composite coatings were obtained on 1Cr17 stainless steel by electrodepositing Cr from aqueous solution followed by electrodepositing Al from AICl3-EMIC (molar ratio 2:1) ionic liquid. The Al-Cr alloy coating can produced by heat treatment to the Cr/Al composite coating. Effects of heat treatment on composition and phase structure of Al-Cr alloy layers were studied by using optical microscope (OM), scanning electron microscope (SEM), backscattered electron (BSE), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The mechanical properties of alloy layer were test by Koop hardness equipment.The oxidation behaviors of different Al-Cr alloy coating were studied.
     Effects of heat treatment on structure transformation to the 6.5μm Cr/15μm Al composite coating were studied. The result show that an Al-Cr alloy layer at the Cr/Al interface was formed at heat treatment at 540℃in 5min. In time of 5 min~16h at 640℃and 740℃, the outer layer is Al4Cr, Al11Cr4, Al9Cr4and Al8Cr5 in turn. The main phase of alloy layer is Al9Cr4, Al8Cr5 and Al8Cr5 was obtained by the heat treatment of 740℃、1h,690℃、16h and 740℃、16h, respectively. The Al8Cr5 layer formed with single phase does not obviously interdiffuse with the substrate. The voids formed in coating surface within heat treatment under nitrogen and short time are less than that formed under air atmosphere and long time. The thickness of Al9Cr4 and reacted Cr coating is linear relationship with the square root of heat treatment time from 5 min to 20 min at 740℃. The Koop hardness tests show that the AlgCrs, Al9Cr4, Al11Cr4 and Al4Cr layer in turn reduce the hardness and toughness.
     Study on the lower Cr-containing of 1.5μm Cr/15μm Al composite coating to the form Al-Cr alloy layer by heat treatment at the temperature below Al melting. The result show that the law of the reaction of Cr/Al composition coating between the higher and the lower Cr-containing were the same at the beginning. When the Cr layer in the lower Cr-containing of Cr/Al composition coating is react off, the Al-Cr alloy can reacted with the substrate. For 1.6μmCr,15μm Al composite coatings, the main phase of alloy layer is Al4Cr was obtained by 30min heat treatment at 600℃. The first phase formation in the Cr/Al composition coating by heat treatment is the Al7Cr.
     The oxidation behavior of the outer layer of Al7Cr, Al4Cr and Al8Cr5 phase were studied in the temperature at 690℃in 100 h. The surface morphology of the sandblasting sample is rough, and of the polishing sample is smooth and dense. The oxidation film of sandblasting sample is thicker than the polishing sample. The Al8Cr5 were formed by oxidation to the outer layer of Al7Cr and Al4Cr phase sample at last. The xps test result show that the surface of oxide of Al-Cr alloy is Al2O3. The containing of the Al2O3 by the oxidation of Al8Cr5, Al4Cr and Al11Cr2 is increased in turn.
引文
[1]齐鑫哲,魏琪,栗卓新.铝合金及铝化物涂层发展现状[J].机械工程材料,2005,29(6):5-9.
    [2]Deevi S C, Sikka V K. Nickel and iron aluminides:An overview on properties, processing, and applications[J].Intermetallics,1996,4(5):357-375.
    [3]Anastassiou A, Christoglou C, Angelopoulos G N. Formation of aluminide coatings on Ni and austenitic 316 stainless steel by a low temperature FBCVD Process[J]. Surface & Coatings Technology,2010,204(14):2240-2245.
    [4]Firouzi A, Shirvani K. The structure and high temperature corrosion performance of medium-thickness aluminide coatings on nickel-based superalloy GTD-111[J]. Corrosion Science,2010,52(11):3579-3585.
    [5]刘培生.铝化物高温防护涂层的现状[J].稀有金属材料与工程.2003,32(9):681-685.
    [6]Perez F J, Pedraza F, Hierro M P, et al. Comparison of the high-temperature oxidation of uncoated and CVD-FBR aluminized AISI-304 stainless steel[J]. Oxidation of Metals,2002, 58(5-6):563-588.
    [7]Perez F J, Hierro M P, Pedraza F, et al. Effect of fluidized bed CVD aluminide coatings on the cyclic oxidation of austenitic AISI304 stainless steel[J]. Surface & Coatings Technology, 2001,145(1-3):1-7.
    [8]Natesan K.. Corrosion performance of iron aluminides in mixed-oxidant environments[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,1998,258(1-2):126-134.
    [9]Ren X, Wang F H. High-temperature oxidation and hot-corrosion behavior of a sputtered NiCrAlY coating with and without aluminizing[J]. Surface & Coatings Technology,2006, 201(1-2):30-37.
    [10]Li M H, Zhang Z Y, Sun X R, et al. Oxidation behavior of sputter-deposited NiCrAlY coating[J]. Surface & Coatings Technology,2003,165(3):241-247.
    [11]Xiang Z D, Rose S R, Datta P K, et al. Steam oxidation resistance and thermal stability of chromium aluminide/chromium hybrid coating on alloy steels formed at low temperatures[J]. Surface & Coatings Technology,2009,203(9):1225-1230.
    [12]Kung S C, Rapp R. A. kinetic study of aluminization coating of iron using the pack cementation technique[J]. Journal of the Electrochemical Society,1987,134(3):Cl 10-C110.
    [13]Tsipas S A, Omar H, Perez F H, et al. Boroaluminide coatings on ferritic-martensitic steel deposited by low-temperature pack cementation[J]. Surface & Coatings Technology,2008, 202(14):3263-3271.
    [14]Zhang Y, Pint B A. Cooley K M, et al. Formation of aluminide coatings on Fe-based alloys by chemical vapor deposition[J]. Surface & Coatings Technology,2008,202(16):3839-3849.
    [15]Murakami K.. Nishida N, Osamura K, et al. Aluminization of high purity iron and stainless steel by powder liquid coating[J]. Acta Materialia,2004,52(8):2173-2184.
    [16]Murakami K., Nishida N, Osamura K, et al. Aluminization of high purity iron by powder liquid coatings[J]. Acta Materialia,2004,52(5):1271-1281.
    [17]Glasbrenner H, Nold E, Voss Z. The influence of alloying elements on the hot-dip aluminizing process and on the subsequent high-temperature oxidation[J]. Journal of Nuclear Materials,1997,249(1):39-45.
    [18]赵力东,Erich L,李新.热喷涂技术的新发展[J].中国表面工程,2002,3:5-8.
    [19]Xiang Z D, Datta P K. Pack aluminisation of low alloy steels at temperatures below 700 degrees C[J]. Surface & Coatings Technology,2004,184(1):108-115.
    [20]Xiang Z D, Datta P K. Formation of aluminide coatings on low alloy steels at 650 degrees C by pack cementation process[J]. Materials Science and Technology,2004,20(10):1297-1302.
    [21]孙希泰,付建设,徐英,et al机械能助渗铝的研究[J].金属热处理,2000,7:21-23.
    [22]李岩,凌国平,刘柯钊,et al铁素体不锈钢室温熔盐镀铝层的热处理[J].材料热处理学报,2009,30(5):182-186.
    [23]Niu Y, Wang S, Gao F, et al. The nature of the third-element effect in the oxidation of Fe-xCr-3 at.% Al alloys in 1 atm O-2 at 1000 degrees C[J]. Corrosion Science,2008,50(2): 345-356.
    [24]Palm M. The Al-Cr-Fe system-phases and phase equilibria in the Al-rich corner[J]. Journal of Alloys and Compounds,1997,252(1-2):192-200.
    [25]Wen K. Y, Chen Y L, Kuo K H. Crystallographic relationship of the A14Cr Crystalline and quasicrystalline phases[J]. Metallurgical Transaction A,1992,23A:2437-2455.
    [26]Massalski T B, Okamoto H, Subramanian P R, et al. Binary Alloy Phase Diagrams,2nd ed.,[M].1990, ASM Inter-national, Materials Park, OH,.
    [27]Grushko B, Kowalska-Strzeciwilk E, Przepiorzynski B, et al. Investigation of the Al-Cr gamma-range[J]. Journal of Alloys and Compounds,2005,402(1-2):98-104.
    [28]He Z B, Zou B S, Kuo K H. The monoclinic A145Cr7 revisited[J]. Journal of Alloys and Compounds,2006,417(1-2):L4-L8.
    [29]Cao B B, Kuo K H. Crystal structure of the monoclinic beta-All 1Cr2[J]. Journal of Alloys and Compounds,2008,458(1-2):238-247.
    [30]Atoji M. Antiferromagnetic structure of AlCr2[J]. Journal of Chemical Physics,1965, 43(1):222-&.
    [31]Furrer P, Warlimont H. crystalline and amorphous structures of papidly solidified Al-Cr alloys[J]. Materials Science and Engineering,1977,28(1):127-137.
    [32]Swamy V T, Ranganathan S, Chattopadhyay, K. papidly solidified Al-Cr alloys-crystalline and quasicrystalline phases[J]. Journal of Materials Research,1989,4(3):539-551.
    [33]Audier M, Durandcharre M, Laclau E, et al. phase-equilibria in the Al-Cr system[J]. Journal of Alloys and Compounds,1995,220(1-2):225-230.
    [34]Mahdouk K, Gachon J C. Thermodynamic investigation of the aluminum-chromium system[J]. Journal of Phase Equilibria,2000,21(2):157-166.
    [35]Grushko B, Przepiorzynski B, Pavlyuchkov D. On the constitution of the high-Al region of the Al-Cr alloy system[J]. Journal of Alloys and Compounds,2008,454(1-2):214-220.
    [36]K L. The constitution of the Aluminum-rich Alloys of Aluminum with the transition metals with special reference to those of Chromium [J]. OXford:OXford Univ.,,1948.
    [37]Bendersky L A, Roth R S, Ramon J T, et al. crystallographic characterization of some intermetallic compounds in the Al-Cr system[J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science,1991,22(1):5-10.
    [38]Neto J G. C, Gama S, Ribeiro C A. experimental-study of the Al-Cr equilibrium diagram[D]. Journal of Alloys and Compounds,1992,182(2):271-280.
    [39]曹宝宝.A1-Cr合金系中准晶近似晶体相的结构研究[D].大连理工大学,2007.
    [40]Pavlyuchkov D, Bauer B, Kowalski W, et al. On the constitution of Al-4(Cr,Fe)[J]. Intermetallics,2010,18(1):22-26.
    [41]Ellner M, Braun J, Predel B. X-ray investigations on the Cr-Al phase belonging to the W-family[J]. Zeitschrift Fur Metallkunde,1989,80(5):374-383.
    [42]Grushko B, Przepiorzynski B, Kowalska-Strzeciwilk E, et al. New phase in the high-Al region of AI-Cr[J]. Journal of Alloys and Compounds,2006,420(1-2):L1-L4.
    [43]Okamoto, H. Al-Cr (Aluminum-Chromium)[J]. Journal of Phase Equilibria and Diffusion, 2008,29(1):112-113.
    [44]米国发,李庆春.快速凝固Al-8wt%Cr合金显微组织及其耐热性研究[J].材料工程,1997,7:3-5.
    [45]Mevrel R. State of art on high-temperature corrosion-resistant coatings[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,1989, 120:13-24.
    [46]Wahl G. Coating composition and the formation of protective oxide layers at high temperatures[J]. Thin Solid Films,1983,107(4):417-426.
    [47]Brady M P, Gleeson B, Wright I G Alloy design strategies for promoting protective oxide scale formation[J]. Jom-Journal of the Minerals Metals & Materials Society,2000,52(1): 16-21.
    [48]Huttunen-Saarivirta E, Stott F H, Rohr V, et al. Erosion-oxidation behavior of chromized-aluminized 9% chromium steel under fluidized-bed conditions at elevated temperature[J]. Oxidation of Metals,2007,68(3-4):113-132.
    [49]Huttunen-Saarivirta E, Kalidakis S, Stott F H, et al. Erosion-oxidation of uncoated, aluminized and chromized-aluminized 9Cr-1Mo steels under fluidized-bed conditions at 550-700 degrees C[J]. Tribology International,2010,43(1-2):161-170.
    [50]曹启宏.铝铬涂层抗高温氧化性能的研究[J].表面技术,1991,20(6):13-16.
    [51]Levchuk D, Bolt H, Dobeli M, et al. Al-Cr-O thin films as an efficient hydrogen barrier[J]. Surface & Coatings Technology,2008,202(20):5043-5047.
    [52]Zhou W, Zhao Y G. Qin Q D., et al. A new way to produce Al plus Cr coating on Ti alloy by vacuum fusing method and its oxidation resistance[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing.2006,430(1-2):254-259.
    [53]Heo N H, Kim M T, Shin J H, et al. Simultaneous chromizing and aluminizing using chromium oxide and aluminum:(Ⅱ) on austenitic stainless steel[J]. Surface & Coatings Technology,2000,124(1):39-43.
    [54]Cekada M, Panjan M, Cimpric D, et al. Analysis of the diffusion processes in Al/Cr, Al/Fe and Cr/Fe multilayers using the MRI model[J]. Vacuum,2009,84(1):147-151.
    [55]Moffat T P. electrodeposition of Al-Cr metallic-glass[J]. Journal of the Electrochemical Society,1994,141(9):L115-L117.
    [56]Armand M, Endres F, MacFarlane D R, et al. Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature Materials,2009,8(8):621-629.
    [57]李庆峰,邱竹贤.氯化钠-氯化铝熔盐体系及其应用[J].矿冶工程,1996,16(1):54-57.
    [58]凌国平,逢请强.室温熔盐电镀的研究进展[J].化学通报(网络版),2000,c00035.
    [59]Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chemical Reviews,1999,99(8):2071-2083.
    [60]Dupont J, Consorti C S, Spencer, J. Room temperature molten salts:Neoteric "green" solvents for chemical reactions and processes[J]. Journal of the Brazilian Chemical Society, 2000,11(4):337-344.
    [61]李岩,凌国平,刘柯钊,et al不锈钢基体室温熔盐电沉积铝[J].浙江大学学报(工学版),2009,43(7):1316-1321.
    [62]Jiang T, Brym M J C, Dube G., et al. Electrodeposition of aluminium from ionic liquids:Part I-electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)-1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids[J]. Surface & Coatings Technology,2006,201(1-2):1-9.
    [63]Ueda M, Ebe H, Ohtsuka, T. Electrodeposition of Al-Cr-Ni layer by pulse electrolysis in AlCl3-EMIC molten salt[J]. Electrochemistry,2005,73(8):739-741.
    [64]Ol'shanskaya L N, Popova S S, Zakirova S M. Electrodeposition kinetics of Li-Al alloys on Al:Effect of the third component[J]. Russian Journal of Electrochemistry,2000,36(8): 839-845.
    [65]Ali M R, Nishikata A, Tsuru T. Electrodeposition of aluminum-chromium alloys from AlCl3-BPC melt and its corrosion and high temperature oxidation behaviors[J]. Electrochimica Acta,1997,42(15):2347-2354.
    [66]Clinton D E, Trulove P C, Hagans P L, et al. Electrodeposition and nucleation studies of chromium from an acidic ambient temperature chloroaluminate molten salt[J]. Proceedings of the Symposium on Fundamental Aspects of Electrochemical Deposition and Dissolution Including Modeling,1998,97(27):215-225.
    [67]Liu J S Y, Chen P Y, Sun,I W, et al. Electrochemical studies of chromium(Ⅲ) and chromium(Ⅱ) chloride complexes in basic aluminum chloride-l-methyl-3-ethylimidazolium chloride room temperature molten salts[J]. Journal of the Electrochemical Society,1997, 144(7):2388-2392.
    [68]Pitner W R, Hussey C L, Stafford, G R. Electrodeposition of nickel-aluminum alloys from the aluminum chloride-1-methyl-3-ethylimidazolium chloride room temperature molten salt[J]. Journal of the Electrochemical Society,1996,143(1):130-138.
    [69]Koronaios P, King D, Osteryoung R A. Acidity of neutral buffered 1-ethyl-3-methylimidazolium chloride AlC13 ambient-temperature molten salts[J]. Inorganic Chemistry,1998,37(8):2028-2032.
    [70]萧以德,李兴濂.防护-装饰性Cu/Ni/Cr电镀层的大气腐蚀[J].材料保护,1995,28(10):4-5.
    [71]张祖军,王勇.铝合金化学镀Ni-P/Ni-B双层复合镀层及其性能研究[J].材料导报,2006,20(Ⅶ):342-344.
    [72]Jiang Y, Deng C P, He Y H, et al. Reactive synthesis of microporous titanium-aluminide membranes[J]. Materials Letters,2009,63(1):22-24.
    [73]许刚,张秀芝,张义帅.镁合金表面Ni-P/Ni镀层的制备与性能研究[J].表面技术,2010,39(1):71-74.
    [74]胡赓祥.材料科学基础(第二版)[M].上海交通大学,2006:153.
    [75]方洪渊.材料连接过程中的界面行为[M].哈尔滨工业大学出版社,2005.
    [76]张永康译,JM波等著.薄膜的相互扩散和反应[M].国防工业出版社,1983.
    [77]宋玉强,李世春,杜光辉Ti/Cu固相相界面扩散溶解层形成机制的研究[J].稀有金属材料与工程,2009,38(7)(1188-1192):1188.
    [78]何鹏,冯吉才,钱乙余,et al扩散连接接头金属间化合物新相的形成机理[J].焊接学报,2001,22(1):53-57.
    [79]Lopez G. A, Sommadossi S, Zieba P, et al. Kinetic behaviour of diffusion-soldered Ni/Al/Ni interconnections[J]. Materials Chemistry and Physics,2003,78(2):459-463.
    [80]Naoi, D., Kajihara, M. Growth behavior of Fe2A15 during reactive diffusion between Fe and Al at solid-state temperatures[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,459(1-2):375-382.
    [81]Pasichnyy M O, Schmitz G, Gusak A M, et al. Application of the critical gradient concept to the nucleation of the first-product phase in Co/Al thin films[J]. Physical Review B,2005, 72(1).
    [82]Vovk V, Schmitz G, Kirchheim R. Nucleation of product phase in reactive diffusion of Al/Co[J]. Physical Review B,2004,69(10).
    [83]王子锗译,诺维柯夫著.金属热处理理论[M].机械工业出版社,1987.
    [84]Tanaka Y. Kajihara M. Evaluation of interdiffusion in liquid phase during reactive diffusion between Cu and Al[J]. Materials Transactions,2006,47(10):2480-2488.
    [85]Walser T M, Bene T W. First phase nucleation in silicon-transition-metal planar interfaces[J]. Applied Physics Letters,1976,28(10):624-625.
    [86]Pretorius R, Marais T K, Theron C C. Thin film compound phase formation sequence, An effective heat of formation model[J]. Materials Science & Engineering R-Reports,1993, 10(1-2):1-83.
    [87]Tunca N. Delamore G W, Smith R W. CORROSION OF MO. NB, CR, AND Y IN MOLTEN ALUMINUM[J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1990,21 (11):2919-2928.
    [88]Barbier F, Manuelli D, Bouche K. Characterization of aluminide coatings formed on 1.4914 and 316L steels by hot-dipping in molten aluminium[J]. Scripta Materialia,1997,36(4): 425-431.
    [89]Umeda A, Yakou T, Kamasaki K, et al. Structural Defects Formed in Alloy Layers of Fe-Al System by Diffusion in Air[J]. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan,2009,95(9):A645-A648.
    [90]杨昌祥.A1-Cr急冷反应与1Crl7不锈钢的界面反应研究[J].浙江大学本科毕业论文,2009.
    [91]Harju M, Areva S, Rosenholm J B, et al. Characterization of water exposed plasma sprayed oxide coating materials using XPS[J]. Applied Surface Science,2008,254(18):5981-5989.
    [92]Reichel F, Jeurgens L P H, Richter G, et al. Amorphous versus crystalline state for ultrathin Al2O3 overgrowths on Al substrates[J]. Journal of Applied Physics,2008,103(9).
    [93]Lu H, Shen D H, Bao C.L, et al. XPS and AES studies of the Cr/Al2O3 interface[J]. Physica Status Solidi a-Applied Research,1997,159(2):425-437.
    [94]Park S C, Park Y B. Effect of Ar+ radiofrequency plasma treatment conditions on the interfacial adhesion energy between atomic-layer-deposited Al2O3 and Cu thin films in embedded capacitors [J]. Journal of Electronic Materials,2008,37(10):1565-1573.
    [95]Demange V, Anderegg J W, Ghanbaja J, et al. Surface oxidation of Al-Cr-Fe alloys characterized by X-ray photoelectron spectroscopy[J]. Applied Surface Science,2001, 173(3-4):327-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700