用户名: 密码: 验证码:
化学成分及合金元素对Fe-Al系金属间化合物微观缺陷和d电子的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长程有序B2型FeAl和Do_3型Fe_3Al金属间化合物具有良好的抗氧化,抗硫化性能,以及低密度和比许多高温结构材料成本低的特点,因而可望成为一种新型的高温结构材料。但是,在室温下的低塑性和在超过873K时强度的急剧下降是它们应用于结构材料的主要障碍。为了获得兼有良好室温塑性和高温强度的合金,人们已经利用合金化法研究了很多合金元素对FeAl和Fe_3Al力学性能的影响。但是,目前化学成分及合金元素影响FeAl和Fe_3Al合金的微观机制还不是很清楚。
     本工作分别测量了不同化学成分的二元Fe-Al合金,含Mo、Nb、Cr或Si的三元Fe_3Al合金和含Zr、B或Si的三元FeAl合金的正电子湮没辐射多谱勒展宽谱,利用双探头符合技术研究Fe-Al合金中3d电子的行为。利用正电子寿命谱参数研究Fe-Al合金的微观缺陷和电子密度,进而揭示二元和三元Fe-Al合金的宏观力学性能的微观机制。本文的研究结果表明:
     1.当Fe和Al原子结合形成二元Fe-Al合金时,由于晶格中最邻近的Fe-Al原子对之间发生Fe 3d-Al 3p杂化作用,Al原子的3p电子与Fe
The long-range ordered intermetallic compounds based on FeAl (B2) and Fe_3Al (Do_3) are considered as a good candidate of high-temperature structural material, since this material offers a wide range of attractive properties including good oxidation resistance, sulfidation resistance, low density and potentially lower cost than many high temperature structural materials. However, limited ductility at room temperature and a sharp drop in strength above about 873k have been major deterrent to their acceptance for structural applications. Many attempts to increase the room-temperature ductility and high-temperature strength of Fe_3Al and FeAl alloys by means of alloying method have been made by several investigators. But, the micromechanism for chemical composition and alloying elements affecting the mechanical properties of Fe_3Al and FeAl alloys has not been clarified yet by now.In the present work, the Doppler broadening measurements of positron annihilation radiation have been performed in binary Fe-Al alloys of different
    chemical composition, Fe_3Al doping with Mo, Nb, Cr or Si and FeAl containing Zr, B or Si .The 3d-shell electrons behavior in Fe-Al alloys can be extracted by a tow-detector coincidence technique. The positron lifetime spectra parameters are used to study the microdefects and electron densities in Fe-Al Alloys, and then reveal the micromechanism of the mechanical properties of binary and ternary Fe-Al alloys. The results are shown in the following:1. When Fe atoms and Al atoms are combined to form binary Fe-Al alloys, the 3d electrons of Fe atoms and 3p electrons of Al atoms are localized to form strong covalent bonds due to strong Fe 3d-Al 3p hybridization between nearest neighbor Fe-Al atom pairs. Fe_3Al and FeAl are also the intrinsic brittle alloys.The increase of Al content in binary Fe-Al alloys will enhance the 3d-3p interactions and weaken the d-d interactions; as a consequence the probability of positron annihilation with the 3d high-momentum electrons of Fe atoms drops sharply. At the same time, the concentration and open volume of structure vacancies in binary Fe-Al alloys increases rapidly with the increase of Al content.2. The addition of Cr to Fe_3Al leads to an increase in the probability of positron annihilation with the 3d electrons compared with the binary Fe_3Al alloys .It indicates that the Cr addition can enhance plasticity by weakening the 3d-3p interactions and enhancing the d-d interactions.
    The addition of Nb, Mo or Si to Fe3Al results in the decrease of the probability of positron annihilation with the 3d electrons compared with the binary Fe3Al alloys. Namely the Nb, Mo or Si addition into the Fe3Al alloy will enhance the p-d covalent bonds and weaken the d-d metallic bonds.3. The addition of Zr into FeAl alloy gives rise to the 3d electron signal in the spectrum of the alloy. It shows Zr addition can enhance the d-d metallic bonds and weaken the p-d covalent bonds; it is beneficial to the ductility of the FeAl alloy.When B atoms are added into FeAl alloy, B atoms are dissolved interstitially into the bulk or segregated to the grain boundaries, they increase the electron densities in the bulk and grain boundaries .B and Zr are found to be beneficial elements for improving the brittleness of FeAl alloys.Whereas, if FeAl is alloyed with Si, the 3d electron signals in the alloys decline sharply, it shows that the alloying element Si make the p-d interaction stronger and the d-d interaction weaker, and then the alloy is brittler because of the stronger covalent bonds.
引文
[1] 仲增墉,叶恒强,金属间化合物,北京:机械工业出版社,1992
    [2] C. G. Mckamey, J.A.Honton, C.T.Liu, A Review of recent developments in Fe_3Al-based alloys, J.Mater. Res, 1991(6): 1779
    [3] 范润华,边秀房,尹衍升,Fe_3Al金属间化合物研究,山东科学,1997,10(1):6-11
    [4] 邢志强,陆永浩,Fe_3Al金属间化合物的回顾及展望,北京工业大学学报,1996,22(3):131-138
    [5] Titran R H. in MRS Symp Proc 1985, V39: 309
    [6] 程开甲,评介《界面电子结构与界面性能》,自然科学进展,2002.11;12(11):1231.
    [7] P.J.Schulz and K.G.Lynn, Rev.Mod. Phys, 60, 701(1988)
    [8] W.Brandt and R.Paulin, Phys Rev, B15,2511(1977)
    [9] R.Paulin. in Ref, 1, P565
    [10] P.A.M.Dirac, Proc.Camb.Phil. Soc, Math. Phys. Sci, 26, 361(1930)
    [11] W.Brandt and R.Paulin, Phys. Rev. B, 5 (1972) 2430.
    [12] Kirkegaard P, Eldrup M.Positronfit Extended: a new version of a program for analysing positron lifetime spectra, Comput Phys Commun, 1974, 7:401-409
    [13] Lynn K G, MacDonald J R, Boie R A, et.al,Phys Rev Lett, 1977; 38: 241.
    [14] Deng W, Brusa R S, Karwarsz G P, et.al, Materials Science Forum, 2001; 363: 195.
    [15] Deng W, Brusa R S, Karwarsz G P, et.al, Materials Science Forum, 2001; 363: 198.
    [16] Saarinen K, Nissila J, Kauppinen H, et.al,Phys Rev Lett, 1999; 82: 1883.
    [17] Petkov M P, Weber M H, Lynn K G, et.al,Phys Rev Lett, 1999; 82: 3819.
    [18] Ghosh V J, Alatalo M, Asoka-Kumar P, et.al,Phys Rev B, 2000; 61: 10092.
    [19] Mylar U, Simpson P J, Phys Rev B, 1997; 56: 14303.
    [20] Asoka-Kumar P, Alatalo M, Ghosh V J, et.al, Phys Rev Lett, 1996; 82: 2097.
    [21] 邓文,阮向东,黄宇阳等,金属中高动量电子分布的实验研究,金属学报,2005,41(1):33-35
    [22] 楼白杨,刘茂森,Fe-Al金属间化合物的组织结构和力学性能,材料科学与工程,1995,13(2):19-23
    [23] 张建民,张瑞林,Fe_3Al的解理断裂与FeAl的沿晶断裂,科学通报,1994,39(8):762-764.
    [24] 张建民,张瑞林,B2型Fe-Al合金键结构及脆性的电子理论研究,材料科学与工艺,1994,12,2(4):11-15
    [25] 山口正治,马越佑吉,丁树深译,金属间化合物,北京:科学出版社,1991:46-603
    [26] Guo J T, Jin O, Yin W M, et al, Discovery and study of anomalous yield strength peak in FeAl alloy, Scr Metall Mater, 1993, 29(6): 783-7854
    [27] Xiao H, Baker I, The temperature dependence of the flow and fracture of Fe-40Al, Scr Metall Mater, 1993, 28(11): 1411-1416
    [28] 仲增墉,叶恒强,金属间化合物全国首届高温结构金属间化合物学术讨论会文集,北京:机械工业出版社,1992
    [29] Dadras M M, Morris D G. ,Mechanical Disordering of Fe-28%Al-4%Cr Alloy, Script Metallurgica et Metarlallia, 1993, 28:1245-1250
    [30] Fu C L, Yoo M H, Mater Res Soc Symp Proc, 1991; 213: 667
    [31] 张建民,Fe-Al系金属间化合物脆性机理研究,材料研究学报,1996,10(3):230-236
    [32] Stoloff N S, Liu C T, Intermetallics, 1994, 2:75
    [33] McKamey C G, De Van J H, Tortorelli P F, J Mater Res, 1991, 6(8):1779
    [34] 殷为民,郭建亭,胡壮麒,材料科学进展,1992,6(4):277
    [35] 仲增墉,叶恒强,金属间化合物,北京:机械工业出版社,1992:272
    [36] 张建民,仲增墉,张瑞林,等,Fe-Al系金属间化合物本征脆性的电子理论,材料研究学报,1996,10(3):230-234
    [37] Deng W, Xiong L Y, Long Q W, et.al, Acta Metall Sin(English Lett), 1992; 6:125
    [38] Deng W, Xiong L Y, Wang S H, et.al, Chin Sci Bulletin(English Edition), 1997; 42: 1783
    [39] 唐郁生,罗里熊,邓文等,Al含量对Fe-Al合金中微观缺陷和价电子密度的影 响,广西科学,1998,5(3):181-183,186
    [40] Brandt W, Paulin R, Positron diffusion in solid, Phys RevB, 1972, 5: 2430-2435.
    [41] Brandt W, Reinheimer J, Phys Rev B, 1970; 2:3104
    [42] 邓文,熊良钺,王淑荷等,Fe-Al系金属间化合物中的微观缺陷和电子密度,金属学报,2002;38(5):453-457
    [43] Lock D G, West R N, J Phys F(Met Phys), 1974; 4:2179
    [44] Stott M J, Kubica P, Phys Rev B, 1975; 11: 1
    [45] Brandt W, Dupasquier A, Positron Solid-State Physics, Amsterdam: Holland Publish Co, 1983: 200
    [46] Ghosh V J, Alatalo M, Asoka-Kumar P, et.al,. Phys Rev B, 2000; 61: 10092.
    [47] Asoka-Kumar P, Alatalo M, Ghosh V J, et.al,.Phys Rev Lett, 1996; 82: 2097.
    [48] 陆永浩,邢志强,Fe_3Al金属间化合物的回顾及展望,北京工业大学学报,1996,22(3):131-138
    [49] 范润华,边秀房,尹衍升,Fe_3Al金属间化合物研究,山东科学,1997,10(1):6-11
    [50] 陈国良,林均品,有序金属间化合物结构材料,冶金工业出版社,1999
    [51] 孙祖庆,杨王玥,黄原定,Fe_3Al基合金室温塑性的改善,金属热处理学报,1997,18(3):47-54
    [52] 楼白杨,刘茂森,毛志远等,Mn对Fe_3Al合金室温力学性能的影响,金属热处理学报,1996,17(1):58-61
    [53] 殷为民,郭建亭,胡壮麒,Mg在铸造Fe_3Al合金中的行为及其对力学性能的影响,金属学报,1993,29(5):193-198
    [54] 邓文,钟夏平,黄宇阳等,Si和Nb对Fe_3Al合金基体和缺陷中价电子密度的影响,中国科学(A辑),1998,28(10):947-951
    [55] 钟夏平,邓文,唐郁生等,Cr和Mo对Fe_3Al合金中微观缺陷和电子密度的影响,核技术,1999,22(6):321-325
    [56] 杨王玥,盛丽珍,孙祖庆等,代位合金元素原子在Fe_3Al金属间化合物亚点阵占位的中子衍射研究,金属学报,1996,32(8):799-804
    [57] 孙扬善,姚正军,薛烽等,钼对Fe_3Al基合金力学性能的影响,机械工程材料, 1995,19(5):10-13
    [58] Titran R H, in MRS Symp Proc ,1985, V39: 309
    [59] 郦定强,林栋梁,李培恩等,Fe-40Al及其含Mn或Ti合金的Mossbauer谱,材料研究学报,1994,8(4):310-314
    [60] 郦定强,林栋梁,Cr对FeAl合金组织结构和力学性能的影响,材料工程,1997(3):20-22
    [61] 张建民,张瑞林,B_2型Fe-Al合金键结构及脆性的电子理论研究,材料科学与工艺,1994,12,2(4):11-15
    [62] 钟夏平,邓文,唐郁生等,合金元素韧化或脆化FeAl金属间化合物的微观机制,物理学报,1998,47(10):1734-1740
    [63] Guo Jianting, Sun Chao, Tan Minghui, et.al,.Acta Atallurgica Sinica, 26A(1990), 20(in Chinese)
    [64] Crimp M A, Vedula K,Effect of boron on the tensile properties of B2 FeAl, Mater Sci Eng, 1986, 78:193-200
    [65] Crimp M A, Vedula K, Gaydosh D J, Room temperature tensile duclity inpowder processed B2 FeAl alloy, in MRS Symp Proc, 1987, V81: 499-504
    [66] Crimp M A, Vedula K, The relationship between cooling rate, grain size and the mechanical behavior of B2 Fe-Al alloys, Mater Sci Eng, 1993, A165: 29-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700